
Using Event and Performance Logs in Dependability Evaluation

J. Sosnowski, M. Król
Institute of Computer Science, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland
J.Sosnowski@ii.pw.edu.pl

ABSTRACT
The paper describes the problem of evaluating dependability of computer systems with on-line moni-
toring mechanisms. The main features of possible measurements (related to system operation) and the
scope of collected data are shortly outlined. On the basis of this survey we formulate problems of se-
lecting and processing the collected data in relevance to dependability issues. We concentrate on soft-
ware implemented monitoring systems, which provide combined exploration of event logs and per-
formance counters. The presented considerations are illustrated with practical monitoring results. They
relate to long term observations of many workstations and servers.

Key Words: dependability evaluation, on-line monitoring, event logs, performance logs, failure detec-
tion

1. Introduction
The increasing complexity of hardware and
software creates more attention to dependabil-
ity, maintainability and performance issues. In
particular various measurement-based studies
have proliferated. They relate to the problem
of detecting or predicting critical situations.
Most published results are focused on narrow
and fragmented problems encountered in the
systems considered by the authors (e.g. [3-6,8-
10,25,27] and references). In contemporary
computer systems various monitoring mecha-
nisms are included. The most popular relate to
event and performance monitoring
[1,2,7,12,19,23]. Such monitoring can generate
enormous quantity of various data, which may
be a valuable source of information on system
operation. This problem needs further investi-
gation in the following aspects: system obser-
vation techniques, selecting the most sensitive
observation parameters, creating the model of
normal and abnormal (dangerous) behaviour of
the system to simplify problem identification
and applying appropriate reactions.

In the literature most papers are targeted at
finding some characteristic pattern in log files
related to well defined critical problems (e.g.
leading to system crash) [8,18,25], detecting
attacks [26], or monitoring various perform-
ance parameters to predict network or proces-
sor bottlenecks [2,5,6,9,17,20]. Specialised

statistical or data mining models are being
developed for specific problems, hardly appli-
cable to other systems.

We have faced various dependability and
maintainability problems in computer systems
used within the university for didactic and
research purposes. They are available to many
students and researchers. Moreover, the load of
the systems changes in time or place, hardware
and software are updated or tuned, various
maintenance and administrative activities oc-
cur sporadically, etc. Hence, some operational
problems or configuration inconsistencies
arise. We have also some experience with
systems handling many customers with fluctu-
ating usage profiles. Long-term observations
of these systems allowed us to improve moni-
toring techniques and dependability. We have
developed and installed some special software
modules, collected a lot of data and performed
various analyses.

As opposed to other approaches the devel-
oped monitoring systems are interactive and
adjusted to appearing problems. Moreover, we
deal with a wider scope of observations, so we
rely on many data sources simultaneously (e.g.
event logs, performance logs, and exceptions).
We have combined two approaches: identify-
ing features of normal operation and exploring
long term trends (neglected in the literature);
detecting various abnormalities. In both ap-
proaches we take into account correlation with

environment and configuration changes. The
paper describes this in relevance to two moni-
toring techniques based on various event logs
(section 2) and performance data (section 3).

2. Event Logging

Computer systems are instrumented to pro-
vide various logs on their operation. These logs
comprise huge amounts of data describing the
status of system components, operational
changes related to initiation or termination of
services, configuration modifications, execution
errors, etc. In Windows various events are
stored in one of the three log files:
- security log comprises events related to sys-

tem security and auditing processes,
- system log is used primarily to store diag-

nostic messages, abnormal conditions,
events generated by system components
(e.g. services, drivers),

- application event log reports errors that oc-
cur during the application execution (e.g.
failing to allocate memory, aborting the
transfer of a file, etc.).

Each event log record comprises the following
fields:
- event specification - specifies 5 event types

related to event severity level: error, warn-
ing, information, success audit, failure
audit; this is supplemented with the event
category, ID, date and time,

- event source – name of the user and the
computer that generated the event,

- description – event details.
The list of possible events exceeds 10000

[22]. In Unix and Linux systems over 10
sources of events and more priority levels are
distinguished (Syslog). During normal opera-
tion of workstations or servers a large amount
of events is registered in the logs. Hence, we
have developed a special software system
LogMon which collects data logs from speci-
fied computers within LAN and performs pre-
defined processing to identify critical, abnor-
mal and other situations (e.g. unavailability,
warnings). LogMon co-operates with standard
services (e.g. Eventlog) and provides some
statistical and data exploration techniques. The
performed analysis can be targeted at individ-
ual computers or specified computer subsets to
find various correlations, etc.

The event files can be filtered preliminary
according to specified rules related to event
identifier, source, type, system user, computer
identifier, date and time (specified intervals by
two points in time, specified month, week day,

etc.). Complex multi step filtering is also possi-
ble, we can combine filtered files in one file,
etc. Typical statistics relate to:
1) Event counting – the distribution (e.g. in

decreasing order) of the number of regis-
tered events;

2) Time between events - time distribution be-
tween events of the same or different types;

3) Event occurrence distribution – statistics of
the number of the selected event type in
relevance to months, weeks, days or hours
of the day;

4) Event frequency profile – the frequency of a
selected event in the considered time pe-
riod.

The calculated statistics are visualised in
graphical forms, including a scatter plot where x
axis is the time and y axis represents different
event categories, or system components, etc.
Such visualisations are useful to interpret the
collected data, e.g. identification of significant
patterns. The collected events can also be pre-
sented according to some ranking features e.g.
frequency (fig.1) of appearance, entropy, etc.

While analysing the registered events we
should identify system start up and shutdown.
When the system is booted, event 6009 is
logged and then it is followed by event 6005,
which corresponds to EventLog service start-up.
The termination of EventLog service registers
event 6006: Event 6006 should be the last one
registered in the system log after shutting
down the system (clean shutdown). Neverthe-
less we observed some unexpected events reg-
istered after 6006 (anomalous situation). The
event 6008 is recorded when a dirty shutdown
(“blue screen”) occurs. The description part of
this event comprises system time stamp (date
and time). It may happen that the system can-
not record 6006 or 6008 event, however 6009
and 6005 events are recorded. This compli-
cates identification of system restarts, etc. Af-
ter the system restart (e.g. in consequence of
power supply outage) caused by event 6008
other registered events may give more details.

Within the events, which are correlated
with system restarts, we can distinguish 4
groups: system and application updates, errors
in applications and system services, hardware
errors, unidentified restarts. Update events
relate to restarts forced by installing new pro-
grams, system updating or recovery of the
previous version (with deletion of the updated
ones). Typically they are initiated by: Auto-
matic Updates, NtService Pack, MsiInstaler,
WindowsMedia, Print. The events specify
types of updates, information if it has been

successfully accomplished or not, etc. For ex-
ample for one of the computers the distribution
of antivirus data base updates was as follows:
for 270 registered events of this type (4570;
McUpdate) 62 appeared in time period less than
1 day, 34 in the period from 1 to 2 days, etc.
The analysis covered the log of 668 days. For
some computers this frequency was sporadi-
cally disturbed – due to some configuration
problems. Updates of different programs were
performed successfully in over 80% cases,
however for some computers non-successful
updates were reported. The deeper analysis
proved configuration inconsistency and network
problems. Not successful clock synchronisation
appeared on average in 10% cases.

Fig. 1 Event distribution before restarts

0

2

4

6

8

1 3 5 7 9 11 13 15 17

Event type

N
um

be
r o

f e
ve

nt
s

 Looking for the sources of restarts we can
analyze the distribution of events registered in
the specified window before the event sequence
related to reboot (6006, 6009, 6005) This is
illustrated in fig. 1. The x-axis specifies differ-
ent events In particular: x=1 relates to event
2013Srv (the disk is almost full, you may need
to delete some files); x=2 - event 54w32time
(the Windows Time Service was not able to find
a Domain Controller, a time and date update
was not possible); x=13 – event 21automatic
program updates; x=15 – event 26 application
error, etc. Such graph facilitates to identify the
most frequent sources of restarts. Complete
distribution of all registered events in a de-
creasing order of occurrence is also useful to
identify other problems. Typically 90% of reg-
istered events related to only 36 different event
types (from the total list of over 10000 possible
events).

The developed system LogMon provides
various data exploration results. In particular it
can identify reasons of restarts and dirty restarts.
In the case of restarts we have defined some
regular expressions describing events most
probably related to specified situations e.g. pro-
gram update restart: Tab. 1 shows restart statis-
tics for 4 laboratories (L1-L2) each comprising
17 workstations. It gives the percent of restarts
caused by program updates, application errors

and hardware errors. In some cases the restart
source is ambiguous - related to more than one
source (mostly a program update and some
other source). Quite significant percentage of
identified restarts (unknown) did not comprise
additional events facilitating their identification.
They relate to power downs and restarts initi-
ated by the user in response to some messages
appearing on the screen, some of them can be
identified from the application log.

Tab. 1 Distribution of restart sources

L1 L2 L3 L4
updates 20.2% 16.5% 22.6% 24.3%
applic. 19.2% 29.7% 12.0% 29.6%
hardware 1.2% 0.5% 2.0% 0.4%
ambig 1.4% 5.6% 5.0% 5.4%
unknown 59.4% 53.4% 63.4% 45.7%

Special attention is needed to dirty restarts.
Dirty restarts mostly relate to such events as
6008, 1000, 1001 save dump. Pressing RESET
button also causes dirty restart. At the system
level power down is treated in the same way as
fast switching off the computer. In logs with
power down closing event 6006 was missing.
Analysing events in the window before the dirty
restart we observed small number of events.
This relates mostly to the situation with no pos-
sibility of recording the event due to the restart
problem. In a period of 100 days we have iden-
tified typically 2-5 dirty restarts per computer.
However, for a few computers this was in the
range of 20-50 (old computers).

Fig. 2 Distribution of non activity periods

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
Time intervals (hours)

N
um

be
r o

f c
as

es

Total 774 events

Fig. 2 shows distribution of time periods
between event A and B, which correspond to
closing and starting the system. The x-axis of
the plot has the granularity of single hours. The
first bar (108 cases) relates to short time inter-
vals (less than 1 hour) and it corresponds to
short operation breaks related to restarts. The
next group of higher bars relates to the periods
of 15-16 hours, corresponding to switching off

the computer for the evening and night period.
Subsequent groups of bars relate to longer non
activity periods e.g. weekends, holidays, etc.

Power supply problems can be directly
identified by checking the time between events
3230:UPS (power down - switching off) and
3234:UPS (power up - switching on) generated
by UPS power supply. For one of the servers
the distribution of registered power outage du-
ration d was as follows: 22%, 56%, 8.5%, 6.8%
and 4.7% for d<1s, 1s�d<2s, 2s�d<3s, 3s�d<4s
and d�12s, respectively. The registered power
outages were tolerated in systems with UPS.
Computers without UPS crashed and needed
restarting. Some crashes appeared simultane-
ously in several computers (common power
failure).

Events related directly to hardware faults
appear before restarts. The most frequent relate
to memory media, network cards, printers and
other I/O devices. For example event 26 with
description that the system could not write or
read data from a specified file, device, etc.
Other examples are: faulty block of CD ROM,
timeout situation, IP address conflict, failure to
load specified drivers, application errors, etc. It
is worth noting that many events do not com-
prise descriptions, on the other hand some
descriptions are ambiguous. Many faults can
be identified from sequences of events. For
this purpose some knowledge database can be
systematically developed taking into account
the gained experience from the system exploi-
tation and maintenance.

Analysing logs is the basis for automatic
system management and helpful in assuring
high dependability. The registered reports may
be related to different formats, the text mes-
sages are usually relatively short, contain a
free format description of events (using a large
size vocabulary), and quite often ambiguous.
Hence, data mining is not trivial and needs
many preliminary studies to identify specificity
and abnormal behaviour of the monitored sys-
tems. In this process some categorisation of
text messages into a set of common classes
over various system components is required.
Moreover, an important issue is to visualise
various statistics, temporal dependencies, etc.

Simple data mining can be targeted at dis-
covering frequent and some specific well de-
fined patterns [10,11,14-16,24]. In more ad-
vanced analysis of log reports we should take
into account not only the individual messages
but also their temporal dependencies, which
can provide supplementary context informa-
tion. For example a massage on starting a pro-

gram update may be followed by some errors
due to inconsistency in the configuration.
Having transformed messages in some concise
categorised form simplifies further data proc-
essing and finding characteristic patterns. Un-
fortunately, different systems use different log
formats, etc. Hence, data collection and analy-
sis has to be tuned to these systems. This is
sufficient for individual system monitoring. In
practice we are also interested in general prop-
erties of many systems, so some specification
of similarities has to be defined to identify
common characteristics, etc.

The log pre-processing may involve visu-
alisation of event types or categories in relation
to their appearance (time stamps). From such
plot it is easy to identify some general proper-
ties e.g. the fact that event A usually happens
after event B, the time distance between such
events (it can be deterministic or random). An
event may appear with some periodicity (e.g.
antivirus updates, system heartbeat) or ran-
domly. Some events may form a loop in a cir-
cular pattern or an event chain (e.g. related to a
problem progress in predictable way). An
event may appear simultaneously with other
events. Various temporal relationships can be
represented by appropriate graphs [14]. Look-
ing for temporal dependencies we analyse the
distribution of time distance between events or
compare the unconditional probability of the
waiting time for some event with a conditional
probability in relevence to some other event.
Various event patterns may signal system
problems or confirm its health (e.g. heartbeats,
successful program updates). Their interpreta-
tion can be simplified by correlating them with
performance properties (section 3).

3. Performance Monitoring
In most computer systems various data on
performance can be collected in appropriate
counters (e.g. provided by Windows, Linux)
and according to some sampling policy (e.g. in
1-minute periods) [7,17]. These counters are
correlated with performance objects such as
processor, physical memory, cache, physical or
logical discs, network interfaces, server of
service programs (e.g. web services), I/O de-
vices, etc. For each object many counters
(variables) are defined characterising its op-
erational state, usage, activities, abnormal be-
haviour, performance properties, etc. Special
counters related to developed applications can
also be added. These counters provide data
useful for evaluating system dependability,
predicting threats to undertake appropriate

corrective actions, etc. The list of counters,
which can be configured, is very long. For an
illustration we describe some representative
counters.

Processor Time is the percentage of elapsed
time that the processor spends to execute a
non-idle thread. This counter is the primary
indicator of processor activity, and displays the
average percentage of busy time observed
during the sample interval. User Time and
Privileged Time relate to the percentage of
elapsed time the processor spends in the user
and in privileged mode, respectively. Proces-
sor Queue Length is the number of ready
threads in the processor queue. Processes is
the number of processes at the time of data
collection. Similarly are counted threads,
events, semaphores, etc.

Interrupts/sec is the average rate, in inci-
dents per second, at which the processor re-
ceived and serviced hardware interrupts. It
does not include deferred procedure calls
(DPCs), which are counted separately. This
value is an indirect indicator of the activity of
devices that generate interrupts, such as the
system clock, the mouse, disk drivers, network
interface cards, and other peripheral devices.
These devices normally interrupt the processor
when they have completed a task or require
attention. The system clock typically interrupts
the processor every 10 milliseconds, creating a
background of interrupt activity. This counter
displays the difference between the values
observed in the last two samples. Interrupt
Time is the time the processor spends receiving
and servicing hardware interrupts during sam-
ple intervals.

System Up Time is the elapsed time (in sec-
onds) that the computer has been running since
it was last started till the current time. C1 Time
is the percentage of time the processor spends
in the C1 low-power idle state (enables the
processor to maintain its entire context and
quickly return to the running state), similar
times are measured for C2 (a lower power and
higher exit latency state than C1, it maintains
the context of system cache) and C3 (a lower
power and higher exit latency state than C2, is
unable to maintain the coherency of its caches)
states. There are also counters related to tran-
sitions to these states.

Available Bytes is the amount of physical
memory, in bytes, available to processes run-
ning on the computer. It is calculated by add-
ing the amount of space on the Zeroed, Free,
and Standby memory lists. Free memory is
ready for use; Zeroed memory consists of

pages of memory filled with zeros to prevent
subsequent processes from seeing data used by
a previous process; Standby memory is mem-
ory that has been removed from a process
working set (its physical memory) on route to
disk, but is still available to be recalled. This
counter displays the last observed value.

Free Space is the percentage of total usable
space on the selected logical disk drive that
was free. Avg. Disk Bytes/Read is the average
number of bytes transferred from the disk
during read operations, similar counter on
write operations is available also.

Page Faults/sec is the average number of
pages faulted per second (a referenced page in
virtual memory is not available in the working
area). Hard faults require disk access and soft
faults cover faulted pages found elsewhere in
physical memory. Most processors can handle
large numbers of soft faults without significant
consequences. However, hard faults, which
require disk access, can cause significant de-
lays. Similarly Cache Faults/sec is the rate at
which faults occur when a page sought in the
file system cache is not found and must be
retrieved from elsewhere in memory or disk.

Page Reads/sec is the rate at which the disk
was read (the number of read operations, with-
out regard to the number of pages retrieved in
each operation) to resolve hard page faults.
Pages Output/sec is the rate at which pages are
written to disk to free up space in physical
memory. A high rate of pages output might
indicate a memory shortage. Pool Paged Fail-
ures is the number of times allocations from
paged pool have failed. It indicates that the
computer's physical memory or paging file are
too small.

File Read Operations/sec is the combined
rate of file system read requests to all devices
on the computer, including requests to read
from the file system cache. This counter dis-
plays the difference between the values ob-
served in the last two samples, divided by the
duration of the sample interval. File Control
Operations/sec is the combined rate of file
system operations that are neither reads nor
writes, such as file system control requests and
requests for information about device charac-
teristics or status. Split IO/Sec reports the rate
at which I/Os to the disk were split into multi-
ple I/Os. It may result from requesting data of
a size that is too large to fit into a single I/O or
that the disk is fragmented.

Server performance counters give: the
number of bytes the server has received (or
sent) from the network (indicates the server

load); the number of sessions that have been
closed due to unexpected error conditions or
sessions that have reached the autodisconnect
timeout and have been disconnected normally;
failed logon attempts to the server (password
guessing programs are being used to crack the
security); the number of times accesses to files
opened successfully were denied (improper
access authorisation, etc.).

There are many counters characterising
network traffic or TCP/IP protocol activity.
Here are some examples: Bytes Received/sec is
the rate at which bytes are received over each
network adapter, including framing characters.
Current Bandwidth is an estimate of the cur-
rent bandwidth of the network interface in bits
per second. Packets Received Errors is the
number of inbound packets that contained
errors preventing delivery to a higher-layer
protocol. Packets Received Discarded is the
number of inbound packets that were discarded
even though no errors had been detected (e.g.
to free up buffer space). Connection Failures
is the number of times TCP connections have
made a direct transition to the CLOSED state
from the SYN-SENT or SYN-RCVD state, and
to the LISTEN state from the SYN-RCVD
state.

Depending upon the goal of monitoring we
have to select and configure appropriate count-
ers within the objects of interest, to evaluate
how well they are performing. Too large num-
ber of counters results in some additional load
to the system and more complex data analysis.
Hence, an important issue is to check which
counters are most sensitive to the monitored
problems. We have performed such studies in
relevance to hardware and software failures as
well as configuration or maintenance incon-
stancies, effectiveness of some services, etc.
Moreover, the applications can also use
counter data to determine how much sys-
tem resources to consume. For example, to
determine how many data to transfer without
competing for network bandwidth with other
network traffic. The application could adjust
its transfer rate as the bandwidth usage from
other network traffic increases or decreases.
Having specified performance counter thresh-
olds we can generate alert notifications, query
performance data, create event tracing ses-
sions, capture a computer's configuration, and
trace the API calls in some of the Win32 sys-
tem DLLs.

Most authors concentrate on well-defined
critical problems e.g. cyberattack or system
availability. We have extended the scope of

analysis to checking the normality of system
operations e.g. periodicity of backups, program
updates, acceptable level of signalled errors
(e.g. rejected packets) and to detect abnor-
malities which may result in future problems,
this relates mostly to long term observations
and detecting dangerous trends e.g. decreasing
of free memory. We correlate performance
counters with event logs as well as with
changes in configurations, system load, tempo-
ral disturbances in the operational environment
(system maintenance and reconfigurations).

 Some performance measures are directly
used to balance system loads, etc. To assure
this we have to analyse short term and long-
term trends, correlate them with working
hours, weekends, summer months (seasonal
system behaviour), user activity profiles, etc.
The considered systems were specific due to
frequent configuration changes, many users
with different profiles (students and different
courses, projects, used programming environ-
ment, etc) or servicing thousands of customers
with random activities, influenced by various
events (e.g. dynamic changes of the stock mar-
ket).

Some problems are relatively easy to iden-
tify e.g. decreasing free memory in relevance
to systematically increasing number of users
and their higher engagement in more complex
calculation problems, bigger data bases, etc.
However, new not known problems are not
evident and need deeper data multidimensional
exploration. For example a higher rate of ap-
plication warnings in the log was correlated
with installation of a new version of the oper-
ating system and after increased number of
users. This related to configuration inconsis-
tencies, which were alleviated later on.

Analysing the performance variables we
can look at their instantaneous values, statisti-
cal properties, correlation with other variables
or events. These statistics may relate to speci-
fied time periods. Moreover, we can target the
analysis at averaged variable values (within
specified periods, etc.) or analyse spikes, their
frequencies, time distribution, periodicity, etc.
All this depends upon the monitoring goal. For
example in detection of cyber attacks we can
try to find characteristic statistical deviations
caused by the attack as compared with normal
workload. Interesting studies have been pre-
sented in [26]. The authors give statistical
properties of various performance variables
related to different objects for 11 known cyber
attacks. Analysing these results we have

checked the observability properties of these
attacks.

Tab. 2 The impact of attacks on perform-
ance

Property Objects Variables
M+
M-
DUL
DUR
DMM

3-16 (7.7)
3-11 95.9)
1-4 (2.5)
3-9 (5.7)
3-9 (5.7)

10-362 (105)
17-182 (60)
1-33 (10.3)
9-52 (27.8)
24-52 (43.3)

Tab. 2 shows minimal, maximal (average)
numbers of monitored performance objects and
related variables (counters) which showed
characteristic statistical properties during at-
tacks. They related to an increase (M+) or de-
crease (M-) in the mean value, unimodal left
skewed (DUL), unimodal right skewed (DUR)
and multimodal (DMM) distribution properties
as compared with normal workload statistics.
Such sensitivity analysis allows the designer to
minimise the number of monitored variables
and assure good detection accuracy.

Fig. 3 Control operations on files

For many other problems we have to trace
different properties. It is worth noting that the
behaviour of performance variables can be
different and needs deeper analysis. Quite of-
ten we observe some spikes in time plots of
variables. This is illustrated in fig. 3 which
shows the counter related to control operations
on files (system object parameter) for the sys-
tem without load (background system activities
– upper plot) and during disc defragmenation

(lower plot) with the average values 85 and
379, respectively. The correct behaviour com-
prises a high value spike at the beginning and
many periodic spikes.

Fig. 4 Processor usage trend

Fig. 5 The number of received bytes/sec

Fig. 6 The number of transmitted bytes /sec

Fig. 4 shows systematic increase of proces-
sor usage (in percents) within 26 months, this
increase is visible in the last 16 months. It
resulted from additional program installations
available to students. Having acquainted with
these programs they systematically increased
the load, so after 16 months system upgrade
has been done, to prevent problems, which
started to appear several months earlier. Fig. 5
shows the number of received bytes within the
network interface during 12 days, on Sundays
and Saturdays lower traffic level is visible, on
Thursday a high peak appeared. This signifi-
cant increase has been detected by the monitor
and warned the administrators. This resulted
from an erroneous burst of emails. Fig. 6

shows transmitted bytes to the network, the
circled area of the plot relates to no traffic
within 2 hours of a switch crash.

Fig. 7 Number of processes in data proc-
essing server

Fig. 8 Number of processes in communica-
tion server

Fig. 9 Distribution of incoming session re-
quests

Fig. 10 Server resources and quality func-
tion

Fig. 7 shows the plot of the number of ac-
tive processes in one of the servers within 5
months. A high spike at the end of May corre-
sponds to student activities related to final

semester reports. The plot reflects steady in-
crease of the workload (after one year system
upgrade was recommended). Fig. 8 shows the
number of processes in another server within
one year with low activity related to summer
months.

 Interesting observations were made for a
farm of 16 servers providing some web serv-
ices to many thousands of customers. The
system uses quite sophisticated load balancing
algorithm. Fig.9 shows one week plot of the
total number of sessions (lower line relates to
sessions created in the last minute) handled by
the farm. Fig. 10 presents the available server
resources (upper line and server quality func-
tion shaded plot). The quality function is used
by the system to distribute loads between 16
servers in the farm according to the session
requirements (number of customers) and avail-
able resources (processor and memory usage).
Close relation between quality function and the
available resources confirms good prediction
of load and correct system behaviour. This
difference is monitored by the system to iden-
tify problems (e.g. to eliminate a faulty server
and move the traffic to other servers). The
presented plots confirm a large diversity in
possible shapes related both to normal and
erroneous operation, hence their qualification
needs advanced techniques, which take into
account various correlation factors.

4. Conclusion
The available system logs and possible moni-
toring of various performance features provide
enormous amount of data on system operation.
This is a very useful source of information to
evaluate and improve system dependability.
However, selecting this information is not
trivial problem. It is possible to monitor and
collect data on various aspects using pre-
programmed counters, etc. Monitoring too
many variables may result in system perform-
ance loss and high memory load with collected
logs. So some optimisation is required here, in
particular we can select the most sensitive
variables related to various dependability
problems. The next problem is interpretation of
the collected data. This requires gaining some
experience from long-term observations and
correlating them with opinions of users and
administrators. This simplifies creating proce-
dures for automatic data exploration targeted at
dependability issues. Hence it is reasonable to
enhance the available system mechanisms and
software modules with an integrated database
and advanced visualisation, statistical and data

mining procedures (provided in the presented
systems).

Further research is targeted at correlating
various logs from many computers, identifying
typical operational profiles, system loads,
finding their changes in time and developing
more efficient data exploration techniques to
predict as soon as possible requirements of
reconfigurations, detect inconstancies or usage
anomalies, etc. Having itemised specific pat-
terns we can formulate appropriate actions.
The gained experience is useful in defining
event reduction rules, correlation rules (identi-
fying events which are symptoms of specific
problems), and problem avoidance rules (for
some problems several stages of progress can
be distinguished, early detection can prevent
critical situation). We also plan to enhance the
collected data from the field with logs relevant
to injected faults [21].

Acknowledgment This work was supported by
Ministry of Science and Higher Education grant
4297B/T02/2007/33. We express our appreciation
to J. Machnicki for experiments related to fig. 7-10.

References:

1. Bertino, E.,Ferrari, E., Guerrini, G., An approach to
model and query event based temporal data, Proc. of
5th Int. Workshop on Temporal Representation and
Reasoning. IEEE Comp. Soc., 1998, pp. 122-131.

2. Cherkasova L., et al., Anomaly? application change?
or workload change?, Proc. of IEEE DSN Sympo-
sium, 2008, pp. 452-461.

3. Daniel,E., Lal, R., Choi, G., Warnings and errors: A
measurement study of a UNIX server, IEEE Int.
Symp. on Fault-Tolerant Computing, FTCS-29,
1999, www.crhc.uiuc.edu/FTCS-29/fastabs.html.

4. Ganapathi, A., Patterson, D., Crash data collection:
A windows case study, Proc. of IEEE DSN Sympo-
sium, 2005, pp.772-184.

5. Heath, T., .Martin, R.P., Nguyen, T.D., Improving
cluster availability using workstation validation.
Proc. ACM SIG-METRICS Conf. Measurement and
Modelling of Computer Systems, 2002, pp.217–227.

6. Hoffmann, G. A., .Trivedi, K.S., Malek, M., A best
practice guide to resource forecasting for computing
systems, IEEE Trans. on Reliability, vol.56, no. 4,
2007, pp.615-628.

7. John, L.K., Eeckhout, L., (editors), Performance
evaluation and benchmarking, CRC Taylors
&Francis, 2006.

8. Kalyanakrishman, M., Kalbarczyk, Z., Iyer, R.K.,
Failure data analysis of a LAN of Windows NT
based computers, 18th IEEE Symposium on Reliable
Distributed Systems, 1999, pp.178-188.

9. Li, M., Wang, S., Zhao, W., A real-time and reliable
approach to detecting traffic variations at abnor-
mally high and low rates, In L.T. Yang et al., (edits)
ATC 2006, LNCS 4158, 2006, pp.541-550.

10. Lim. Ch., Singh, N., Yainik, S.., A log mining ap-
proach to failure analysis of enterprise telephony
systems, Proc. of IEEE DSN Symposium, 2008, pp.
388-403.

11. Makanju A., et al.., LogView: visulizing event log
clusters, Proc. of Annula Conf. on Privacy, Security
and Trust, 2008, pp. 99-108.

12. Malek, M., Online dependability assessment through
runtime monitoring and prediction, Proc. of EDCC –
7, IEEE Comp. Soc., 2008, pp.181.

13. Mansouri-Somani, M., Sloman, H., A configurable
event service for distributed systems, Proc. of IEEE
3rd Int. Conf. on Configurable Distributed Systems,
1996, pp. 210-217.

14. Peng, W., Peng, Ch., Li, T., Wang, H., Event
summarization for system management, Proc. of
ACM KDD’07, 2007, pp. 1028-1032.

15. Peng, W., Li, T., Ma, S., Mining logs files for com-
puting system management, SIGKDD Explorations,
vol. 7, issue 1, 2005, pp. 44-51.

16. Razavi A., K. Kontogiannis, Pattern and policy
drven log analysis for softeawe monitoring, Proc. of
IEEE Int. Computer Software and Applcations Con-
ference, 2008, pp.108-111.

17. Reinders, J., VTune performance analyser essential,
Intel Press, 2007.

18. Sahoo, R.K., Sivasubramanian, A., Squillante, M.,
Zhang, Y., Failure data analysis of a large-scale het-
erogeneous server environment, Proc. of IEEE DSN
Symposium, 2004, pp.283-285.

19. Simache, C., Kaâniche, M.:, Event Log Based De-
pendability Analysis of Windows NT and 2K Sys-
tems, IEEE Pacific Rim International Symposium on
Dependable Computing, 2002, pp.311-315.

20. Simache, C., Kaâniche, M.:,Measurement-based
availability of Unix systems in a distributed envi-
ronment, 12th International Symposium on Software
Reliability Engineering (ISSRE’01), IEEE Comp.
Soc., 2001, pp.346-355.

21. Sosnowski, J., Gawkowski, P., Enhancing fault
injection test bench, Proc. of DepCos_RELCOMEX
Conference, IEEE Comp. Soc., 2006, pp.76-83.

22. Sosnowski, J., Poleszak, M.:, On-line monitoring of
computer systems, Proc. of IEEE DELTA 2006
Workshop., 2006, pp. 327-331.

23. Stearley, J.:, Towards informatic analysis of
Syslogs, Proc. of IEEE Int. Conf. on Cluster Com-
puting, 2004, pp. 309-318.

24. Vaarandi, R.:, Mining event logs with SLCT and
LogHound. Proceedings of the 2008 IEEE/IFIP
Network Operations and Management Symposium,
2008, pp. 1071-1074.

25. Xu, J., .Kallbarczyk, Z., Iyer, R.K.:,. Networked
Windows NT system field failure data analysis.
Technical Report CRHC 9808 University of Illinois
at Urbana- Champaign, 1999.

26. Ye, N., Secure Computer and Network Systems,
John Wiley& Sons, Ltd. , 2008.

27. Zhang Y., Sivasubramanian, Failure prediction IBM
BlueGene?L event logs, Proc. of IEEE Int. Symp. on
Parallel and Distributed Processing, 2008, pp.1-5.

