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Abstract 
One of the major drawbacks of the clustering algorithms described in the literature is requiring some 
parameters to guide the clustering process towards a certain solution which may not be necessary the most 
appropriate to the data in hand. This problem is mainly handled by the work described in this paper where 
the major contribution could be articulated as a parameter free clustering approach that leads to appropriate 
distribution of the given data instances into the most convenient clusters. This goal is realized in several 
steps. First, we apply multi-objective genetic algorithm to determine some alternative clustering solutions 
that constitute the pareto front. The result is pool of the clusters reported by all the solutions. Then, we 
determine the homogeneity of each cluster in the pool to keep the most homogeneous clusters. Finally, as a 
given data instance may belong to more than one cluster in the solution set we reduce this membership to 
the cluster in which the instance is closest to the centroid. Many applications like gene expression data 
analysis are in need for such parameter free approach because the correctness of the post processing is 
directly affected by the outcome form the clustering process. We demonstrate the applicability and 
effectiveness of the proposed clustering approach by conducting experiments using some benchmark gene 
expression data sets available at the Genomics Department of Stanford University. 
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1 Motivation and Contribution 
The central role of the DNA microarray 
technology in biological and biomedical domain 
allowed researchers to observe transcription 
levels of many thousands of genes. Information 
gathered by analyzing the genes at different 
levels (stages of the process) is used for finding 
the gene function, the reconstruction of the gene 
regulatory network, diagnosis of disease 

biomarkers and inference of medical treatment. 
Gene expression data analysis gives insight into 
critical issues related to several diseases. In other 
words, identifying differentially expressed genes 
is an interesting problem that has received 
considerable attention of researchers who already 
realized its scientific and social impacts; for 
instance, identifying differentially expressed 
genes would help in classifying cancerous cells 
[1, 2, 3, 4, 6]. 



There are two common trends to handle the 
problem, namely experimentally in the lab or 
computationally by applying machine learning, 
data mining and statistical techniques. While the 
former approach is costly and time consuming, 
the latter approaches are more attractive to 
analyze large volumes of data. Data mining and 
statistical techniques made it easier to interpret, 
understand, and extract the knowledge hidden 
within the microarray data and large data 
collections in general [11]. In other words, to 
analyze the expression level of all the genes in 
human cancer, microarray is used to study the 
gene expression of all the genes in “normal” and 
cancerous humans. The result of this gene 
expression study is a matrix of m genes and n 
samples, where samples represent either 
“normal” or cancerous humans; this matrix is 
called the microarray data. To help biologists and 
medical scientist developing effective analysis, 
different statistical and computing techniques are 
employed in the process; the main target is to 
reduce the space for better control and analysis. 
The goal to be achieved is the ability to 
distinguish between normal and cancer samples 
based on subset of features (genes) selected from 
the microarray data. This discovery gives insight 
into the cancer biomarker to be considered 
mostly in developing appropriate treatment and 
hence the outcome may shape the focus of the 
drug industry.  

Several methods have already been proposed to 
extract the smallest number of biomarkers that 
can accurately classify different cancer samples 
from non-cancer samples. However, most of the 
proposed approaches ignore the fact that the 
microarray data is noisy; and thus, they have to 
deal with the data more carefully. We set two 
main objectives to handle the problem. First, we 
extract the smallest possible number of features, 
although the best number of features is a problem 
yet to be considered. Second, it is required to 
reduce the functional redundancy within the 
extracted genes. We argue that these two 
objectives could be satisfied by a powerful 
clustering approach. In this sense, several 
clustering approaches have been proposed so far 
[16], e.g., k-means, Fuzzy C-means and Self-
Organizing Maps (SOM) have been used to 
cluster the samples into two or more classes 
depend on the number of available cancer 
samples. Unfortunately, the target clustering 
approach is yet to be developed. One such 
approach is the focus of the study described in 
this paper. Actually, clustering groups genes with 
similar expression profile. It ensures that we 
extract genes with different functionalities based 
on the hypothesis that genes with similar 
expression profile have similar functions. The 

extracted genes are considered as good 
representatives for the data.  

Our approach presented in this paper has been 
designed to handle the clustering of a given set of 
instance without requiring any parameter be 
specified in advance; approaches like k-means 
require the number of clusters explicitly specified 
and approaches like DBSCAN are based on some 
parameters that implicitly simulate the number of 
clusters. A parameter free clustering approach is 
critical for many domains where finding the most 
appropriate clustering is directly reflected into 
the analysis of the results. One such domain is 
gene expression data analysis, which is the main 
concentration of the experiments conducted in 
this study. Our approach starts by applying a 
multi-objective k-means genetic algorithm 
(MOKGA) in order to determine several 
alternative clustering solutions without taking the 
weight values into account [24]. We run cluster 
validity analysis, namely Dunn index [9], 
Davies-Bouldin index [8], Silhouette index [18], 
C index [15], SD index [12] and S_Dbw index 
[13] on the alternative solutions to determine the 
number of compact clusters to have in the final 
solution. Then, we collapse all the alternative 
solutions obtained from MOKGA to form a 
common pool of clusters, where clusters coming 
from the same solution are disjoint and clusters 
from different solutions mostly overlap. 
Analyzing all the clusters in the pool at once 
gives equal opportunity to every cluster to show 
up in the final solution which should include the 
most compact clusters. This is more natural 
process than analyzing the alternative solutions 
themselves. In other words, we zoom into the 
details of each solution because some solutions 
may include more compact individual clusters 
than a single favored solution. At the end of this 
process, we will have a collection of compact 
clusters that mostly overlap. The overlap is 
eliminated by keeping each data instance only in 
the cluster where the data instance is closest to 
the centroid of the cluster. In case of objects that 
do not end up in any of the identified clusters, we 
first measure the distance between these objects 
and the centroids of the clusters in the final 
solution set. Then we have two choices, either to 
add an object to a cluster based on shortest 
distance and provided that it does not destroy the 
compactness of the cluster or to consider the 
object as outlier otherwise. 

As gene expression data analysis is concerned, 
benefiting from the advantage of the proposed 
clustering approach, we use the gene closest to 
the centroid as reduced feature to represent the 
cluster. Thus, after the clustering is over and the 
most appropriate clustering is identified, the 
genes closest to centroids (one gene per cluster) 



represent the whole data. The latter genes form 
valuable source of information for further 
analysis of the gene expression data to discover 
the biomarkers [2, 3, 4, 27]. In our previous work 
described in [2, 3, 4], we perform a kind of 
controlled multilevel (hierarchical) clustering to 
select some representative genes; one gene per 
cluster. However, the compact solution produced 
by the clustering approach described in this paper 
provides the opportunity to consider more 
appropriate biomarker genes. Finally, the 
applicability and effectiveness of the proposed 
approach has been tested using three benchmark 
data sets; the results are promising. Here it is 
worth mentioning that the proposed approach is 
capable of locating outliers, but this property is 
still to be validated by considering some other 
synthetic or real data sets with outliers. We have 
left this out as future study because none of the 
data sets used in the testing contains outliers. 

The rest of the paper is organized as follows. 
Section 2 is an overview of multi-objective 
optimization. Section 3 describes the proposed 
approach. Section 4 discusses the experiments. 
Section 5 is summary and conclusions. 

 
 

2 Overview of Multi-Objective 
Optimization 

A multi-objective optimization problem has n 
decision variables, k objective functions, and m 
constraints. Objective functions and constraints 
are functions of the decision variables. The 
optimization goal may be described as follows: 
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where x is the decision vector, y is the objective 
vector, X denotes the decision space, and Y is 
called the objective space. The constraints 

0)( ≥xe  determine the set of feasible solutions 
[29].  

Solutions to a multi-objective optimization 
method are mathematically expressed in terms of 
non-dominated or superior points. In a 
minimization problem, a vector x(1) is partially 
less than another vector x(2), denoted )2()1( xx p , 
when no value of  x(2) is less than x(1) and at least 
one value of x(2) is strictly greater than x(1). If x(1) 
is partially less than  x(2), we say that x(1) 
dominates x(2) or the solution  x(2) is inferior to 
x(1). Any vector which is not dominated by other 
vectors is said to be non-dominated or non-
inferior. The optimal solutions to a multi-

objective optimization problem are non-
dominated solutions [21].  

A common difficulty with the multi-objective 
optimization is the conflict between the objective 
functions. None of the feasible solutions allow 
optimal solutions for all the objectives. Pareto-
optimal is the solution, which offers the least 
objective conflict. In traditional multi-objective 
optimization, objectives are combined to form 
one objective function. One of the traditional 
methods being used is weighting each objective 
and scalarizing the result. At the end of each run, 
pareto-optimal front may be obtained. But it 
actually represents one single point. However, 
the approach described in this paper favors 
producing all the alternative solutions along the 
pareto-front. Reporting the latter alternative 
solutions is the key step in our approach. In other 
words, the remaining steps of our approach 
depend on the outcome from MOKGA. The 
objectives to be optimized in the multi-objective 
process applied in this study are: maximizing 
cluster homogeneity, maximizing separateness 
between the clusters minimizing the number of 
clusters and minimizing the partitioning error. 

 
 

3 The Proposed Approach 
In this section, we describe the clustering 
approach that starts by applying the Multi-
Objective Genetic K-means algorithm 
(MOKGA) to produce alternative solutions 
which are collapsed into one pool of clusters to 
be further analyzed. Although we tested our 
approach on gene expression data, it is a general 
purpose approach for clustering other datasets 
after modifying the fitness functions and 
changing the proximity values as distance or 
non-decreasing similarity function according to 
the requirements of the dataset to be clustered. 
Our interest in the gene expression data is 
because we have already produced a successful 
approach for identifying biomarker genes [2, 3, 
4, 27], and we target to integrate the new 
approach into the validation process, i.e., to at 
least confirm whether the genes identified by the 
previous approach [2, 3, 4, 27] are in fact the 
most representative biomarkers. 

Concerning our approach, after running 
MOKGA, we get the pareto-optimal front that 
gives the alternative solutions.  Then, the system 
analyzes the clustering results by applying six of 
the cluster validity techniques proposed in the 
literature, namely Silhoutte, C index, Dunn’s 
index, SD index, DB index and S_Dbw index. 
The favored number of clusters guides the 
process in selecting the most compact clusters 
from the pool. 



The employed clustering approach MOKGA is 
basically the combination of the Fast Genetic K-
means Algorithm (FGKA) [17] and Niched 
Pareto Genetic Algorithm [14].  

MOKGA uses a list of parameters which has 
nothing to do with the clustering process; these 
parameters are particular to the process of the 
genetic algorithm: population size (number of 
chromosomes), t_dom (number of comparison 
set) representing the assumed non-dominated set, 
mutation probability and the number of iterations 
that the execution of the algorithm needs run in 
order to report the result.  

Sub-goals can be defined as fitness functions; 
instead of scalarizing them to find the goal as the 
overall fitness function with the user defined 
weight values, we expect the system to find the 
set of best solutions, i.e., the pareto-optimal 
front. By using the specified formulas, at each 
generation, each chromosome in the population 
is evaluated and assigned a value for each fitness 
function.  

The coding of our individual population is a 
chromosome of length N (number of data points). 
Each allele in the chromosome takes a value 
from {1, 2,…, K},  and represents a pattern. The 
value indicates which cluster the corresponding 
pattern belongs to.  
1. Initially, assign the current generation to 0. A 

population with the specified number of 
chromosomes is created randomly by using the 
method in [18]: Data points are randomly 
assigned to each cluster at the beginning. By 
using this method, we can avoid generating 
illegal strings where some clusters do not have 
any pattern in the string.  

 
2. Generate the next population and increment the 

current generation by 1. 
a. The first step in the construction of the next 

generation is the selection using pareto 
domination tournaments: In this step, two 
candidate items picked among (population 
size- tdom) individuals participate in the 
pareto-domination tournament against the 
tdom individuals for the survival of each in the 
population. In the selection part, tdom 
individuals are randomly picked from the 
population. With two randomly selected 
chromosome candidates in (population size- 
tdom), each of the candidates is compared 
against each individual in the comparison 
set, tdom. A candidate that has larger total 
within-cluster variation fitness value and 
larger number of clusters than all of the 
chromosomes in the comparison set is said to 
be dominated by the comparison set already 
and will be deleted from the population 

permanently. Otherwise, it resides in the 
population. 

b. Some of our initial experiments 
demonstrated that one-point cross-over leads 
to earlier converging to the solution than 
multi-point attempts. So, in this study one-
point crossover operator is applied on two 
randomly chosen chromosomes. The 
crossover operation is carried out on the 
population with crossover rate pc. After the 
crossover, assigned cluster numbers for each 
gene are renumbered beginning from a1 to 
an. For example, consider the following two 
chromosomes having 3 and 5 clusters, 
respectively:  

Number of clusters=3:     1 2 3 3 3;  
Number of clusters=5:     1 4 3 2 5, 

They need to have a crossover at the third 
location, we will get the new chromosomes: 1 
2 3 2 5 and 1 4 3 3 3; the clusters in these 
chromosomes are renumbered as follows: 

    Number of clusters=4:    1 2 3 2 4  (for 1 2 3 2 5)  
    Number of clusters=3:    1 2 3 3 3  (for 1 4 3 3 3) 

The mutation operator on the current 
population is employed after the crossover. 
During the mutation, each gene value an is 
replaced by an’, with respect to the probability 
distribution: for n=1 to N, simultaneously.  an’ 
is a cluster number randomly selected from {1, 
…, K} with the probability distribution {p1, 
p2,…, pK} defined as: 
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where i = (1, 2, …, K) and d(Xn, Ck) denotes 
the Euclidean distance between pattern Xn and 
centroid Ck of the kth cluster, dmax(Xn) = 
maxk{d(Xn,  Ck)}, pi represents the probability 
interval of a mutating gene assigned to cluster 
i. Using this method, the probability of 
changing gene value an to a cluster number k is 
greater if Xn is closer to the centroid of the kth 
cluster Gk. 
c. Perform the k-means operator. The k-means 

operator is used to reanalyze each 
chromosome gene’s assigned cluster value 
and it calculates the cluster center for each 
cluster and then it re-assigns each gene to the 
cluster closest to the instance in the gene. 
Hence, the k-means operator is used to speed 
up the convergence process by replacing an 
by an’ for n=1, …, N, simultaneously, where 
an’ is the closest to object Xn in Euclidean 
distance.  

 
3. If the maximum number of generations is 

reached or the difference in fitness between 
two consecutive generations is smaller than a 
threshold, then exit, else go to step 2. 



To guarantee homogeneity in partitioning the N 
data objects into K clusters one goal is to 
minimize the Total Within-Cluster Variation 
(TWCV),  

2 2

1 1 1 1
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nd kd
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where X1, X2,.. , XN are the N objects, Xnd denotes 
feature d of object Xn (n = 1 to N), Zk denotes the 
number of objects in cluster k, and SFkd is the 
sum of the d-th features of all the objects in 
cluster k.  

, ( 1, 2,... ).
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After getting the patero-front and deciding on the 
most appropriate number of clustering using 
validity analysis, the alternative solutions are 
collapsed into a pool of clusters. Then we 
compute the distance between each object and 
the centroid of every cluster to which the object 
belongs. As a result, every object survives only 
in the cluster that satisfies the minimum distance. 
At the end, objects that do not belong to any of 
the identified compact clusters are classified into 
two sets: some of them join the existing compact 
clusters if they are not destroying the 
compactness; the rest of the objects are classified 
as outliers. The conducted experiments did not 
report any outliers for the utilized three 
benchmark data sets. We will run the proposed 
approach on some other data sets that do report 
some outliers; this will give us better insight into 
the power of the proposed approach in 
identifying real outliers. 
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Figure 1 Pareto-fronts for Fig2data dataset 

 
 

4 Experiments 
To evaluate the performance and efficiency of 
the developed clustering approach, experiments 
were conducted on a computer with the 
following features: Pentium PC, 3.00 GHz CPU, 
2 GB RAM and running Windows XP. The 
system was implemented using MS Visual C++. 

The running platform is Microsoft Visual 
Studio.NET 2003.   

The rest of this section is dedicated to report the 
results obtained for three highly cited benchmark 
data sets, namely Fig2Data, cancer (NCI60) and 
leukemia. The target is to find the most natural 
clustering for each of these datasets. This will 
allow us in a latter step (not covered in this 
paper) to highlight genes that mostly act as 
disease biomarkers. 

 
 

4.1 Fig2data Dataset 
Fig2data dataset is the time course of serum 
stimulation of primary human fibroblasts. It 
contains the expression data for 517 genes of 
which expression changed substantially in 
response to serum. Each gene has 19 expressions 
reflecting the response ranging from 15 minutes 
to 24 hours.  
 In this experiment, first MOKGA has been 
applied to Fig2data dataset with the following 
parameters: population size = 150, tdom (number 
of comparison set = 10) and crossover = 0.8, 
mutation = 0.005, gene mutation rate= 0.005, and 
threshold = 0.0001, which is applied to check if 
the population stops evolution after 50 
generations and if the process needs to be 
stopped. The range of [1,25] was picked to find 
the optimal number of clusters. The convergence 
towards the pareto-front is reported in Figure 1. 
Then validity analysis was applied to report best 
number of clusters. The literature reported that 
the optimal number of clusters for Fig2data is 10. 
Consistently, results in this paper indicate that it 
ranks in the best ones for C index, and 10 
clusters is also among the best for the other 
indices. Actually, SD, S_Dbw, DB, Silhouette, 
and Dunn indices cannot handle properly 
arbitrarily shaped clusters, so they do not always 
give satisfactory results. This is justify our 
choice to apply majority voting to decide on the 
best number of clusters. Finally, this result 
injected the rest of the steps leading to the most 
compact clusters. 
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Figure 2 Pareto-fronts for Cancer dataset 

 



  
4.2 Cancer (NCI60) dataset 
NCI60 is a gene expression database for the 
molecular pharmacology of cancer. It contains 
728 genes and 60 cell lines derived from cancers 
of colorectal, renal, ovarian, breast, prostate, 
lung, and central nervous system origin, 
leukaemia and melanoma. Growth inhibition is 
assessed from changes in total cellular protein 
after 48 hours of drug treatment using a 
sulphorhodamine B assay. The patterns of drug 
activity across the cell lines provide information 
on mechanisms of drug action, resistance, and 
modulation.  

In our tests, MOKGA has been run for the 
Cancer dataset with the following parameters: 
population size = 100, tdom (number of 
comparison set = 10) and crossover = 0.8, 
mutation = 0.005, gene mutation rate= 0.005, and 
threshold = 0.0001 which is used to check 
whether the population stops evolution for 50 
generations or the process needs to be stopped. 
The range of [1, 20] was picked to find the 
optimal number of clusters. 

Changes in the Pareto-optimal front after running 
the algorithm are displayed in Figure 2.  The 
validity analysis on the produced alternative 
solutions reported 15 as the best number of 
clusters for the cancer (NCI60) dataset; note that 
this value also ranks the sixth for DB index, fifth 
for SD index and the fifth for C index. These are 
consistent with the results reported in the 
literature.  The number of clusters reported by 
some indices is not good because the results from 
the validity indices are highly dependent on the 
shape of the clusters.  

 
4.3 Leukaemia dataset  
The third microarray dataset used in this paper is 
the Leukemia dataset, which has 38 acute 
leukemia samples and 50 genes. The purposes of 
the testing include clustering cell samples into 
groups and finding subclasses in the dataset. 
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Figure 3 Pareto-fronts for Leukaemia dataset 

 

The proposed genetic algorithm-based approach 
has been run for the Leukemia dataset with the 
following parameters: population size = 100, tdom 
(number of comparison set = 10) and crossover = 
0.8, mutation = 0.005, gene mutation rate = 
0.005, and threshold = 0.01 which is used to 
check if the population stops evolution for 50 
generations and if the process needs to be 
stopped. The range of [1, 10] was picked for 
finding the optimal number of clusters. 

Changes in the Pareto-optimal front are displayed 
in Figure 3. The validity analysis results for the 
Leukaemia dataset are consistent with the 
literature where it is indicate that 2 (AML and 
ALL) is the best number of clusters; this two 
clusters as the best results has been concurrently 
reported by Dunn index, DB index, SD index, C 
index and Silhouette and 3 (AML, B-cell ALL 
and T-cell ALL) has been reported the second 
best.  Y analyzing the results from the validity 
indices further, we discovered that S_Dbw is an 
exception; it is not suitable to test small datasets 
with fewer than 40 instances. 

 
 

5 Summary and Conclusions 
In this paper, we proposed a new clustering 
approach which depends on MOKGA as a multi-
objective genetic algorithm based clustering 
approach. MOKGA is a combination of the 
Niched-Pareto optimal and fast k-means genetic 
algorithm. This way, we overcome the difficulty 
of determining the weight of each objective 
function taking part in the fitness. Otherwise, the 
user would have been expected to do many trials 
with different weighting of objectives as in 
traditional genetic algorithms. By using 
MOKGA, we aim at finding the pareto-optimal 
front so that the user will be able to see at once 
all possible alternative solutions identified by the 
system; then cluster validity index values are 
evaluated for each pareto-optimal front value 
which is the number of clusters value that is 
considered to be optimal. Then the solutions are 
all collapsed into a single pool of clusters which 
are individually evaluated to identify the most 
compact clusters to form the final solution. 
Comparing the clusters in final solution produced 
by the proposed clustering approach with the 
ones in the best clustering solution reported by 
the validity analysis, we realized that  the former 
clusters are all compact and well separated while 
compactness of the latter clusters vary as well as 
their separateness. To validate the propose 
approach better, we still need to run more tests 
for data from different domains and with 
different characteristics. The outcome from this 
research project has interesting characteristics 
and it is very essential for several applications. 



The user is no more in need for expertise in the 
domain of the data to be clustered because 
number of clusters is not needed but determined 
by the system. The process does not suffer from 
local minima kind of drawbacks because it leads 
to the most natural distribution of the data 
instances into the clusters leading to the most 
compact and separable clusters. On the other 
hand, the produced result will benefit another 
project in our group, namely the identification of 
biomarker genes. In a previous work, we tried 
multilevel clustering approach to identify best 
representative genes; however, we will have a 
more robust and consistent process by 
considering the new clusters. The outcome from 
this extension might be a good method to 
validate the previous results. 
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