
Towards the Implementation of Temporal-Based Software
Version Management at Universiti Darul Iman Malaysia

M Nordin A Rahman, Azrul Amri Jamal and W Dagang W Ali

Faculty of Informatics
Universiti Darul Iman Malaysia, KUSZA Campus

21300 K Terengganu, Malaysia
mohdnabd@udm.edu.my, azrulamri@udm.edu.my, wan@udm.edu.my

ABSTRACT

Integrated software is very important for the university to manage day-to-day operations.
This integrated software is going through evolution process when changes are requested
by the users and finally the new versions are created. Software version management is
the process of identifying and keeping track of different versions of software.
Complexity level of this process would become complicated should software was
distributed in many places. This paper presents a temporal-based software version
management model. The model is purposely implemented for managing software
versions in Information Technology Centre, Universiti Darul Iman Malaysia. Temporal
elements such as valid time and transaction time are the main attributes considered, to be
inserted into the software version management database. By having these two attributes,
it would help the people involved in software process to organize data and perform
monitoring activities with more efficient.

Keywords: version management, temporal database, valid time, transaction time.

1. Introduction
Software evolution is concerned with
modifying software once it is delivered
to a customer. Software managers must
devise a systematic procedure to ensure
that different software versions may be
retrieved when required and are not
accidentally changed. Controlling the
development of different software
versions can be a complex task, even for
a single author to handle. This task is
likely to become more complex as the
number of software authors increases,
and more complex still if those software
authors are distributed geographically
with only limited means of
communication, such as electronic mail,
to connect them.

Temporal based data management
has been a hot topic in the database
research community since the last

couple of decades. Due to this effort, a
large infrastructure such as data models,
query languages and index structures has
been developed for the management of
data involving time [11]. Nowadays, a
number of software has adopted the
concepts of temporal database
management such as artificial
intelligence software, geographic
information systems and robotics.
Temporal management aspects of any
objects could include:

• The capability to detect change such

as the amount of change in a
specific project or object over a
certain period of time.

• The use of data to conduct analysis
of past events e.g., the change of
valid time for the project or version
due to any event.

• To keep track of all the transactions
status on the project or object life
cycle.

Universiti Darul Iman Malaysia

(UDM) is the first full university at East
Cost of Malaysia located at the state of
Terengganu. It was setup on 1st January
2006. UDM has two campus named as
KUSZA Campus and City Campus.
Another new campus known as Besut
Campus will be operated soon. To date,
KUSZA Campus has six faculties and
City Campus has three faculties. The
university also has an Information
Technology Centre (ITC-UDM) that
purposely for developing and
maintaining the university information
systems and information technology
infrastructure.

In this paper, we concentrate on the
modelling of a temporal-based software
version management. Based on the
model, a simple web-based web
application has been developed and
suggested to be used by ITC-UDM.
The rest of the paper is organized as
follows: next section reviews the
concept of temporal data management.
Section 3 discusses on the current
techniques in software version
management. Current issues in software
version management at ITC-UDM are
discussed in Section 4. The
specifications of the proposed temporal-
based software version management
model are explained in Section 5.
Conclusion is placed in Section 6.

2. Temporal Data Concept
To date, transaction time and valid time
are the two well-known of time that are
usually considered in the literature of
temporal database management [2, 4, 6,
9, 10, 11, 12]. The valid time of a
database fact is the time when the fact is

true in the miniworld [2, 6, 9, 10]. In
other words, valid time concerns the
evaluation of data with respect to the
application reality that data describe.
Valid time can be represented with
single chronon identifiers (e.g., event
time-stamps), with intervals (e.g., as
interval time-stamps), or as valid time
elements, which are finite sets of
intervals [9]. Meanwhile, the
transaction time of a database fact is the
time when the fact is current in the
database and may be retrieved [2, 6, 9,
10]. This means, that the transaction
time is the evaluation time of data with
respect to the system where data are
stored. Supporting transaction time is
necessary when one would like to roll
back the state of the database to a
previous point in the time. [9] proposed
four implicit times could be taken out
from valid time and transaction time:

• valid time – valid-from and valid-to
• transaction time – transaction-start

and transaction-stop

Temporal information can be
classified into two divisions; absolute
temporal and relative temporal [9].
Most of the research in temporal
databases concentrated on temporal
models with absolute temporal
information. To extend the scope of
temporal dimension, [12] presented a
model which allows relative temporal
information e.g., “event A happened
before event B and after January 01,
2003”. [12] suggests several temporal
operators that could be used for
describing the relative temporal
information: {equal, before, after,
meets, overlaps, starts, during, finishes,
finished-by, contains, started-by,
overlapped-by, met-by and after}.

In various temporal research papers
the theory of time-element can be
divided into two categories: intervals
and points [6, 9, 11]. If T is denoted a
nonempty set of time-elements and d is
denoted a function from T to R+, the set
of nonnegative real numbers then:

⎩
⎨
⎧ >

=
otherwise,

0d(t) if,
telement,_time

point
interval

According to this classification, the

set of time-elements, T, may be
expressed as T = I ∪ P, where I is the
set of intervals and P is the set of points.

3. Related Tools in Software

Version Management
In distributed software process, a good
version management combines
systematic procedures and automate
tools to manage different versions in
many locations. Most of the methods of
version naming use a numeric structure
[5]. Identifying versions of the system
appears to be straightforward. The first
version and release of a system is
simply called 1.0, subsequent versions
are 1.1, 1.2 and so on. Meanwhile, [3]
suggests that every new version
produced should be placed in a different
directory or location from the old
version. Therefore, the version
accessing process would be easier and
effective. Besides that, should this
method be implemented using a suitable
database management system, the
concept of lock access could be used to
prevent the occurrence of overlapping
process. Present, there are many
software evolution management tools
available in market. Selected tools are
described as follows:

• Software Release Manager (SRM) –

SRM is a free software and

supported on most UNIX and
LINUX platforms. It supports the
software version management for
distributed organizations. In
particular, SRM tracks dependency
information to automate and
optimize the retrieval of systems
components as well as versions.

• Revision Control System (RCS) –
RCS uses the concepts of tree
structures. Each branch in the tree
represents a variant of the version.
These branches will be numbered by
an entering sequence into a system
database. RCS records details of
any transaction made such as the
author, date and reason for the
updating.

• Change and Configuration Control
(CCC) – CCC is one of the complete
tools for software configuration
management. It provides a good
platform for an identification,
change control and status
accounting. CCC allows a
simultaneously working for a same
version via virtual copies. This can
be merged and changes can be
applied across configurations.

• Software Management System
(SMS) – SMS allows all the aspects
in software configuration
management such as version
control, workspace management,
system modelling, derived object
management, change detection in
the repository etc. SMS possesses
the desired characteristics, providing
resources of version control of
systems and having a good user
interface.

4. The Software Version
Management Issues in ITC-
UDM

There are three divisions have been
formed at ITC-UDM. These divisions
and their function are as follows:

• Infrastructure and Application

Systems (AIS) – to develop and
maintain the university software;
maintain the university computer
networking;

• Technical and Services (TS) – to
support the maintenance of
information technology hardware,
training, multimedia services and
help desk.

• Administration and Procurement
(AP) - to manage the daily operation
of ITC-UDM such as
administration, procurement etc.

Each division is headed by a

division leader and supported by several
information technology officers,
assistant information technology
officers and technicians. All the
university software modules are
developed and maintained by AIS
Division. Figure 1 depicts the main
software modules managed by the ITC-
UDM. There are over thousands source
code files are produced by the division.
Therefore, it is not easy for the division
to manage all those artefacts.

From study done by the authors,
two main weaknesses have been found
in the current approach for ITC-UDM
in managing all versions of source
codes produced:

• Non systematic procedure used for

managing software versions and it is
difficult to recognize the valid time
for each version.

• The current approach does not
consider the aspect of relative
temporal in representing the valid
time for each version.

• The current approach maintains
only the concept of current view
version of which an existing version
will be overwritten by a new
incoming version during the process
of an update.

Figure 1: University Software Modules

Based on the mentioned problems,
we strongly believe that the
development of temporal-based
software version management tool for
ITC-UDM could gain the following
benefits:

• To support project and software

managers in planning, managing and
evaluating version management.

• Assigning timestamps (absolute and
relative) to each transaction will
provide transaction-time database
functionality, meaning to retain all
previously current database state and
making them available for time-
based queries.

• To increase the effectiveness and
efficiency of the collaborative

Academic Module

Human Resource Module

Student Affairs Module

Finance Module

Department of Development

U
ni

ve
rs

ity
 S

of
tw

ar
e

M
od

ul
e

software version management
process.

5. The Model
Version control is one of the main tasks
in software configuration management.
For any software version would have its
own valid time. The collection of
software versions should be organized
into systematic way for the purpose of
retrieval efficiency and to recognize
valid time of those versions. Besides
the used of unique sign for the associate
version, the method of time-stamping is
also needed to be embedded into the
version management database.

5.1 The Temporal-Based Version

Management Specifications
Temporal elements involved in the
model are transaction time (tt), absolute
valid time (avt) and relative valid time
(rvt) which can be denoted as, TE = {tt,
avt, rvt}. Transaction time is a date-
stamping and it represents a transaction
when a new valid time for a version is
recorded into the application database.
Absolute valid time is represent by two
different attributes known as valid-from
and valid-until and it also using an
approach of date-stamping. Meanwhile,
relative valid time which involves a
time interval, will be represented by a
combination of temporal operators,
OPERATORs = {op1, op2, op3, …, opn}
and one or more defined event(s),
signed as EVENTs = {event1, event2,
event3, …, eventn}. This model,
considered only five temporal operators,
hence will be denoted as OPERATORs
= {equal, before, after, meets, met_by}.
Table 1 illustrates the general
definitions of temporal operators based
on time interval and time points. Figure
2 shows the organization of temporal
elements that involved in software

version management. If we have a
software with a set of version signed as,
V = {v1, v2, v3, …, vn} then the model
is:

TEMPORAL(vi ∈ V) ⊆ (tt ∩ avt ∩ rvt)

where,
avt = [avt-from, avt-until],
rvt = [rvt-from, rvt-until],
rvt-from = {{opi ∈
OPERATORs} ∩ {eventi ∈
EVENTs}} and,
rvt-until = {{opi ∈ OPERATORs} ∩
{eventi ∈ EVENTs}}.

Thus, if the software that has a set of
feature attributes Ai then a complete
scheme for a temporal-based in software
version management can be signed as:

S = {A1, A2, A3, …, An, tt, avt-from,
avt-until, rvt-from, rvt-until}

where, Ai = attribute name of a version,
tt ∈ P and, avt-from, avt-until, rvt-from
and rvt-until ∈ T.

Table 2 exhibits the temporal-based
version-record management for
representing KEWNET’s software
version history. For example,
KEWNET Ver. 1.1 has been updated
three times. For the first time, the
version has been recorded on tt3 with
absolute valid time is from avf2 to avu3
and relative valid time is from rvf2 to
rvu3. For the second updated, on tt4,
absolute valid time is from avf2 to avu4
and relative valid time is from rvf2 to
rvu4. The version has another change
request and therefore the version would
have a new absolute valid time from
avf2 to avu5 and relative valid time
from rvf2 to rvu5. This transaction is
recorded on tt5.

Table 1: The definitions of temporal operator base on time point and time interval

Temporal Operator Time Point Time Interval

equal t = {(t = ti) ∈ T} τ ={(τ = τi) ∈ T}
before τ = {(τ < ti) ∈ T} τ = {(τ < τi) ∈ T}
after τ = {(τ > ti) ∈ T} τ = {(τ > τi) ∈ T}
meets τ = {(τ ≤ ti) ∈ T} τ = {(τ ≤ τi) ∈ T}

met_by τ = {(τ ≥ ti) ∈ T} τ = {(τ ≥ τi) ∈ T}

Figure 2: Temporal elements in software version management

Table 2. Version-Record for KEWNET software

Ver # tt avt-from avt-until rvt-from rvt-until
1.0 tt1 avf1 avu1 rvf1 rvu1
1.0 tt2 avf1 avu2 rvf1 rvu2
1.1 tt3 avf2 avu3 rvf2 rvu3
1.1 tt4 avf2 avu4 rvf2 rvu4
1.1 tt5 avf2 avu5 rvf2 rvu5
1.2 tt6 avf3 avu6 rvf3 rvu6
1.2 tt7 avf3 avu7 rvf3 rvu7
2.0 tt8 avf4 avu8 rvf4 rvu8
2.0 tt9 avf4 avu9 rvf4 rvu9
2.1 tt10 avf5 avu10 rvf5 rvu10

Transaction time

Absolute

Until

Valid time

From Until

Relative

From

Software
version

5.2 The Temporal-Based Version

Management Functionality
To carry out experiments validating the
model proposed, a client-server
prototype has been developed. The
prototype has three main modules:
register version, update the version
valid time and queries.

During the register version process
the software manager needs to record

the foundations information of the
software version. Attributes that needed
to be key-in by software manager can be
signed as, Av = {version code, date
release, version description, origin
version code, version id}. Figure 3
illustrates the screen sample used to
register the basic information of the
software version.

Figure 3: Register the software version

On completion of new software
version registration, then the software
manager needs to update its valid time
and this can be done by using the
module update the version valid time,
illustrated in Figure 4. The attributes
for this module formed as AT = {version
code, transaction date, description, date
start, date end, time start, time end,
update by, position}. Attribute
transaction date is the current date and
will be auto-generated by the server.

Any changes of a software version
valid time, software manager needs to
update by using this form. The tool also
allows the user to make a query to the
database. The users can browse the
version valid time and status for any
registered software as shown in Figure
5. Meanwhile, Figure 6 shows the
output form of query for all histories of
valid time and status for a software
version.

Figure 4: Update the software version valid time

Figure 5: The software version valid time report

Figure 6: The transaction records of a version

6. Conclusion
In practical software version
management, it is frequently important
to retain a perfect record of past and
current valid time for a version states.
We cannot replace or overwritten the
record of old valid time of a software
version during the updating process.
Hence, this paper introduces a new
model in software version management
based on temporal elements. Here, an
important issue discussed is temporal
aspects such as valid time and
transaction time have been stamped on
each software version so that the
monitoring and conflict management
processes can be easily made.

Based on the proposed model, a
prototype has been developed. The
prototype will be experimented in ITC-
UDM. It will be used to monitor and
keep track the evolution of the software
version, systems module and software
documents in university’s software. For
further improvements, currently, we are
investigating related issues including
combining the model with change
request management, considering more
temporal operators and developing a
standard temporal model for all
configuration items in software
configuration managements.

References:
[1] Bertino, E., Bettini, C., Ferrari, E.

and Samarati, P. “A Temporal
Access Control Mechanism for
Database Systems”, IEEE Trans.
On Knowledge and Data
Engineering, 8, 1996, 67 – 79.

[2] C. E. Dyreson, W. S. Evans, H. Lin
and R. T. Snodgrass, “Efficiently
Supporting Temporal
Granularities”, IEEE Trans. On
Knowledge and Data Engineering,
Vol. 12 (4), 2000, 568 – 587.

[3] G. M. Clemm. “Replacing Version
Control With Job Control”, ACM
– Proc. 2nd Intl. Workshop On
Software Configuration
Management, 1989, 162 – 169.

[4] D. Gao, C. S. Jensen, R. T.
Snodgrass and M. D. Soo, “Join
Operations in Temporal
Databases”, The Very Large
Database Journal, Vol. 14, 2005, 2
– 29.

[5] A. Dix, T. Rodden, and I.
Sommerville. “Modelling
Versions in Collaborative Work”,
IEE – Proc. Software Engineering,
1997, 195 – 206.

[6] H. Gregerson, and C. S. Jensen,
“Temporal Entity-Relationship
Models – A Survey”, IEEE Trans.
On Knowledge and Data
Engineering, 11, 1999, 464 – 497.

 [7] A. Gustavsson. “Maintaining the
Evaluation of Software Objects in
an Integrated Environment”, ACM
– Proc. 2nd Intl. Workshop On
Software Configuration
Management, 1989, 114 – 117.

[8] A. Havewala. “The Version
Control Process: How and Why it
can save your project”, Dr. Dobb’s
Journal. 24, 1999, 100 – 111.

[9] C. S. Jensen and R. T. Snodgrass.
“Temporal Data Management”,
IEEE Trans. on Knowledge and
Data Engineering. 11, 1999, 36 –
44.

[10] K. Torp, C. S. Jensen and R. T.
Snodgrass, “Effective
Timestamping in Database”, The
Very Large Database Journal, Vol.
8, 1999, 267 – 288.

 [11] B. Knight, and J. Ma. “A General
Temporal Theory”, The Computer
Journal, 37, 1994, 114 – 123.

[12] B. Knight and J. Ma. “A Temporal
Database Model Supporting
Relative and Absolute Time”, The
Computer Journal. 37, 1994, 588
– 597.

[13] A. Lie. “Change Oriented
Versioning in a Software
Engineering Database”, ACM –
Proc. 2nd Intl. Workshop on
Software Configuration
Management. 1989, 56 – 65.

[14] H. Mary. “Beyond Version
Control”, Software Magazine. 16,
1996, 45 – 47.

