
Schema Integration: Solution of Naming and Data Type Conflicts

Adnan Shabbir
Comsat Institute Of Information
Technology Islamabad, Pakistan.
adnanshabbir_85m@yahoo.com

Maqbool Uddin Shaikh

Comsat Institute Of Information
Technology Islamabad, Pakistan.
maqboolshaikh@comsats.edu.pk

ABSTRACT
Schema integration has become a major field of research because of the global view of
heterogeneous sources that it provides. In this paper an algorithm related to the schema
integration is presented. There are many conflicts that occur during the process of schema
integration. The algorithm handles naming and data type conflicts. The Web Ontology Language
(OWL), which is accepted by IEEE as the standard is used to represent the source and global
ontology for more affective and semantically correct matching. Attempt was made to focus on the
two main characteristics Rule based and Learning based, which relates to schema integration.
Authors have tried to use these characteristics in proposed algorithm. The motivation of this
paper is, how to make mapping efficient and fast, which is semantically correct. The architecture
of handling these conflicts along with the algorithms is explained with the help of case study.

Key Words: schema integration, mapping, semantically, rule based, learning based.

1. Introduction
The knowledge is expanding rapidly and
because of the excessive use of the Internet,
the semantic web has become a major field
of research. Schema integration is one of the
topics of semantic web, it provides the user
an integrated view of multiple heterogeneous
information sources. In this paper authors
have tried to present an algorithm that solves
naming and data type conflicts. Different
techniques were studied and effort was made
to use them in the proposed algorithm. How
to make efficient and fast matching that is
semantically correct is the benchmark for the
proposed algorithm.
The rest of the paper is divided in five
sections. Section 2 presents an overview of
the existing and proposed work in the field
of schema integration. Section 3 gives the
detail description of proposed architecture.
Section 4 gives a Case Study to give a proof
of concept for our proposed architecture.

Section 5 discusses the Architectural
implementation and the output of the
architecture. Section 6 gives conclusion and
discuses some possible extensions.

2. Related Work
Schema Integration is used to provide a
uniform access to multiple heterogeneous
information sources. There are two types of
integration, one is view integration and
second is schema integration. View
integration has nothing to do with schema. It
merges the query result coming from
different sources. On the other hand the
schema integration deals at schema level.
Real life example is that consider a company
which has different departments. The
company wants to provide a global view to
all of its departments. So that data could be
accessed from different operational
databases. Schema integration is defined as

mailto:adnanshabbir_85m@yahoo.com
mailto:maqboolshaikh@comsats.edu.pk

“Schema integration is the process of
identifying the components of a database
which are related to one another, selecting
the best representation for the global
conceptual schema, and finally, integrating
the components of each intermediate
schema” [14].
There are many conflicts that occur during
the process of schema integration, some of
them are explained below.

2.1 Naming Conflict
It occurs when different names are used for
the same attribute; for example homonyms
and synonyms [12]. Different naming
conventions are used by databases for
objects. Semantic difference between
elements should be recognized and mapped
to common names [13].

2.2 Data Type Conflicts
These conflicts occur when different data
types are used by two attributes. For
example attribute ID could have data type
string as well as integer [13].
There are many other conflicts like format
conflict, structural conflict, missing data
conflict, default value conflict, scale conflict,
precision conflict and key conflict [13]. The
proposed architecture is handling naming
and data type conflict, which are explained
above.

2.3 Rule Based Architectures
The term rule base describes whether the
architecture of the schema integration
process is rule based or not. A rule based
system means that system will follow a set
of predefined rules e.g. for every step hard
coded rules were defined that will be
followed by the system. Element names, data
types, structures and sub elements can be
used to define rules, for example two
elements match if they have same name and
same number of sub elements. Some rule
based architectures are described below.
According to the TranScm system two
elements are same, if they have same name
and also have same number of sub elements.

In the Dike system similarity of
characteristics and similarity of related
elements is considered. The Artemis and
Momis system is use to measure the
similarity factor, weighted sum of the
similarities of name, data type and
substructure is calculated. The Cupid system
takes the name, data type and domain, i.e.
Categorizes elements based on name, data
types, and domains, and calculates a
linguistic similarity coefficient to find
similarity coefficient. Further details can be
found in [9].

2.4 Knowledge Based Architectures
Knowledge based architectures refers to
those architectures that follow the
knowledge-based scheme for the schema
integration process. In simple words, a
knowledge base system has the ability to
learn from the past experience. It is
recommended to use both Rule and learner
based techniques, to provide an effective
matching solution. Authors have also tried to
use both techniques for the proposed
architecture. Some knowledge-based
architectures are described below.
In the Semint system, two elements are
matched against the attribute specification
and statistics of data content. The LSD
system, exploits the hierarchical nature of
XML data, which is based on novel learning
solution. It employs Naive Bayes over data
instances. In the IMAP system elements are
matched by analyzing the description of
objects that are found in both schemas. The
Automatch and Autoplex uses data
instances to find similarity between
schema’s elements. Further details can be
found in [9].

2.5 Literature Study
In the Similarity factor Architecture, the
authors Thanh-Le Bach and Rose Dieng-
Kuntz has proposed the system, which uses a
similarity factor that is being calculated at
the element, class and ontology level. While
comparing the ontology a weight is being
assigned to the each element, class and the

sum of weights is being assigned to the
ontology [1].
Marcirio Silveira Chaves and Vera Lúcia
Strube de Lima proposed String Matching
Based Architecture, which uses similarity
measuring technique called string matching,
with two layers lexical and conceptual, to
find out the similarity between two
ontological structures terms, by finding out
the minimum number of modifications
which should be made in a string [2].
Mediator-Wrapper Architecture is
proposed by Seksun Suwanmanee, Djamal
Benslimane and Philippe Thiran. The main
concepts of their architecture are data
sources: which consists of structured data,
wrappers: which serves as a mean of
communication between local-system and
mediator: a combination of ontology
reasoning, query processor and integrated
ontology [3]. Data-Frames & Domain
Snippets Architecture proposed by David
W. Embley, Li Xu, Yihong Ding. The
system uses of data frames and domain
ontology snippets and for the schema
mapping the architecture uses a combination
of matchers to improve the experimental
results [4]. The Hybrid Approach
Architecture is proposed by Ahmed
Alasoud, Volker Haarslev and Nematollaah
Shiri. The architecture is based on hybrid
approach, which is a combination of data
warehouse, and virtual approach, which
inherits the advantages of both [5].
The Ontology Bases Similarity Measure
Architecture by Farshad Hakimpour and
Andreas Geppert is based on ontology for
schema integration and resolving semantic
heterogeneity in global schema, and also
finds out all the meaningful mappings
between the global schema and component
schema [6]. In Data Fusion Approach the
authors Jens Bleiholder and Felix Naumann
have described the conflicts resolving
strategies in an integrated information
system in which their main concern is data
integration process (data fusion). Data fusion
resolves data inconsistencies, data
contradictions and data uncertainties [7]. In

Matcher Based Approaches the authors
Erhard Rahm and Philip A. Bernstein have
presented taxonomy for the automatic
schema integration. Moreover they have
presented a generic architecture of the match
operator and have discussed different match
operators that work at the schema, instance,
element, language and structure level, and
also some constraint base matchers [8].
In Matching Techniques the authors AnHai
Doan and Alon Y. Halevy have surveyed the
two matching techniques in schema
integration. In schema matching they have
discussed its rule based and learning based
categories and have also discussed the
architectural issues of the schema matching
and incorporating the domain constraints in
particular, and also different types of schema
matching [9].
The Ontology Integration Approach by
Zille Huma, resulted in finding certain
similarities and differences in the schema
matching and ontology mapping which they
have mentioned in their paper. They have
also described the ontology integration
approaches. However the authors have not
mentioned the conflict resolution strategies,
which can encounter the conflicts that may
rise using any of the integration technique
[10].

3. Architecture Description
The proposed architecture follows the
traditional approach in its design (input,
processing and output). The inputs are
Source Ontology (SO) and Global Ontology
(GO). The Concept and Attribute Matcher
does the processing. Class and Attribute
Change files are the output of the
architecture. Fig.1 describes the architecture
diagrammatically. The architecture is using
OWL (An ontology language, accepted by
IEEE as the standard) for describing the
schemas of Source and Global ontologies.
There are many conflicts that occur in
schema integration. Proposed architecture is
handling naming and data type conflicts.

Global ontology Source Ontology

Concept And Attribute Matcher

Class And Attribute
Change

Figure 1. The Architecture Diagram

Authors have tried to use Rule based and
Learning based techniques in the proposed
work. Emphasize is made on, how to make
mapping efficient and fast, which is
semantically correct.

3.1 Global Ontology
This is the standardized ontology, which will
be used to standardize the source ontology.

3.2 Source Ontology
Source ontology provides the source
ontology schema, which requires to be
standardized.

3.3 Concept and Attribute Matcher
It consists of two algorithms.
1. Element Match.
2. Attribute Match.

3.3.1 element match
It takes source ontology (SO) and global
ontology (GO) as input. It selects the
element of source ontology (SE), and
matches it with first level elements of global
ontology (GOL). If SE matched with the
GOL then Attribute Matcher is referred.
According to the TranScm two elements
match, if they have same name and same
number of sub elements. The Attribute
Match is explained in the next section.

If SE does not match with the GOL then the
Element Matcher will get source schema
element’s synonyms list (SOSL) from the
built in dictionary. The dictionary also
returns the parent class name of that element.
This will help us to exploits the hierarical
nature of ontology for efficient and
semantically correct matching.
The algorithm then matches GOL with the
SOSL. If any element of SOSL matches with
the GOL, then Element Matcher will count
the number of sub elements (classes) of both
SE and element of GOL. If number of sub
elements of SE and GOL element are
same/equal then they are matched according
to the definition of the system and Attribute
Matcher is called. If SE and GOL element
are not same/ equal then that element of
GOL is selected from the global ontology as
a root element. After that the children of
selected element from GOL are selected as
GOL (2nd level elements). Then the step 5 is
called again, to repeat the same procedure
describe above. It will keep on repeating this
procedure for each element of SO, till it gets
the match both at naming level as well as at
structural level e.g. till the elements have
same name and same number of sub
elements. That’s how authors have used
Knowledge Base technique e.g. instead of
selecting all 2nd level elements and compare
with all of them, only those elements are
selected, which belongs to SE. case study
will help us to understand the functionality
of Element Match in a better way, which is
given in the next section.

3.3.2 attribute match
It gets the two elements, one from the source
ontology (SE) and one from the Global
ontology (GE). In the first step, it gets the
attribute’s list of both SE and GE, along with
their data types. It gets one attribute from the
SE Attribute list and matches it with the GE
Attribute list. If attributes of SE and GE
match then Attribute Matcher assigns SE
Attribute the data type of the GE Attribute.
If attributes of SE and GE do not match then

Attribute Matcher gets the list of the
synonyms of the SE Attribute (SOAL). Then
all the attributes of SOAL are matched with
the GE Attribute list one by one. The
dictionary gives all the possible list of the
synonyms of that attribute. Where SOAL
and GE Attribute matches, then the Attribute
Matcher assigns the name and data type of
GE attribute to the SE attribute.

3.4 Class and Attribute Change
At the end of the algorithm the two files are
generated by the architecture, one is known
as Class Information File and the other is
known as Attribute Information File.

3.4.1 class information
It contains the information of the class
whose name was changed, e.g. old name and
the new name of the class. Fig.8 shows a
partial sample of Class Information File.

3.4.2 attribute information
It contains the information of the attribute
whose name and data types are changed, e.g.
old name, old type, new name and the new
type of the attribute. Fig.8 shows a partial
sample of Attribute Information File.

3.5 Proposed Algorithms for the
Architecture
The following are the proposed algorithms
for the architecture, which solves naming
and data type conflicts. Naming conflict is
solved by Element Match algorithm, which
is shown in Fig.4. Data type conflict is
solved by Attribute Match algorithm, which
is shown in Fig.5.
General terms used in algorithm are:
SO = source ontology,
GO = global ontology.
SOSL = source ontology element’s
synonyms list that is obtain from built in
dictionary.
GOSL = global ontology element’s
synonyms list that is obtain from built in
dictionary.
GOL = global ontology level element list,
i.e. it contains all the element of that level.

SE= Source Ontology Element
GE= Global Ontology Element
SOAL = source ontology element attribute’s
synonyms list that is obtain from built in
dictionary.

4. Case Study
The following case study is used to explain
the working of the proposed algorithms. The
Global ontology (GO) and Source ontology
(SO) used in this case study are shown in
Figure 2 and Figure 3 respectively.

Figure 2. The Global Ontology

Figure 3. The Source Ontology

4.1 Working of Element Match Algorithm
The Element Match algorithm selects the
element of source ontology (SE) and counts
its sub elements. In this case the Learner is
the SE and its sub elements are 0. The SE
(Learner) is matched with first level
elements of global ontology (GOL). In this
case elements (Person, Course, Department)
are selected in GOL as first level elements,
as shown in Figure 6.
In the next step SE (Learner) is matched one
by one with GOL. That is, Learner is
matched with Person, then with Course and
with the Department. If SE (Learner)
matched with any of the GOL elements, then
the number of sub elements of GOL element
are counted. Then Element Match compares
the sub elements of SE with GOL element. If
number of sub element of SE and GOL
element are equal/same, then both elements
are same and Attribute Match is called. The
parameters of Attribute Match are the name
of the two elements. The functionality of
Attribute Match is described in section 3.3.2.
But it can be seen that in this case no
element from the GOL matches successfully
with the Learner. So the synonyms list for
source ontology element (Learner) SOSL is
obtained from the Dictionary. For Learner
the synonyms list SOSL will contain
enrollee, student and person
(generalized/parent class). After that each
element of SOSL is compared with GOL
element. For example enrollee is compared
with Person, Course and Department, same
procedure will be repeated for other two
elements of (SOSL) i.e. student and person.
When the person (element of SOSL) is
compared with GOL, person (element of
SOSL) matches successfully with Person
(element of GOL). As a result the number of
sub elements of GOL element (Person) are
counted. Then Element Match compares the
sub elements of SE (Learner) with GOL
element (Person).
But in this case, the number of sub elements
of GOL element (Person) are 2 and number
of sub elements of SE are 0. So SE (Learner)

and GOL element (Person) are not equal in
count of their sub elements. In that situation
Person (GOL element) is selected as root
node and it children are selected as next
level element (GOL). In this way the
unnecessary search by using rule base and
knowledge base techniques is controlled.
Instead of selecting all 2nd level elements
and comparing with all of them, only those
elements are selected that belongs to SE
(Learner), which is Person in this case. So
that it continues from Person till it find exact
match as shown in Figure 7.
The GOL contains elements (Student and
Professor) as second level elements. After
this SE (Learner) is compared with GOL
elements one by one. For example SE
(Learner) is compared with Student and with
Professor. No element from the GOL
matches with SE (Learner). The synonyms
list for source ontology element (Learner)
SOSL is obtained from the Dictionary.
For Learner the synonyms list SOSL will
contain enrollee, student and person
(generalized/parent class). After that each
element of SOSL is compared with GOL
element. For example enrollee is compared
with Student and with Professor, same
procedure will be repeated for other two
elements of (SOSL) i.e. student and person.
When the student (element of SOSL) is
compared with GOL, student (element of
SOSL) matches successfully with Student
(element of GOL). As a result the number of
sub elements of GOL element (Student) are
counted, which are 0 in this case. Then
Element Match compares the sub elements
of SE (Learner) with GOL element
(Student), which are also same, so they are
same according to the TranScm system.

OldName Of The Element Is -->Learner
NewName Of The Element Is -->Student

This information is added in the list during
the processing of the Element Match
Algorithm.Once the SE and GOL elements
matches, the Attribute Match algorithm is
called.

Figure 4. Element Match Algorithm

Figure 5. Attribute Match Algorithm

Element Match (SO, GO)
{
1-Get the SO element.
2- Get the count of no of child/sub element of SO element.
3-Get the level1 element of the GO.
4-While (SO element! = null)
{
5-WHILE (GOL element! = null)
{
6-IF (SO element = = GOL element)
{
Get the count of children of GOL element.
IF (counts of no of child are same of GOL and SO element)
{
Attribute Matcher (SE, GE).
ADD to list.
SO element ->next.
}
ELSE
{
GOL element->next
}
IF (matches and no child exist throws exception) OR
IF (matches and in child no element matches throws
exception)
}\\ Close of if
} \\ Close of while
Get the list of synonyms of SO element. (if not found in the
GOL)
7-WHILE (GOL element! = null)
{
8-WHILE (SOSL element! = null)
{

If (GOL element = = SOSL element) \\match all one by
one
{
 Get the count of children of GOL element.
 IF (counts of no of child are same of GOL and SO
element)
 {
Attribute Matcher (SE, GE).
ADD to list.
SO element ->next.
 }
ELSE
{
Get the sub element list of GOL element=GOL.
Goto step 5.
}
IF (matches and no child exist throws exception) OR
IF (matches and in child no element matches throws
exception)
}
ELSE
{
SOSL -> next.
}}
GOL -> next.
}
}
Return list.
}

Attribute Match (SE, GE)
{
Get the Attribute list and Datatype list, of both GE and
SE Boolean Flag = = False.
While (SE Attribute list! = null)
{ \\source element list containing (attributes and data
types)

WHILE (GE Attribute list! = null)
{ \\Global element list containing (attributes and data
types)

IF (SE Attribute = = GE Attribute)
{
Flag = = True;
Get the type of SE Attribute.
Get the type of GE Attribute.
IF (SE Attribute->type = = GE Attribute->type)
{
ADD to list.
}
ELSE
{
SE Attribute->type = = GE Attribute->type;
ADD to list.
} } \\ Close of if
ELSE
{
GE Attribute list->next;
}} \\ Close of while
IF (Flag = = False) \\ no match occur
{
Get the list of synonyms of SE Attribute = SOAL.
WHILE (GE Attribute list! = null)
{
WHILE (SOAL! = null)
{
IF (SOAL Attribute = = GE Attribute)
{
Flag = = True;
Get the type of SE Attribute.
Get the type of GE Attribute.
IF (SE Attribute->type = = GE Attribute->type)
{
ADD to list.
}
ELSE
{
SE Attribute->type = = GE Attribute->type;
ADD to list.
}
}
ELSE
{
SOAL-> next;
}
} } \\ Close of while
GE Attribute list-> next;
} \\ Close of upper while
}
SE Attribute list-> next;
} \\ Close of up most while
Return list.
}

The parameters of Attribute Match algorithm
are SE (Learner) and GOL element
(Student). Figure 6 and 7 describes the
Learner matching criteria.
The next source ontology element (SE) is
Subject, the number of sub elements are 0.
SE (Subject) is matched one by one with
GOL. That is Subject is matched with
Person, then with Course and with the
Department. If SE (Subject) matched with
any GOL element, then the number of sub
elements of GOL element are counted.
Then Element Match compares the sub
elements of SE with GOL element. If
number of sub element of SE and GOL
element are equal/same, then both elements
are same and Attribute Match is called. The
parameters of Attribute Match are the name
of two elements. The functionality of
Attribute Match is described in section 3.3.2.
But it can be seen that no element from the
GOL matches successfully with the Subject.
So the synonyms list for source ontology
element (Subject) SOSL is obtained from the
Dictionary.
For Subject the synonyms list SOSL will
contain chapter, course and theme. After that
each element of SOSL is compared with
GOL element.
For example chapter is compared with
Person, Course and Department, same
procedure will be repeated for other two
elements of (SOSL) i.e. course and theme.
When the course (element of SOSL) is
compared with GOL, course (element of
SOSL) matches successfully with Course
(element of GOL).
As a result the number of sub elements of
GOL element (Course) are counted. Then
Element Match compares the sub elements
of SE (Subject) with GOL element (Course),
which are also same.

OldName Of The Element Is -->Subject
NewName Of The Element Is -->Course

 So this information is added to list. The next
source ontology element (SE) is Lecture,
whose matching criterion is same as Learner.

The last element of source ontology is
Discipline, same procedure will be followed
for it as for Subject.

4.2 Working of Attribute Match
Algorithm
Attribute Match Algorithm functionality is
explained in this section. Consider the
example when source ontology element SE
(Learner) and global ontology element GE
(Student) matches successfully and Attribute
Match is called. The parameters of Attribute
Match are SE (Learner) and GE (Student).
The Attribute Match gets the attribute’s list
of both SE (Learner) and GE (Student) along
with their data types.
SE Attribute list (SEAL) and GE Attribute
list (GEAL) represents the attribute’s list of
SE (Learner) and GE (Student) respectively.
In this case SEAL contain ((name, varchar),
(registration no, integer), and GEAL contain
((Name, String), (Id No, String)).
 In the next step SEAL is matched one by
one with GEAL. That is Learner attributes
are compared with the Student attributes.
The first attribute to be compared is
(registration no) of SEAL, (registration no)
is compared with Name and Id No of GEAL.
If (registration no) of SEAL matches with
any GEAL attribute, then their data types are
checked. If the data types are same then they
are added to the list.
If data types are different then the data type
of GEAL attribute is assigned to SEAL
attribute. As the queries are case sensitive,
therefore the terms need to be standardized
in same format and spell. So with this idea, it
can be seen that no attribute of SEAL
matches with GEAL.
 So the synonyms list for SEAL attribute
(registration no) SOAL is obtained from the
Dictionary. For name the synonyms list
SOAL will contain (Id No, Roll No and
Serial No). After that each element of SOAL
is compared with GEAL.

For example Id No is compared with Name
and Id No, same procedure will be repeated
for other two elements of SOAL. When the
Id No (attribute of SOAL) is compared with
GEAL, Id No (attribute of SOAL) matches
successfully with Id No (attribute of GEAL).
As a result the data types of both SEAL
and GEAL attributes are checked, if data
types are same than the information is added
into the list. If data types of both SEAL and
GEAL attributes are not same than the data
type of GEAL attribute is assigned to SEAL
attribute. The information shown below is
added into the list.

Attribute’s OldName --> registration no
Attribute’s OldType -->integer
Attribute’s NewName -->Id No
Attribute’s NewType -->String

Same procedure will be followed for other
attributes of SEAL.

5. Architecture Implementation
This architecture has been implemented in
order to evaluate its working. The
architecture works successfully and produces
the desirable results. Protégé is use to
develop the Source and Global ontologies,
which is a free, open source ontology editor.
Java is used as the developing tool/language.
The Jena API of java is used to load the
ontologies. The Concept and Attribute
Matcher can starts functioning immediately
after loading the Source and Global
ontologies.
Authors have built in their own dictionary in
order to get the synonyms list of the source
ontology elements. The not only returns the
synonyms list, it also returns the
Parent/generalized class of the concept. The
information about Element name of the
Source ontology is added in the list, during
the processing of Element Match Algorithm.
The information about attribute name and
data type of the Source ontology element is

Figure 6. Global ontology first level nodes

 Person Course

University

 Department

 Learner

Source ontology element

Professor Student

Person

Figure 7. Global Ontology Second level nodes

 Learner

Source ontology element

also added in the list during the processing
of the Attribute Match Algorithm. This
procedure is repeated for all the elements of
the source ontology.
The architecture produces the hard coded
files known as Class Information File and
Attribute Information File. Class
Information File contains the information
about element of the source ontology. The
attributes of Class Information File are
OldName and NewName of the source
ontology element. The Attribute Information
File contains the information about attributes
and data types of the source ontology
elements. The attributes of Attribute
Information File are OldName, OldType,
NewName, and NewType of the source
ontology element’s attributes and data types.
The sample outputs that proposed
architecture produces at the exit are shown
in Fig.8. Due to space limitation, only some

 part of Class Information File and Attribute
Information File is presented in Fig.8. The
execution of the proposed architecture is
shown in Fig.9.
The proposed architecture is supporting the
wrapper/mediator framework. The
functionality of wrapper/mediator
framework could be define as user makes
queries over global schema, mediated
schema and mediator translates global
schema query and reformulates it into sub-
queries of local schemas [3]. So as the query
reached query engine, then the mediator can
reformulates it into sub queries of local
schemas with the help of the document
maintained (Class Information File,
Attribute Information File). This is the
requirement for the architecture’s side, that
information document is maintained that
should provide help to query the system
during the process of schema integration.

<?xml version= 1.0 encoding= ISO-8859-1 ?>
<ClassInformation>
<Class>
<Oldname>Discipline</Oldname>
<Newname>Department</Newname>
</Class>
<Class>
<Oldname>Subject</Oldname>
<Newname>Course</Newname>
</Class>
<Class>
<Oldname>Lecturer</Oldname>
<Newname>Professor</Newname>
</Class>
<Class>
<Oldname>Learner</Oldname>
<Newname>Student</Newname>
</Class>
</ClassInformation>

Class Information File

<?xml version= 1.0 encoding= ISO-8859-1 ?>
<AttributeInformation>
<Attribute>
<Oldname>discipline-name</Oldname>
<Oldtype>string</Oldtype>
<Newname>Departname</Newname>
<Newtype>string</Newtype>
</Attribute>
<Attribute>
<Oldname>Id</Oldname>
<Oldtype>int</Oldtype>
<Newname>DepartmentId</Newname>
<Newtype>string</Newtype>
</Attribute>
<Attribute>
<Oldname>facultyno</Oldname>
<Oldtype>int</Oldtype>
<Newname>FacultyNumber</Newname>
<Newtype>string</Newtype>
</Attribute>
<Attribute>
</AttributeInformation>

Attribute Information File

Figure 8. Class And Attribute Information File In XML
Format.

Figure 9. Execution of the Proposed Architecture.

6. Conclusions
In this paper the authors have proposed
architecture for schema integration (in
context of naming and data type conflict).
They have tried to prove that, if source
ontology is standardized then schema
integration becomes an easy task. The
standardization of source ontology that is
semantically correct is a difficult task. Still
many improvements can be made in the
proposed algorithm.
Especially in the matching of two elements,
more knowledge and rule base techniques
could be added. Further if there is a
dictionary that can return list of synonyms to
any word, then it becomes more flexible and
easy approach in practical life.
In future work the authors will try to suggest
solution for structural conflict and add it in
the proposed architecture, so that more
correct matching could be made.

References

[1] Thanh-Le Bach, Rose Dieng-Kuntz
“Measuring Similarity of Elements
in OWL DL Ontologies” ACIA
Project, INRIA Sophia Antipolis
2004 route des Lucioles, BP 93,
06902 Sophia Antipolis, France.

[2] Marcirio Silveira Chaves, Vera Lúcia

Strube de Lima “Looking for
Similarity among Ontological
Structures” “ in proceedings at
Chaves_Lima: DIUL03, 2003 ”

[3] Seksun Suwanmanee, Djamal

Benslimane, Philippe Thiran “OWL-
Based Approach for Semantic
Interoperability” “19th IEEE
International Conference on
Advanced Information Networking
and Applications (AINA 2005)”

[4] David W. Embley (Brigham Young

University), Li Xu (University of

Arizona South), Yihong Ding
(Brigham Young University)
“Automatic Direct and Indirect
Schema Mapping: Experiences and
Lessons Learned”, “Proceedings of
the 3rd International Conference on
Information Systems Technology and
its Applications, Salt Lake City,
Utah, 15-17 July 2004, 123-136”

[5] Ahmed Alasoud, Volker Haarslev,

Nematollaah Shiri “A Hybrid
Approach for Ontology
Integration” Proceedings of the
2005 VLDB Workshop on
Ontologies-based techniques for
DataBases and Information Systems
(ODBIS-2005), Trondheim, Norway,
Sept. 2, 2005, pp. 18-23

[6] Farshad Hakimpour, Andreas

Geppert “Resolving Semantic
Heterogeneity in Schema
Integration: an Ontology Based
Approach” In the proceedings of the
International Conference on Formal
Ontology in Information Systems
FOIS-2001

[7] Jens Bleiholder and Felix Naumann

“Conflict Handling Strategies in an
Integrated Information System”,
“WWW Workshop in Information
Integration on the Web (IIWeb) 2006,
Edinburgh, UK.”

[8] Erhard Rahm, Philip A. Bernstein “A

survey of approaches to automatic
schema matching” Springer-Verlag
2001.

[9] AnHai Doan, Alon Y. Halevy

“Semantic Integration Research in
the Database Community: A Brief
Survey”, “ In Proc. of 8th ACM
SIGKDD Int.”

[10] Sven Abels, Liane Haak,

Axel Hahn “Identification of

Common Methods Used for
Ontology Integration Tasks”, “In:
Proceedings of the first international
ACM workshop on Interoperability of
Heterogeneous Information Systems
(IHIS05), CIKM conference
proceedings. ACM, Sheridan
publishing, 2005”

[11] Zille Huma, Muhammad

Jaffar-Ur-Rehman, Nadeem Iftikhar,
“An Ontology-Based Framework
for Semi-Automatic Schema
Integration” “In Computer, Science
& Technology., Nov. 2005, Vol.20.
No. 6”.

[12] H. Wache, T. Vogele, U.

Visser, H. Stuckenschmidt, G.
Schuster, H. Neumann and S. Hubner
(University of Bermen) “Ontology
Based Integration of Information,
A Survey Of Existing
Approaches”, in proceedings of
IJCAI-01 Workshop: ontology and
information sharing, Seattle, WA,
2001,Vol.pp. 108-117.

[13] Qiang Liu, Tao Huang, Shao-

Hua Liu, Hua Zhong (Chinese
Academy of Sciences) “An
Ontology Based Approach for
Semantic Conflict Resolution in
Database Integration ”, IBIS –
Issue 2 (2), 2006.

[14] Schema Integration,

http://www.google.com/search?hl=en
&q=Schema+Integration&btnG=Sear
ch, 2007 March 10th.

http://www.google.com/search?hl=en

