
Detecting Metamorphic viruses by using Arbitrary Length of
Control Flow Graphs and Nodes Alignment

Essam Al daoud

Zarka Private University, Jordan
essamdz@zpu.edu.jo

Ahid Al-Shbail

Al al-bayt University, Jordan
ahid_shbail@yahoo.com

Adnan M. Al-Smadi

Al al-bayt University, Jordan
smadi98@aabu.edu.jo

Abstract

Detection tools such as virus scanners have performed poorly, particularly when facing
previously unknown virus or novel variants of existing ones. This study proposes an efficient
and novel method based on arbitrary length of control flow graphs (ALCFG) and similarity
of the aligned ALCFG matrix. The metamorphic viruses are generated by two tools; namely:
next generation virus creation kit (NGVCK0.30) and virus creation lab for Windows 32
(VCL32). The results show that all the generated metamorphic viruses can be detected by
using the suggested approach while less than 62% are detected by well known antivirus
software.

Key words: metamorphic virus, antivirus, control flow graph, similarity measurement.

1. Introduction
Virus writers use better evasion techniques
to transform their virus to avoid detection.
For example, polymorphic and
metamorphic are specifically designed to
bypass detection tools. There is strong
evidence that commercial antivirus are
susceptible to common evasion techniques
used by virus writers[1]. Metamorphic
Virus can reprogram itself. it use code
obfuscation techniques to challenge deeper
static analysis and can also beat dynamic
analyzers by altering its behavior, it does
this by translating its own code into a
temporary representation, edit the
temporary representation of itself, and then
write itself back to normal code again. This
procedure is done with the virus itself, and
thus also the metamorphic engine itself
undergoes changes. Metamorphic viruses
use several metamorphic transformations,
including Instruction reordering, data
reordering, inlining and outlining, register
renaming, code permutation, code

expansion, code shrinking, Subroutine
interleaving, and garbage code insertion.
The altered code is then recompiled to
create a virus executable that looks
fundamentally different from the original.
For example, The source code of the
metamorphic virus Win32/Simile is
approximately 14,000 lines of assembly
code. The metaphoric engine itself takes
up approximately 90% of the virus code,
which is extremely powerful[2].
W32/Ghost contains many procedures and
generates huge number of metamorphic
viruses, it can generate at least 10! =
3,628,800 variations[3].

In this paper, we develop a methodology
for detecting metamorphic virus in
executables. we have initially focused our
attention on viruses and simple entry point
infection. However, our method is general
and can be applied to any malware and any
obfuscated entry point.

mailto:essamdz@zpu.edu.jo
mailto:ahid_shbail@yahoo.com
mailto:smadi98@aabu.edu.jo

2. Related works
Lakhotia, Kapoor, and Kumar believe that
antivirus technologies could counter attack
using the same techniques that
metamorphic virus writers use; identify
similar weak spots in metamorphic viruses
[4]. Geometric detection is based on
modifications that a virus has made to the
file structure. Peter Szor calls this method
shape heuristics because is far from exact
and prone to false positives [5]. In 2005
Ando, Quynh, and Takefuji introduced a
resolution based technique for detecting
metamorphic viruses. In their method,
scattered and obfuscated code is resolved
and simplified to several parts of malicious
code. Their experiment showed that
compared with emulation, this technique is
effective for metamorphic viruses which
apply anti-heuristic techniques, such as
register substitution or permutation
methods[6]. In 2006 Rodelio and others
use code transformation method for
undoing the previous transformations done
by the virus. Code transformation is used
to convert mutated instructions into their
simplest form, where the combinations of
instructions are transformed to an
equivalent but simple form [7]. Mohamed
and others use engine-specific scoring
procedure that scans a piece of code to
determine the likelihood [8]. Bruschi,
Martignoni, and Monga proposed a
detection method control flow graph
matching. Mutations are eliminated
through code normalization and the
problem of detecting viral code inside an
executable is reduced to a simpler
problem[9]. Wong and Stamp
experimented with Hidden Markov models
to try to detect metamorphic malware.
They concluded that in order to avoid
detection, metamorphic viruses also need a
degree of similarity with normal programs
and this is something very challenging for
the virus writer[10].

3. The proposed method
This section introduces new procedures to
extract partial control flow graph of any

binary file. Two main points are
considered during the development of the
suggested algorithms, first point is to
reorder the flow of the code by handling
"jmp" and "call" instructions, and second
point is to use one symbol for all
alternatives and equivalent instructions.
The output of Algorithm 1 is stored in the
matrix ALCFG and contains arbitrary
number of the nodes. Moreover the
sequence of the nodes is represented by
using symbols to be used in the similarity
measurement.

Algorithm 1: Construction of Arbitrary
length of Control Flow Graph (ALCFG)
Input: Disassembled portable executable

file (x), the number of the file lines
(n), the start location (j), the
required number of the nodes (m).

Output: ALCFG m×m matrix and node
sequence array NodeSeq contains m
nodes

Steps:
1- Call prepare op matrix (the size of op

matrix is n×4)
2- Call prepare the matrices Labels and

JumpTo (the size is c×2 and e×3)
3- Call Construct the matrix ALCFG

Algorithm 2: Prepare op matrix (the size

of op matrix is n×4)
Input: Disassembled portable executable

file (x), the number of the file lines
(n), the start location (j), the
required number of the nodes (m).

Output: op matrix of size n×4 (this matrix
contains the jump instructions and
the labels)

1- Load the matrix op[n][4] from the file
x, where the opcode i, is stored at the
row i, the column op[i][1] will be used
to store the labels (for simplicity we
will consider each label as an opcode),
the column op[i][2] will be used to
store the instructions (mov ,jmp,
add,…), the column op[i][3] will be
used to store the first operand, the
column op[i][4] will be used to mark
the rows that are processed, assume that
default value is 0.

2- Delete the rows that do not contain label
or jump instructions (jump instructions
such as call, ret, jmp, ja, jz, je…). In
this step a special action must be
consider if the "ret" instruction is
preceded directly by push instruction, in
this case "ret" is replaced by "jmp" and
its operand is replaced by the value
which has pushed.

3- Rename all the conditional jump
instructions to the names in the Table 1.

4- Add to the end of the matrix a row
contains op[n+1][2]="end"

5- Delete the rows that contain inaccessible
label (this means that op[i][3] does not
equal to this label for all i)

6- Delete the rows that contain unreachable
operand (this means that op[i][1] does
not equal to this operand for all i)

Algorithm 3: Prepare the matrices Labels
and JumpTo
Input: op matrix of size n×4
Output: The matrix Labels of size c×2

and the matrix JumpTo of size
e×3

Do the following while count <= m
 If op[j][4]=1 then

 stack2.pop j
 if j = -1 then stack1.pop j
 if j= -1 then break
 else if op[j][2]="call" then
 stack1.push j+1; j=z+1 where
 op[z][1]= op[j][3]
 else if op[j][2]="ret" then
 stack1.pop j
 else if op[j][2]= "jmp" then
 j=z+1 where op[z][1]= op[j][3]
 else if op[j][2]="A" ,"N", .. or "L" then
 stack2.push z ,where op[z][1]= op[j][3]
 JumpTo [e][1]= op[j][3];
 JumpTo [e][2]= m;
 JumpTo [e][3]= op[j][2]
 m=m+1;e=e+1; j=j+1
 else if op[j][1] <> "null" then //label
 Labels[c][1]= op[j][1];
 Labels[c][2]= m
 c=c+1; m=m+1; j=j+1
 else if op[j][2]="end"and m<=count then
 stack2.pop j
 if j = -1 then break

Algorithm 4:Construct the matrix ALCFG
Input: The matrix Labels of size c×2 and

the matrix JumpTo of size e×3
Output:ALCFG represented as m×m

matrix and nodes sequence
NodeSeq contains m nodes

1- Fill the upper minor diagonal of matrix
ALCFG by 1

2- Fill the array NodeSeq by "K" // labels
3- for each row i in the matrix JumpTo
 x=JumpTo[i][2];
 NodeSeq[x]= JumpTo[i][3]
 for each row j in the matrix Labels
 if JumpTo[i][1]= Labels[j][1] then
 y= Labels[j][2] ; ALCFG[x][y]=1

Table 1. the instructions and corresponding

symbols
Instructions Symbol

JE, JZ, A
JP, JPE R

JNE,JNZ N
JNP, JPO D

JA, JNBE, JG, JNLE E
JAE,JNB,JNC, JGE, JNL Q
JB, JNAE, JC, JL, JNGE G

JBE, JNA, JLE,JNG H
JO, JS I

JNO, JNS, JCXZ, JECXZ L
LOOP P

LABEL K
GAP M

All above algorithms can be implemented
very fast and can be optimized. The worst
case of algorithm 2 is 5n where n is the
number of the lines in the disassembled
file, the worst case of algorithm 3 is n and
the worst case of algorithm 4 is 2)2(m
where m ≤ n. Therefore; the total
complexity of algorithm 1 is O(n)+O(m2).

Definition 1: A skeleton signature of a
binary file is the nodes sequence NodeSeq
and the matrix ALCFG.

 To illustrate the previous procedures;
consider the input is the virus Z0mbie III,
where Figure 1 is part from the source
code of Z0mbie III, Figure 2 is the op
matrix, figure 3 is the Labels matrix and
figure 4 is JumpTo matrix of the first 20
nodes of the virus Z0mbie III.

Figure 1: part from Z0mbie III

Figure 2: the op matrix

 Figure 3: The Labels Matrix

 Figure 4: The JumpTo Matrix

The following is the skeleton signature of
Z0mbie III which is consist from the
sequence of the first 10 nodes NodeSeq
and the matrix ALCFG:

 N A H E K K K K A A

=×

1
1

1
1

1
1

1
1

11
11

1010ALCFG

4. Similarity Measure Function
To detect the metamorphic viruses that
preserve its control flow graph during the
propagation, we can simply compare
ALCFG matrices, but if the control flow
graph is changed during the propagation
then a similarity measure function must be
used. Unfortunately the current similarity
measurement functions such as Euclidean
distance, Canberra distance or even
measurements based on neural network
can not be used; the reason is the random
insertion and deletion in the nodes
sequence of the generated control flow
graph. In this section we propose a new
similarity measure function to detect the
metamorphic viruses. Consider the
following definitions:

Definition 2: The diagonal sub-block of
size m× m of the matrix ALCFG which has
the size n× n is the matrix A and denoted
by Ap ALCFG, where the first row and
column start at i+1<n, the last row and
column end at i+m<=n and i is any integer
number less than n.

Definition 3: Let ALCFGp denotes to
ALCFG matrix of size n× n of the program
P and ALCFGV denotes to ALCFG matrix
of size m× m of the virus V.

Definition 4: The matrices ALCFGS and
ALCFGV are similar if the following
conditions are satisfied:
1- Alignment(NodeSeqS, NodeSeqV)= c ≥T
2- DelMis&Comp(ALCFGS, ALCFGV)=1

We will denote to the similarity measure
function by ϕ such that:

1 tsr_complete N
2 tsr_complete A
3 __cycle_1 H
4 __mz E
9 __exit A
10 restore_program A
11 __exit N
12 __exit Q
14 __exit G
15 __mz A
17 __exit N
19 __exit I
20 __cycle_2_next G

 N tsr_complete 0
 A tsr_complete 0
tsr 0
 call c000_rw 0
 call c000_ro 0
 H __cycle_1 0
 E __mz 0
tsr_complete 0
restore_program 0
 A __exit 0
 A restore_program 0
 N __exit 0
cf8_io 0

-
-
-

-
-
-

-
-
-

-
-
-

start:
 …..
 pop esi
 sub esi, $-1-start
 push esi

….
 jne tsr_complete

 shl edi, 9
….

 je tsr_complete
tsr:
 int 3
 call c000_rw
 pusha
 mov ecx, virsize
 call c000_ro
tsr_complete:
 out 80h, al
 ….

 5 tsr
6 cf8_io
7 tsr_complete
8 restore_program
13 __cycle_1
16 __mz
18 __cycle_2

=
else

ifc
ALCFGALCFG vs

0

satisfied
),(ϕ

Definition 5: The program P is infected by
the virus V if and only if

cALCFGALCFG vs =),(ϕ ,where ALCFGs
p ALCFGp.

For simplicity we will focus on viruses that
use simple entry point infection, therefore
i=0. However our approach can be applied
to any obfuscated entry point

Algorithm 5: Check whether the program
P is infected by the virus V or not.
Input: The program P, the matrix ALCFGV

and a threshold T, where V is a
virus in the database

Output: yes if infected or no if the
program is not infected

1- Disassemble the program P (In this
study the software IDA Pro 4.8 is used,
but this process can be implemented
and embedded in one software)

2- Call Algorithm 1 to find ALCFGp and
NodeSeqp (in this study the first sub
block is processed which is equivalent
to the simple entry point. However to
check all the possible entry points we
have to process all m× m sub block in
the matrix ALCFGp)

3- Call Algorithm 6 to find The Percentage
c and the sequence A

4- If c ≥ T then
 Call algorithm 7 to Delete the

mismatch nodes and compare the
matrices

 If algorithm 7 retrun 1 then
 Return "Yes"
 Else
 Return "No"
 Else
 Return "No"

Algorithm 6: The Alignment of two
sequences. Alignment (,)
Input: The sequences NodeSeqS and

NodeSeqV
Output: The Percentage c and the

sequence A, where c represents the

percentage of the match node to
the total number of the nodes and
A contains the index of the
mismatched nodes

1- Apply Needleman-Wunsch-Sellers
algorithm on the sequences NodeSeqS
and NodeSeqV

2- Store the index of mismatch nodes in
the array A

3- Find c= number of matched
nodes*100/ total number of nodes

Algorithm 7: Delete the mismatch nodes

and compare. DelMis&Comp(,)
Input: ALCFGS, ALCFGV and the

mismatched sequence A.
Output: 0 or 1
1- If mismatch with gab then delete the

row i and the column i from the matrix
ALCFGS for all i in the mismatched
nodes, and delete the last rows and
columns from ALCFGV where the
number of the deleted rows and
columns equal to the number of the
gabs

2- If mismatch with symbol then delete
the row i and the column i from the
matrices ALCFGS and ALCFGV for all
i in the mismatched nodes.

3- Rename the matrices to d
sALCFG and

d
vALCFG .

4- If d
sALCFG = d

vALCFG then
 Return 1
Else
 Return 0

The most expensive step in the previous
algorithms is Needleman-Wunsch-Sellers
algorithm which can be implemented in m2
operation, and the total complexity of all
procedures is O(n)+O(m2). Therefore the
suggested method is much faster than the
previous methods; for example the cost of
finding the isomorphic sub graph in [9] is
well known NP-complete problem.

To illustrate the suggested similarity
measure function, assume that we like to
the check weather the program P is
infected by the virus Z0mbie III or not,
assume that the threshold T=70 and m=10

(note that: to reduce the false positive we
must increase the threshold and the number
of the processed nodes), the first 10 nodes
that are extracted from P and the ALCFG
matrix are (the skeleton signature of P):

 N A H A E K K K K A

=

1
1

1
1

1
11

1
11
11

sALCFG

By using algorithm 6 the nodes of P
aligned with the nodes of Z0mbie III as
following:

N A H A E K K K K A -
N A H - E K K K K A A

c= number of matched nodes*100/ total
number of nodes=9*100/10=90 >T.

The mismatch occur with gabs; therefore
column 4 and row 4 must be deleted from
ALCFGS, column 10 and row 10 must be
deleted from ALCFGV. Since matrices after
deletion are identical, we conclude that the
program P is infected by a modified
version of Z0mbie III and

%90),(=vs ALCFGALCFGϕ .

5. Implementation
The metamorphic viruses are taken from
VX Heavens search engine and generated
by two tools; namely: Next Generation
Virus Creation Kit (NGVCK0.30) and
Virus Creation Lab for Windows 32
(VCL32) [11]. Since the output of the kits
was already in the asm format, we used
Turbo Assembler (TASM 5.0) for
compiling and linking the files to generate
exe’s, which are later disassembled using
IDA pro 4.9 Freeware Version. Algorithm
4 is implemented by using MATLAB 7.0.
The NGVCK0.30 has advanced assembly
source-morphing engine, and all variants
of the viruses generated by NGVCK will

have the same functionality, but they have
different signatures. In this study; 100
metamorphic viruses are generated by
using (NGVCK). 40 viruses are used for
analyzing and 60 viruses are used for
testing, let us call the first group A1 and
the second group T1. After applying the
suggested procedures on A1 we note that
all the viruses in A1 have just seven
different skeleton signatures when T=100
and m=20 and have four different
skeletons when T=80 and m=20 and have
three different skeletons when T=70 and
m=20. T1 group is tested by using 7
antivirus software; the results are obtained
by using the on-line service [12]. 100% of
the generated viruses are recognized by the
proposed method and by McAfee, but none
of the viruses are detected by using the rest
software. Another 100 viruses are
generated by using VCL32, where all of
them are obfuscated manually by inserting
dead code, transposition the code,
reassigning the registers and substituting
the instructions. The generated viruses are
divided into two groups, A2 and T2, A2
contains 40 viruses for analyzing and T2
contains 60 viruses for testing. Again
100% of the generated viruses are detected
by the proposed method, 84% are detected
by Norman, 23% are detected by McAfee
and 0% are detected by the rest software.
Figure 5 describes the average detection
percentage of the metamorphic viruses in
T1 and T2.

6. Conclusion
The antivirus software trying to detect the
viruses by using variant static and dynamic
methods. However; all the existing
methods are not adequate. To develop new
reliable antivirus software some problems
must be fixed. This paper suggested new
procedures to detect the metamorphic
viruses by using arbitrary length of control
flow graphs and nodes alignment. The
suspected files are disassembled, the
opcode encoded, the control flow
analyzed, and the similarity of the matrices
is measured by using a new similarity
measurement. The implementation of the

suggested approach show that all the
generated metamorphic viruses can be
detected while less than 62% are detected
by other well known antivirus software.

0

20

40

60

80

100

120

Micro
sof

t

Kasp
ers

ky

Symant
ec

McA
fee

Clam
AV

Norman AVG

Prop
ose

d

Figure 5. The average percentage of the
detected viruses from group T1 and T2

References
[1] M. Christodorescu, J. Kinder, S. Jha, S.

Katzenbeisser, and H. Veith,
"Malware Normalization," Technical
Report # 1539 at the Department of
Computer Sciences, University of
Wisconsin, Madison, 2005.

[2] F. Perriot, "Striking Similarities:
Win32/Simile and Metamorphic Virus
Code", Symantec Corporation 2003.

[3] E. Konstantinou, "Metamorphic Virus:
Analysis and Detection Technical
Report," RHUL-MA-2008-02
Department of Mathematics Royal
Holloway, University of London, 2008.

[4] A. Lakhotia, A. Kapoor, and E. U.
Kumar, "Are metamorphic computer
viruses really invisible?," part 1. Virus
Bulletin, 2004, pp 5-7.

[5] P. Szor, The Art of Computer Virus
Research and Defense. Addison
Wesley Professional, 1 edition,
February 2005.

[6] R. Ando, N. A. Quynh, and Y.
Takefuji, "Resolution based
metamorphic computer virus detection

using redundancy control strategy," In
WSEAS Conference, Tenerife, Canary
Islands, Spain, Dec. 2005, pp16-18.

[7] R. G. Finones and R. T. Fernande,
"Solving the metamorphic puzzle".
Virus Bulletin, March 2006, pp 14-19.

[8] M. R. Chouchane and A. Lakhotia,
"Using engine signature to detect
metamorphic malware," In WORM
'06: Proceedings of the 4th ACM
workshop on Recurring malcode, New
York, NY, USA, 2006, pp 73-78.

[9] D. Bruschi, L. Martignoni, and
M.Monga, "Detecting self-mutating
malware using control flow graph
matching," In DIMVA, 2006, pp 129-
143.

[10] W. Wong and M. Stamp, "Hunting for
metamorphic engines," Journal in
Computer Virology, 2(3), 2006, pp
211-229.

[11] http://vx.netlux.org/ last access March
2009.

[12] http://www.virustotal.com/ last access
March 2009.

http://vx.netlux.org/
http://www.virustotal.com/

