
A Semantic Web Technology-based Architecture for New Server-side Data
Validation in Web Applications

Shadi Aljawarneh and Faisal Alkhateeb
Faculty of Information Technology

Al-isra Private University and Yarmouk University, Jordan
shadi.jawarneh@ipu.edu.jo, alkhateebf@yu.edu.jo

Abstract

Criminals could break the client-side input validation
modules. Bypassing input validation is a serious challenge
because it might cause failures in the software, and can also
break the security upon web applications such as an unau-
thorized access to data. Even the criminals can not bypass
the client and/or server input validation, web application
flaws, such as cross-site scripting or SQL injection, now ac-
count for more than two thirds of the reported web security
vulnerabilities. In this paper, we present a new data vali-
dation service which is based upon semantic web technolo-
gies to prevent the security vulnerabilities at the application
level and to secure the web system even if the input valida-
tion modules are bypassed. The architecture of the service
consists of the following components: RDFa annotation for
elements of web pages, interceptor, RDFa extractor, RDF
parser, and data validator.

Keywords

Web application, RDFa, web system, ontology, semantic
web technologies, data validation, vulnerabilities, SSL

1. Introduction

Organizations that have a web presence are increasingly
worried for their reputations if the web system is subverted.
This is because current security tools may not prevent the
web system vulnerabilities [9, 11]. For example, with 7,247
vulnerabilities disclosed in 2006, total vulnerability count
increased nearly 40% over the previous year. This trend of
increase is expected to continue [16].

Web applications1 is organized into three tiers: a web
1A web application is a collection of integrated static and dynamic web

pages on a web system. The web application is run on a web browser, a
web server, or both [1, 26].

browser tier, a web server tier, and a backend database tier.
The user interaction is proposed in a web browser tier, the
program logic (such as ASP and JSP) is run in a web server
tier, and the data operations (such as addition, deletion, and
updating) are performed in a database server tier [26, 5]. It
often have direct access to backend databases and, hence,
sensitive data is much more difficult to secure [2]. If there
is no direct access to backend databases, attacks can use
legitimate application protocols such as HTTP, and Simple
Object Access Protocol (SOAP) to capture data and trans-
missions [2, 4, 7]. The Gartner study found that 75% of
Internet assaults are targeted at the web application level
[4].

Currently, when initiating user and organization trans-
actions and conducting their business, e-Commerce appli-
cations rely on (X)HTML forms including enrolment, au-
thentication, order entry, payment, and profiling, rather than
XML forms, because of a lack of security mechanisms sup-
ported by SOAP [17]. In addition, the XML form is not
supported by the major web browsers because it needs ad-
ditional installations on the client and server-sides [17, 6].

An input validation scheme is the first defence against
web attacks at the application level. Web developers have
adopted a number of validation approaches to prevent loss
of data integrity.

1. Server-side input validation [6, 27]: this approach can
be used to validate sensitive data on a server before
processing them by an application server. Depending
upon the application and network traffic, the time taken
between the submitted form on a web browser and the
error message that is returned from a web server can
be considerable. In addition, it makes excess network
traffic to enter the correct data format. However, inside
criminal might bypass the server-side input validation
modules through using malicious manipulation soft-
ware that intercept the user inputs at the server-side.

2. Client-side input validation [6, 10]: this is effective
for minimizing the number of necessary communica-

tion hits between the submitted form and received error
message. However, the form validation modules of this
approach can be removed. In addition, this approach
cannot ensure that the client and server are authentic.

3. The double-checking input validation [6, 10]: this ap-
proach duplicates the form validation modules on both
client and server sides. This approach adopts alterna-
tive validation scheme on a server-side, even though
the validation scheme is bypassed at the client-side.
However, this approach is expensive and involves high
latency.

4. Honkala and Vuorimaa [17, 13] propose extending
the XForm form to a digital signature XForm. They
adopt the digital signature for XForm forms rather than
(X)HTML forms because it is hard to apply a digital
signature to an (X)HTML form. They advocate the
“what you see is what you sign” approach to secure
web form components at the client-side. Therefore,
XForms is a new standard for better graphical inter-
faces and specified to input validation rather than the
embedded scripts [27]. However, XForm is only sup-
ported by the XSmile browser.

5. Formatta organization defines a Portable Form Files
(PFF) form model that is not related to the (X)HTML
language. This form allows the user to encrypt and
lock its form data before submitting it to a web server.
However, the PFF form needs special software to in-
stall a web document on a web browser. In addition,
the submitted data is sent by E-mail service to an orga-
nization web server.

Many online book re-sales (such as Amazon) advocate
checking inputs with JavaScript as a mechanism to reduce
network traffic. Modern books applications usually advo-
cate doing input validation on the server for security pur-
poses. Nevertheless, major e-Commerce and e-Service sites
still use client-side validation and hidden fields [21].

Therefore, Criminals could break the client-side input
validation modules. Bypassing input validation is a serious
problem because it might cause failures in the software, and
can also break the security upon web applications such as
an unauthorized access to data [3, 18]. Even the criminals
can not bypass the client and/or server input validation, web
application flaws, such as cross-site scripting or SQL injec-
tion, now account for more than two thirds of the reported
web security vulnerabilities [18]. In an attempt to remedy
this, we develop a new data validation services, based on
semantic web technologies.

This paper is organized as follows: case studies for the
bypassing input validation are described in Section 2. The
proposed semantic web technology-based architecture is in-
troduced, and a case study is presented in Section 3, and

related work is made in Section 4. Conclusions and future
work are offered in Section 5.

2. Case studies for input validation bypassing

A validation scheme is necessary for both client and
server-sides, but is not sufficient to ensure data integrity of
web applications, because fundamentally a client-side in-
put validation scheme is designed to validate basic proper-
ties of the input data: length, range, format, default value,
and type. In addition, input validation can be used to en-
hance resistance to injection attacks such as SQL injection
attack because SQL injection vulnerabilities result from in-
sufficient input validation [12]. However, an input valida-
tion scheme is useless if any malicious script or listener is
already installed on a server [18, 22, 6].

As a result of the transparency of code at the web
browser level, the following approaches can cause loss of
data integrity at the (X)HTML form level:

1. Hidden fields manipulation: an adversary saves the
(X)HTML form to a disk, modifies a hidden field value
(such as the price of a product), and then reloads this
tampered form into a web browser for rendering [22].

2. Script manipulation: an adversary removes the client
validation modules from a web browser to submit il-
legal data to a web server. A web server accepts the
tampered form and then the data is saved in a back-
end database. Many web application security vul-
nerabilities come from input validation problems in-
cluding Cross-Site Scripting (XSS) and SQL injection
[18, 23, 24, 19]. This approach is made possible by
removing all script modules between the ¡script¿ and
¡/script¿ tags, removing the event-handler that invokes
the validation modules, or turning off the script and
Java Applet options via web browser settings.

3. Modules of validation analysis manipulation: an ad-
versary applies reverse engineering techniques on the
validation modules [18, 23, 19].

4. Session information manipulation [25]: an adversary
might access session information, which is saved in
cookies. This is possible because a web browser is
not fully secured by SSL. In addition, some client-
side programming languages provide direct or in-
direct commands to access user machine resources.
However, the cookie-securing mechanism of Park and
Sandhu [20] can be adopted to avoid or reduce the dan-
ger of tampering the cookie information but it needs to
declare the explicit modification to the existing web
environment. This mechanism is implemented us-
ing CGI and Pretty Good Privacy (PGP) to verify se-

cure cookie cryptography on the client. The encryp-
tion scheme is conducted by the server. Therefore,
the cookie-securing mechanism is used to secure the
session information on the cookies for continuing the
Request-Response conversations.

As mentioned above, the SQL injection is one of the
common web application vulnerabilities. Normally, web
applications use data that read from a user to construct
database queries. If the data is not properly processed, ma-
licious code that results in the execution of any SQL can be
injected [15].

To explain more about the SQL injection and how to au-
thentication mechanism of a web application can be by-
passed, consider the following scenario: a web page in-
cludes a (X)HTML form with two edit boxes in its lo-
gin.html to ask for a username and password. The form
declares that the values of the two input fields should be
submitted with the variables varUserName and varPassword
to login.asp, which includes the following code [15]:

SQLQuery = "SELECT * FROM Users table
WHERE (UserName=’" + varUserName + "’)
AND (Password=’" + varPassword + "’);"

If a user submits the username ”Ali” and the password
”2009yosef”, the SQLQuery variable is interpreted as:

"SELECT * FROM Users table WHERE
(varUserName= ’Ali’) AND
(Password=’2009yosef’);"

It should be noted that a user inputs (stored in the
varUserName and varPassword variables) are used
directly in SQL command construction without preprocess-
ing, thus making the code vulnerable to SQL injection at-
tacks. If a malicious user enters the following string for
both the UserName and Password fields:

X’ OR ’A’ = ’A

then the SQLQuery variable will be interpreted as:

"SELECT * FROM Users table WHERE
(varUserName=’X’ OR ’A’ = ’A’) AND
(Password=’X’ OR ’A’ = ’A’);"

Because the expression ’A’ = ’A’ will always be
evaluated as TRUE, the WHERE clause will have no actual
effect, and the SQL command will always be the equivalent
of "SELECT * FROM Users table". Therefore, al-
lowing the web application’s authentication mechanism to
be bypassed.

3. Possible Solution

We present a new data validation service which is based
upon semantic web technologies to prevent the security vul-
nerabilities at the application level and to secure the web
system even if the input validation modules are bypassed.
As illustration in Figure 1, the data validation service archi-
tecture consists of the following components: RDFa annota-
tion for elements of web pages, interceptor, RDF extractor,
RDF parser, and data validator. The next subsection will
describe the functional overview of the proposed solution.

InterceptorInterceptorRDF ExtractorRDF Extractor

RDFa annotation
for elements of
(X)HTML Forms

RDFa annotation
for elements of
(X)HTML Forms

Web Server

H
T

T
P

 R
equest

H
T

T
P

 R
esponse: O

K

RDF ParserRDF Parser

Data
Validator

Data
Validator

Validation
passed

Validation
failed

H
T

T
P

 R
esponse: R

efused

Figure 1. Schematic view of new data valida-
tion service architecture

It should be noted that the components of the proposed
architecture framework do not need to run on a dedicated
machine, they can be run as separate processes on the server.

3.1. Functional Overview

The following steps are performed:

1. Use an ontology to describe all data elements in a web
application using RDFa annotation2.

2http://wwww.w3.org/TR/xhtml-rdfa-primer/

2. End user requests (X)HTML form.

3. Interceptor component intercepts each HTTP request
at the server-side before the request arrives to web
server application for processing.

4. Extracting the RDFa annotations from RDFa ontology
vocabulary using the online RDFa extractor3.

5. Invoking the validator component to validate all user
inputs.

6. If the validation is correct then the request sends to
web server application for processing, otherwise, the
request is refused.

3.2. Overview of the proposed framework architec-
ture

An illustration of RDFa ontology-based architecture is
presented in Figure 1. This framework consists of five com-
ponents:

1. RDFa annotation for elements of web pages: RDF (Re-
source Description Framework) is a knowledge repre-
sentation language dedicated to the annotation of re-
sources within the Semantic Web. In its abstract syn-
tax, an RDF document is a set of triples of the form
〈subject, predicate, object〉. Currently, many docu-
ments are annotated via RDF due to its simple data
model and its formal semantics. For example, it is em-
bedded in (X)HTML web pages using the RDFa lan-
guage, in SMIL documents using RDF/XML, etc. Sec-
tion 3.3 provides an illustration of how to use RDFa to
annotate an (X)HTML web page.

2. Interceptor: mediates between the server and client
machines by managing the HTTP requests. It inter-
cepts HTTP request, checks the availability of HTTP
request on the designated directories of web server,
and invokes the RDF extractor.

3. RDF extractor: The online RDFa distiller4 is used to
extract the RDFa annotation from the (X)HTML web
page and construct the RDF ontology given in Fig-
ure 2.

4. RDF parser: parses the form inputs and their attributes
for validation process.

5. Data validator: when the description is extracted using
RDFa extractor, the validator takes the user inputs for
validation process. The validation process checks to

3Note that there are several RDF extractors available at
http://www.w3.org/topic/RDFa

4www.w3.org/2007/08/pyRDFa/

see if the value of user input is satisfied the conditions
of its attributes (such as length, data type, minimum
length, and if the value contains code or special char-
acters) the since it was used. Any mismatching causes
the content integrity check to fail. Based on whether
the test passes or fails, the data validator enforces the
policy that makes the decision about the next step in
the process. If the integrity check passes, the web con-
tent is sent to the running process straight away. If it
fails, it is refused the user request.

3.3. Case Study

To illustrate our methodology we consider using our sys-
tem to secure a simple employee system. Consider the
following scenario: As final step in a registration transac-
tion, employees are sent an (X)HTML form requesting their
name, address, department, and qualification.

<FORM NAME=EmployeeForm ACTION=emp_add.jsp METHOD=post>

<h2>Add Employee Record</h2>

<I>Employee Number:
(1 to 6 characters)</I>

<INPUT TYPE=text NAME=EMPNO>

<I>First Name:</I>

<INPUT TYPE=text NAME=FNM VALUE=First Name>

<I>Middle Initial:</I>

<INPUT TYPE=text NAME=MIDINIT VALUE=M>

<I>Last Name: </I>

<INPUT TYPE=text NAME=LNME VALUE=Last Name>

<I>Telephone:</I>

<INPUT TYPE=text NAME=telep >

 <I>Department:</I>

<SELECT NAME=WORKDEPT >

<OPTION VALUE= 1 selected> Sales

<OPTION ALUE= 2 >Marketing

<OPTION VALUE= 3 >Development

</SELECT>

<I>Education:</I>

<SELECT NAME=EDLEVEL>

<OPTION VALUE=1 SELECTED>BS

<\scriptsize{OPTION VALUE=2 >MS

<OPTION VALUE=3>PhD

</SELECT>

<INPUT TYPE=submit NAME=Submit VALUE=Add>

</FORM>

Figure 2. Snapshot of an employee (X)HTML
form.

Figure 3 illustrates the modified (X)HTML form as well
as the ontology description. The shaded rows denotes to the
ontology which describes each field in the (X)HTML form.

<FORM NAME=EmployeeForm ACTION=emp_add.jsp METHOD=post>

<h2>Add Employee Record</h2>

<I>Employee Number:
(1 to 6 characters)</I>

<INPUT TYPE=text NAME=EMPNO>

<I>First Name:</I>

<INPUT TYPE=text NAME=FNM VALUE=First Name>

<I>Middle Initial:</I>

<INPUT TYPE=text NAME=MIDINIT VALUE=M>

<I>Last Name: </I>

<INPUT TYPE=text NAME=LNME VALUE=Last Name>

<I>Telephone:</I>

<INPUT TYPE=text NAME=telep >

<I>Department:</I>

<SELECT NAME=WORKDEPT >

<OPTION VALUE= 1 selected> Sales

<OPTION ALUE= 2 >Marketing

<OPTION VALUE= 3 >Development

</SELECT>

<I>Education:</I>

<SELECT NAME=EDLEVEL>

<OPTION VALUE=1 SELECTED>BS

<\scriptsize{OPTION VALUE=2 >MS

<OPTION VALUE=3>PhD

</SELECT>

<INPUT TYPE=submit NAME=Submit VALUE=Add>

</FORM>

Figure 3. Snapshot of he modified HTML form
with the ontology description.

The ontology itself extracted using RDFa extractor is
shown in Figure 4 This ontology means that there ex-
ists someone whose first name ”foaf:firstName” is the
”fnm” (Note this is the name of the label), last name
”foaf:lastname” is ”lnm”, employee key ”vcard:KEY” is
”EMPNO”, phone number ”foaf:phone” is ”telephone”,
fax number ”foaf:fax” is ”faxNumber”, mbox ”foafmbox”
is ”emailbox”, title ”foaf:title” is ”EDLEVEL”, address
”vcard:ADR” is ”address”. This person is a member
”foaf:member” of ”WORKDEPT”. The employee ontology
is stored in the employeeontology.ttl which contains:

this is a comment

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

_:someEmployee rdf:type foaf:Person.

_:someEmployee vcard:KEY ’EMPNO’ .

_:someEmployee foaf:firstName ’fnm’ .

_:someEmployee foaf:surname ’lnm’ .

_:someEmployee foaf:phone ’telephone’ .

_:someEmployee foaf:fax ’faxNumber’ .

_:someEmployee foaf:mbox ’emailbox’ .

_:someEmployee foaf:member ’WORKDEPT’ .

_:someEmployee foaf:title ’EDLEVEL’ .

_:someEmployee vcard:ADD ’address’ .

Figure 4. Snapshot of the employee on-
tology is stored in the employeeontol-
ogy.ttl file. Note that this RDF on-
tology is written in the Turtle format,
http://www.dajobe.org/2004/01/turtle/

4. Related work

A number of researchers are developing solutions to ad-
dress this problem. For example, Scott and Sharp [22]
proposed a gateway model which is an application-level
firewall on a server for checking invalid user inputs and
detecting malicious script (e.g. SQL injection attack and
cross-site scripting attack). This approach offers protection
through the enforcement of a number of defined policies,
but fails to assess the code itself or to identify the actual
weaknesses. They have developed a security policy descrip-
tion language (SPDL) based on XML to describe a set of
validation constraints and transformation rules. This lan-
guage is translated into code by a policy compiler, which is
sent to a security gateway on a server. The gateway analyzes
the request and augments it with a Message Authentication
Code (MAC).

Another different approach to make self-protection,
Huang and others [14] used behavior monitoring to detect
malicious content before it reaches users. They develop
WAVES (Web application security assessment system) that
performs behavior stimulation to induce malicious behav-
ior in the monitored components. However, the testing pro-
cesses cannot guarantee the identification of all bugs, and
they cannot support immediate or direct security for web
applications.

MOPS [8] used the static analysis techniques that have
been made to identify security vulnerabilities in UNIX pro-
grams. Static analysis can also be used to analyze web ap-
plication code, for instance, ASP or PHP scripts. However,
this technique fails to adequately use the runtime behavior
of web applications [15]

5. Conclusions and further work

Because of the possibility of bypassing input validation
either on client-side or server-side, data integrity of web ap-
plication can be violated even though the communication
channel between the server and client is secure. Therefore,
we present the proposed web technology-based architecture
for new data validation in the web applications. This ar-
chitecture includes a real-time framework consisting of five
components: RDFa annotation for elements of web pages,
interceptor, RDF extractor, RDF parser, and data validator.
It might be suggested that the proposed data validation ser-
vice could provide a detection, and prevention of some web
application attacks. In the next stage of this research, we
will implement the prototype of our proposed system and
will investigate a number of experiments for security and
performance objectives.

References

[1] Acunetix. The importance of web applica-
tion scanning, 2005. http://www.sql-server-
performance.com/wpaper web app scanning.asp, Accessed
Date: 20/4/2005.

[2] Acunetix. Web applications: What are they? what of them?.,
2007. http://www.acunetix.com/websitesecurity/web-
applications.htm, Accessed Data: 15/2/2007.

[3] S. Aljawarneh, C. Laing, and P. Vickers. Security policy
framework and algorithms for web server content protection.
In ACSF ’07, Liverpool, UK, 12–13 July 2007. Liverpool
John Moores University.

[4] T. Bass. CEP and SOA: An open event-
driven architecture for risk management.
IT Financial Services ’07, Portugal, 2007.
www.idc.pt/resources/PPTs/2007/Financial Services/7 TI
BCO.pdf.

[5] Boston Consulting Group. Report of the E-Business
Opportunities Roundtable. Fast Forward: Accelerat-
ing Canada’s Leadership in the Internet Economy,

Jan 2000. http://www.e-com.ic.gc.ca/epic/site/ecic-
ceac.nsf/en/h gv00222e.html, Canada, Accessed Data:
5/12/2005.

[6] C. Brabrand, A. Moller, M. Ricky, and M. I. Schwartzbach.
PowerForms: Declarative client-side form field validation.
World Wide Web Journal, 3(4):205–314, December 2000.
Kluwer.

[7] R. Cardone, D. Soroker, and A. Tiwari. Using XForms to
simplify web programming. In WWW ’05: Proceedings of
the 14th international conference on World Wide Web, pages
215–224, New York, NY, USA, 2005. ACM Press.

[8] H. Chen and D. Wagner. Mops: an infrastructure for exam-
ining security properties of software. In In Proceedings of
the 9th ACM Conference on Computer and Communications
Security, pages 235–244. ACM Press, 2002.

[9] B. Gehling and D. Stankard. eCommerce security. In Pro-
ceedings of Information Security Curriculum Development
(InfoSecCD) Conference 0́5, pages 32–37, Kennesaw, GA,
USA, Sep 23–24 2005.

[10] A. Ghosh and T. Swaminatha. Software security and privacy
risks in mobile e-commerce. Commun. ACM, 44(2):51–57,
2001.

[11] W. Glisson and R. Welland. Web development evolu-
tion: The assimilation of web engineering security. In LA-
WEB ’05: Proceedings of the Third Latin American Web
Congress, page 49, Washington, DC, USA, 2005. IEEE
Computer Society.

[12] G. Halfond and A. Orso. Preventing SQL injection attacks
using AMNESIA. In ICSE ’06: Proceedings of the 28th
international conference on Software engineering, ACM,
pages 795–798, New York, NY, USA, 2006. ACM.

[13] M. Honkala. Web User Interaction a Declarative Approach
Based on XForms. Technology, Department of Computer
Science and Engineering - Helsinki University of Technol-
ogy, Espoo, Finland, January 2007. ISBN 978-951-22-8566-
2.

[14] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web application
security assessment by fault injection and behavior monitor-
ing. In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 148–159, New York,
NY, USA, 2003. ACM Press.

[15] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web
application security assessment by fault injection and behav-
ior monitoring. In WWW ’03: Proceedings of the 12th in-
ternational conference on World Wide Web, pages 148–159,
New York, NY, USA, 2003. ACM.

[16] IBM. X-Force 2006 Trend Statistics, Jan 2007.
http://www.iss.net/documents/whitepapers/X Force Exec Brief.pdf,
Accessed Date: 7/8/2007.

[17] H. Mikko and P. Vuorimaa. Secure Web Forms with Client-
Side Signatures. In ICWE, pages 340–351, 2005.

[18] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of
web applications. In ISSRE 2004 15th International Sympo-
sium on Software Reliability Engineering, pages 187–197.
IEEE Computer Society, Los Alamitos, CA, 2004.

[19] Open Web Application Security Project. The Ten Most Crit-
ical Web Application Security Vulnerabilities. Version 1.1,
January 13 2003.

[20] J. Park and R. Sandhu. Secure cookies on the web. IEEE
Internet Computing, 4(4):36–44, 2000.

[21] F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering, pages 25–34, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[22] D. Scott and R. Sharp. Specifying and Enforcing
Application-Level Web Security Policies. IEEE. Knowl.
Data Eng, 15(4):771–783, 2003.

[23] S. Sedaghat. Web authenticity. Master’s thesis, University
of Western Sydney, Australia, 2002.

[24] S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-fly web
content integrity check boosts users’ confidence. Commun.
ACM, 45(11):33–37, 2002.

[25] A. Sengupta, C. Mazumdar, and M. S. Barik. e-Commerce
security - A life cycle approach. In Commerce Secu-
rity; Threats And Vulnerabilities; Security Engineering Life-
Cycle; Security Standards; IT Act, volume vol.30, pages
p.119–140. SADHANA, 2005.

[26] J. Tzay, J. Huang, F. Wang, and W. Chu. Constructing an
Object-Oriented Architecture for Web Application Testing.
IJ. Information Science and Eng., 18(1):59–84, 2002.

[27] J. Wusteman. Web forms: the next generation. Library Hi
Tech, 21(3):367 – 381, 2003.

