
Integrating AMI, MDE for Muti-device Muli-Modal User
Interface to Support People with Disabilities

Eman M. Saleh

Cairo University, Egypt
Eman_maghary@yahoo.com

 Aly Fahmy

Prof. of Computer Science
Faculty of Computers and Information, Cairo University, Egypt

Cairo University, Egypt
a.fahmy@fci-cu.edu.eg

Amr Kamel

Cairo University, Egypt
a.Kamel@fci-cu.edu.eg

Abdel Badeeh M. Salem
Prof. of Computer Science

Head of Medical Informatics and eHealth Reserch Unit,
Ain Shams University, Egypt

absalem@asunet.shams.edu.eg

ABSTRACT

Model-driven engineering (MDE), including Model Based approaches of user interfaces
describes the User interface and its related aspects (e.g. tasks, domain, context of use) using
set of models that can derive a final user interface. Model-Based user interface approaches
give the researchers a new designing methodology that eases the creation of user interface and
tackles the problems of producing a new design for every new device and every modality
(graphical, vocal, gesture, …)
The design of interactive systems for an ambient intelligent environment (AMI) poses many
challenges due to the diverse number of devices, and interaction modalities available in the
environment together with restrictions imposed by making the interactive system usable by
people with disabilities. This work proposes a framework that integrates model based
techniques with AMI to build an applicable solution which can allow the designers to design
and develop multi-device and multi-modal user interfaces to fit the emergent needs of people
with disabilities in an AMI environment through a number of model-transformations.

Key Words: Software Engineering, AMI, Model-Based User Interface Design, ConcurTaskTrees,
Task Model, XML-Based Languages, HCI.

1. Introduction
 In Model Based User Interface Design
(MBUID), different abstract models
highlight different aspects of the user
interface independent of details of the
target devices. A multi level reification
steps will be followed to generate concrete
models that “fill in” more specific details
towards the presentation of the interface on
the target platform. This paper considers

three important concepts; context
dependent UI design, multi-device and
multi-modal user interface design. There is
still work to be done to visualize the
different models and the influence of
model manipulations at run time in order
to cope with AMI environment.
Examples of model-based systems are
Mobi-D[1], Teresa[3][11], Dygimes[2].
High Level User-interface Description–

mailto:Eman_maghary@yahoo.com
mailto:a.fahmy@fci-cu.edu.eg
mailto:a.Kamel@fci-cu.edu.eg
mailto:absalem@asunet.shams.edu.eg

 ٢

Languages (HLUIDL) had been linked
extensively to Model-Based user interface
development because they offer multi-
device UI creation, more specific the
XML-Based HLUIDL, because most of
them have firmly focused on usability and
scalability: making one design for many
devices is the main goal, they succeed to
achieve this goal for form-based interfaces,
but it’s not the case for graphical multi-
modal interfaces.
Examples of these languages are the
UIML[8], RIML[9], TeresaXML[11],
useML[5], ISML[7], XIML[6],
UsiXML[10] and there are many existing
languages differ in their degree of
abstraction, model coverage,
Standardization and the availability for
users.
A relatively new tool, by Stanciulesu et.al.,
TransformiXML [12] addressed the
creation of multimodal web user interfaces
through set of model-to-model
transformations which transform a
UsiXML compliant specification into
another UsiXML. Transformation rules are
expressed in UsiXML compliant UI to
produce a new UI. The work is restricted
to web UI and UsiXML models.
To enable people with disabilities to
communicate with applications the same
way they naturally do in their daily
behavior the UI should be tailored to
different user capabilities, taking into
consideration the diversity of devices that
may be used varying from desktop
computers, mobile devices to wearable
devices with small screen size and limited
interaction devices.
A multimodal user interface gives the end
users the ability to choose the interaction
modality that is the most suitable for their
capabilities. A modality can be expresses
as a couple (device, interaction device)
some of the modalities can be (keyboard,
command language), (mouse, direct
manipulation), (loudspeakers, unrestricted
natural language) [12].
There are a wide range of different models
that can be used in Model-Based User
Interface Development: Task model (a
model that describes the goals that the user

hopes to accomplish, and the actions that
must be taken to accomplish them), Data
or Domain model (a model that describes
the objects and data that the user will be
concerned with), Application model, dialog
model (a model that describes the
mechanics of how the user is to interact
with the UI. It specifies the navigational
structure of the UI, and the used interaction
techniques), presentation model (a model
that describes the visual appearance of the
user interface. It specifies which widgets
have been selected, and where they are
placed, among other things) and user
model (that describes properties of the
users themselves, such as their level of
expertise, or their security clearance
model). The data, domain and application
model can be situated at the end of the
application logic of the system. They
define the type of objects and the
operations on objects that can be used or
needed to be supported by the interactive
system. The task and domain model closest
to the user and specify the tasks the user
executes and the objects manipulated by
the UI. The dialog model and presentation
model are closest to the final user
interface. The most important model to
support AMI environments is the Context
model: a model that can describe the
context-of-use for an interactive system. In
AMI environment, systems are no longer
bound to a single place and situation, the
designer should be able to define the
possibilities to execute the task represented
by UI while taking into account constraints
posed by the user’s environment. E.g. a
context model could specify a set of
external parameters that can influence the
appearance, usage, modality,… of an
interactive system. This model is the least
explored, but becomes increasingly
important in modern interactive systems.
The remainder of this paper is structured as
follows: The next section gives an
overview of previous work section 3
introduces the user interface description
language: UsiXML , Section 4 presents the
proposed framework for a design and
runtime architecture, finally section 5

 ٣

concludes the paper and puts forward some
of the future work.

2. Previous work
If we take the definition of MBUID as a
set of models, Mastermind [19]; is one of
the first projects to generate a user
interface by combining different models; it
used the presentation, application and
dialog models to automatically generate
the user interface [18][20].
Trident (Tools foR an Interactive
Development EnvironmeNT) is a model-
based system to create an interactive
system. [21][22]. It was one of the first
design tools that recognized the
importance of a clear separation between
an abstract representation of the
presentation model and a concrete
representation thus supporting a multitude
of interaction style alternatives for the
same functional core. It also integrated
task analysis as an important component to
create a usable interface. Together with
DON; which is an earlier tool supporting
the domain model and integrates the
presentation model in its design
methodology; Trident can be considered to
be one of the first “complete” Model-
Based User Interface Development
Environments that where available.
Tadeus (Task Analysis/Design/End User
Systems) is a Model-Based User Interface
Development environment that focuses on
a user model, a task model, a domain
model, a dialog model and later an
interaction model was added [23].
Mobi-D is a model-based integrated
development environment that combines
several declarative models and assists the
user interface designers with the creation
of these models and with the decisions
they will have to make during the design of
the user interface [1]. Mobi-D offers a
complete design cycle with a set of tools,
and supports iterative refinements in the
design of the user interface. Mobi-D
works task driven.
Teresa (Transformation Environment for
interactive Systems representAtions) [3,13]
and Dygimes (DYnamically Generating
Interfaces for Mobile and Embedded

Systems) [2], none of the aforementioned
tools addressed the design of interactive
system deployed for AMI environment,
most recent work in this area focus in a
subtopic, Luyten et.at [24] presented an
approach to take context switching
explicitly into account in the task and
dialog model by inserting decision tasks in
the task model, Georgantas and Issarny
show a functional approach towards
modeling a situation sensitive user
interface in [29]. Just as in the ICrafter [30]
introduced a service framework for user
interface services. is created. Most of this
work reflects the need for some kind of
unified framework to design and develop
the interactive part of a computing system
that is deployed in an ambient intelligent
environment. However, there is no design
support to constrain the dynamic behavior
of these systems so the resulting user
interface is usable and still supports the
envisioned tasks depending on the
situation.

3. Choosing a User Interface

Description Language
To support the design and development of
Multi-device Multi-modal user interfaces
we propose to use UsiXML HLUIDL [10],
This choice is based on the coverage of
most needed models to support AMI and
multi-modal UIs; UsiXML structured
according to four basic levels of
abstractions defined by the Cameleon
reference framework, (Fig.1).[13].
UsiXML relies on a transformational
approach that progressively moves from
the Task and Concept level to the Final
User Interface and the steps of the
transformational approach define in a
comprehensive way their logic and
application [10] this transformational
methodology allows the introduction of
new development sub-steps, thus ensuring
the possibility to explore alternatives for
each sub-step and to add new ones, also
Usixml support modality independence by
describing the abstract UI level as
independent of any specific modality. [12].

 ٤

Figure 1: The Cameleon reference framework for

multi-target UIs.

Figure 1 outlines the MDE-compliant
approach for developing UIs decomposed
into four major steps that result from the
Cameleon Reference Framework:
1) Task and domain modeling
(corresponding to the Computing-
Independent Model –CIM– in MDE): It
models the end user’s task, the objects
manipulated by application and the context
of use (user, platform, and environment).
This step is supported by IdealXML
[14,15], which models the task model in
ConcurTaskTrees (CTT) [13] notation.
2) Abstract User Interface
(corresponding to the Platform-
Independent Model –PIM– in MDE): this
level describes the UI independently of any
interaction modality and any
implementation technology it considered
as an abstraction of a CUI with respect to
interaction modality (e.g., graphical
interaction, vocal interaction, speech
synthesis and recognition, video-based
interaction, virtual, augmented or mixed
reality). It defines how UI Abstract
individual components are grouped into set
of Abstract Containers [10].
3) Concrete User Interface
(corresponding to the Platform-Specific
Model –PSM– in MDE): this level
describes a potential user interface after a
particular interaction modality has been
selected (e.g., graphical, vocal,
multimodal). This step is supported by
several tools helping designers and
developers to edit, build, or sketch a user
interface only for graphical user interfaces

for example the UsiXML tool GrafiXML
[16]. It concretizes an abstract UI for a
given context of use into Concrete
Interaction Objects (CIOs) so as to define
widgets layout and interface navigation.
4) Final User Interface (corresponding to
the code level in MDE): this level is
reached when the code of a user interface
is produced from the previous levels. This
code could be either interpreted or
compiled. We hereby define a rendering
engine as a software component (or set of
components) that are able to interpret a
UsiXML file expressed at the CUI level
and to run it or a code compiler that (semi -
automatically generate code from a
UsiXML file expressed at the CUI level.

3.1 MODELS in UsiXML:
Before examining closely how MBUID
and UsiXML can support AMI for people
with disabilities, let us consider the models
supported by UsiXML. UsiXML is a
collection of models for specifying a UI,
some of them being used to support a
particular level, some other being used to
support a transition from one level to
another.
• Task model: is a model describing the
interactive task as viewed by the end user
interacting with the system.
This model uses the ConcurTaskTrees
(CTT) by Fabio Paterno, this notation is
the most usable and modern specification
notation used for task modeling. It
provides a graphical syntax, an hierarchical
structure and a notation to specify the
temporal relation between tasks, an
example of CTT task model is shown in
figure 2. With this notation, tasks can be
classified into four categories: abstract

tasks ,interaction tasks ,user

tasks and application tasks .
Tasks at the same level can be can be
connected by temporal operators like
choice ([]), independent concurrency (|||),
concurrency with information exchange
(|[]|), disabling ([>) , enabling (>>),
enabling with information exchange
([]>>), suspend/resume (|>) and order
independence (|=|). The precedence of

 ٥

these operators from highest to lowest are:
[] > {|||, |[]|}> {[>,|>} > {>>,[]>>} [28].

Figure 2.Simple Example of CTT Task Model

• Domain model: is a description of the
classes of objects manipulated by a user
while interacting with a system.
• Mapping model: is a model containing a
series of related mappings between models
or elements of models.
• auiModel: An Abstract User Interface
(AUI) model is a user interface model that
represents a canonical expression of the
renderings and manipulation of the domain
concepts and functions in a way that is as
independent as possible from modalities
and computing platform specificities. An
AUI is populated by Abstract Interaction
Objects and Abstract user interface
relationships. Abstract Interaction Objects
(AIO) may be of two types: Abstract
Individual Components (AIC) and Abstract
Containers (AC). An Abstract Individual
Component is an abstraction that allows
the description of interaction objects in a
way that is independent of the modality in
which it will be rendered in the physical
world. An AIC may be composed of
multiple facets. Each facet describes a
particular function an AIC may endorse in
the physical world.
• cuiModel: A Concrete User Interface
(CUI) model is a UI model allowing a
specification of an appearance and
behavior of a UI for a given context of
uses. A CUI model is composed of
Concrete Interaction Objects (CIO) and
concrete relationships, which realize an
abstraction of widgets sets found in
popular graphical and vocal toolkits (e.g.,
Java AWT/Swing, HTML 4.0, Flash
DRK6, Voice-XML, and VoxML).
Concrete interaction objects can be further
decomposed of concrete graphical objects

and concrete vocal objects. A CIO is
defined as an entity that users can perceive
and/or manipulate (e.g., push button, text
field, check box, vocal output, vocal input,
vocal menu). The CUI abstracts a Final UI
in a definition that is independent of
programming toolkit, concrete interaction
objects and relationships are further
refined into graphical objects and
relationships and auditory objects and
relationships at the final UI level.
• Transformation model: Transformation
from one model to another, except from
the FUI level.
• Context model: The context model
consists of three submodels: a user model,
an environment model and a platform
model:
− The user model decomposes the user
population into user stereotypes, described
by attributes such as the experience with
the system or with the task, the motivation,
etc.
− The environment model describes any
property of interest of the global
environment where the interaction takes
place. The properties may be physical
(e.g., lighting or bandwidth conditions) or
psychological (e.g., level of stress).
− The platform model captures relevant
attributes related the combination of
hardware and software where the user
interface is intended to be deployed (e.g
PDA with MacOS).
There are five goals that can be considered
in MBUID to support AMI[17][2]
Challenge 1: Task-Centered Interfaces
Challenge 2: Multi-Platform Support
Challenge 3: Interface Tailoring
Challenge 4: Multi-Modal Interfaces
Challenge 5: Context-Sensitive Interfaces
The first challenge, have been tackled
already by UsiXML support using CTT to
describe the task model. The third
challenge is implicitly tackled by the way
the CUI is defined. In this paper we focus
on the other three challenges (2 ,4 and 5),
more specifically Context sensitive
interfaces because it’s the core in an AMI
area.

 ٦

4. The Proposed Design and
Generation Process:
We propose a framework to support the
creation of context sensitive Multi-device
multi-modal user interfaces, our method
relies on the separation of concepts, in this
way changing any sub-model of the
context model, will not change the
application code, only the user interface
presented to the user will change according
to change in context. We propose a
reification schema of context information
based on transformations, figure 3.
We added enhancements to the current
modes to cope with the change of context
at run time, so models have to be dynamic
instead of static, our focus is strict to the
context model, for the context model to be
dynamic we introduce two new objects,
Abstract Context Objects (ACO) and
Concrete Context Objects (CCO), these
two types of objects are analogue to AIC
and CIC of UsiXML, these objects will
support the link of environment changes to
navigation and presentation of the user
interface.
In summary the proposed design process
consists of the following steps:
Step1: Create the dynamic task model
based on CTT. The current version of the
tool models how the goal of the user is
reached by set of tasks but does not
support modeling dynamic context
changes, since in an AMI environment the
execution of the task is highly dependent
in the situation of the user and the
environment in which the task is executed,
and to link the task model with the abstract
user interface model which incorporates
abstract context objects; At this design step
the actual (concrete) context is not known
so we will model the context in an abstract
way using Abstract context objects, here
the task model is not a single tree, set of
trees each represents a single context, by
filtering the tasks according to the context
they are supported by, for example a task
showing a map will be removed for
abstract context with a device with low
resolution, or a user with disability.
Step 2: For every possible task tree
calculating the abstract dialog model

which finds out the set of presentation
units that can be presented to the user at
the same time then calculating the
transitions between them , this step will
find out multiple dialog models each
model represents a context of use, Two
types of transitions will be calculated:

1. Intra dialog transitions: transitions
between presentation sets for one
context of use.

2. Inter dialog transitions: transition
from a dialog model of one context
of use to another dialog of a
different context of use. This model
represents a transformation step
from one context to another in the
AMI environment and can be done
by the designer to model all
expected transition constraints by
the user or the context change.

A method like finding the enabled task sets
by Luyten et.al. [32] can be extended to
find multiple dialogs, the current AUI in
UsiXML does not support dynamic
environment changes and calculated the
AUI by mapping non leaf tasks of the task
model to abstract containers and leaf tasks
to abstract individual components giving
nested so it restricts the navigation and
presentation of the user interface according
to task level in the tree, while in an AMI
environment tasks may no longer belong to
the same Abstract Container due to the fact
that some of the tasks cannot be performed
in the current(dynamic) situation of the
task, consider three tasks t1,t2 and t3 they
belong to the same Abstract Container and
according to their algorithm(which uses
Luyten's algorithm [32] for calculating
presentation); if the user at run time is in
an environment or the device he is using
does not support the execution of task t1,
then only t2 and t3 will be mapped to the
same abstract container, unless they
exchange information with t1.
Step 3: map the AUI to a CUI using set of
transformations, this model is modality
dependent.
Step 4: the CUI is reified by the final user
interface by a rendering engine that
customize the UI according to the toolkit
on the target device, the final user interface

 ٧

is also dynamic, and affected by context change as detected by the sensors.

Step 1

Step 2

 Mapping

 Mapping
Step 3

 Mapping

Step 4

Figure 3: a design process supported by a dynamic environment model

A runtime architecture is needed to support
the dynamic UI, at run time the change in
environment is carried by the Context

Control Unit (CCU), which gets the
change of physical environment context
from the sensors and according to the

Dynamic Task
Model

Context
Detection &
Control Unit

Transformation Approach

Abstract Dialog
Model

Dynamic Abstract
User Interface

Abstract Context
Model

Transformation Approach

Concrete Dialog
Model Concrete User

Interface

Concrete Context
Model

Transformation Approach

Final User
Interface Physical Environment

Sensors

 ٢

current change will call for repeat the
mapping of CCO to ACO, since the task
model contains multiple trees, each
represents an abstract context, the
condition detected by CCU has to be
fulfilled by an abstract context model,
which selects the appropriate tree. This
transformation will affect the navigation
and accordingly the presentation of the
user interface. So a recomputaion of the
dialogue model will take place.
Notice that a dynamic dialog model is
needed which automatically generates the
dialog by step-wise reification process, this
can be done by a method similar to the one
in [31], once the concrete user interface
has been specified the final user interface
step 4, can be generated by compilation or
interpretation of the UsiXML code to the
target platform.

5. Conclusion
We have presented a framework and
proposed design process and runtime
architecture to support the creation of
multi-device multi-modal and context-
sensitive user interfaces. We believe this
work can be an incentive for reconsidering
the model-based user interface
development approaches to enable the
design of user interfaces in an AMI
environment, specifically by changing the
nature of models from static to dynamic.
The dynamic models can reflect the
context change, and a step-wise reification
is used to derive a final user interface.
The context change is controlled by the
context control unit which abstracts the
context, and a new reification process is
followed to derive a new final interface
suitable for the new context.
The approach presented is duly based on
the clear separation of the context model
and dialog from other components of the
user interface. Such as separation presents
several advantages such as it improves the
readability of models and supports reuse of
specifications also management of context
change according to different design
choices.
This method is clearly based on open
standards like UsiXML which make it

possible to assemble UI elements built
with different tools.
Context switches as proposed can only
affect the UI where the designer wants the
UI to change by considering a fixed set of
abstract contexts; a more general method is
needed to identify context specification.
Also suitable transformation system is
needed to cope with the dynamic nature of
the models.

References
[1] Puerta A. ,”A model-based interface
development environment,” IEEE
Software., pp. 40–47, 1997.

[2] Coninx, K., Luyten, K., Vandervelpen,
C., Van den Bergh, J.and Creemers,
“Dygimes: Dynamically Generating
Interfaces for Mobile Computing Devices
and Embedded Systems,“ Mobile HCI,
volume 2795 of Lecture Notes in
Computer Science, pp. 256–270, Springer,
2003.

[3] Mori G., Paterno F. and Santoro C.,
“Design and Development of Multi Device
User Interfaces through Multiple Logical
Descriptions,” IEE Transactions on
Software Engineering, Vol.30, No. 8,
2004.

[4] Clerckx T. Winters F. and Coninx K.,
“Tool Support for Designing Context
Sensitive User Interfaces using a Model
Based Approach,” Proceedings of the 4th
international workshop on Task models
and diagrams TAMODIA '05, ACM Press,
2005.

[5] World Wide Web consortium, Useware
Markup Language
http://www.uni-kl.de/pak/useML/

[6] Puerta, A., Eisenstein, J., XIML: A
Universal Language for User Interfaces.
2001, RedWhale Software.

[7] World Wide Web consortium, Interface
Specification Meta Language,
http://decweb.bournemouth.ac.uk/staff/scr
owle/ISML/

http://www.uni-kl.de/pak/useML/
http://decweb.bournemouth.ac.uk/staff/scr

 ٣

[8] World Wide Web consortium, User
Interface Markup Language,
http://uiml.org

 [9] World Wide Web consortium,
Renderer Independent Markup Language,
http://www.consinsus-online.org

[10] Limbourg, Q., Vanderdonckt, J.,
Michotte, B., Bouillon, L. and López-
Jaquero, V., USIXML: a Language
Supporting Multi-Path Development of
User Interfaces. Proc. Of 9th IFIP
Engineering Human Interaction and
Interactive Systems, 2004.

[11]TERESA:
http://giove.cnuce.cnr.it/teresa.html
Paterno, F., Santoro, C.: One Model, Many
Interfaces. In Proc .of the Fourth
International Conference on Computer-
Aided Design of User Interfaces, pp. 143-
154. Kluwer Academics Publishers, 2002.

[12] Stanciulescu, A., Limbourg, Q.,
Vanderdonckt, J., Michotte, B., Montero,
F., A Transformational Approach for
Multimodal Web User Interfaces based on
UsiXML, Proc. of 7th Int. Conf. on
Multimodal Interfaces ICMI'2005 (Trento,
4-6 October, 2005), ACM Press, New
York, 2005, pp. 259-266.

[13] World Wide Web consortium,
ConcurrentTaskTrees
http://giove.cnuce.cnr.it/ctte.html

[14] Montero, F., Víctor López Jaquero,
V., Vanderdonckt, J., Gonzalez, P.,
Lozano, M.D., Limbourg, Q., Solving the
Mapping Problem in User Interface Design
by Seamless Integration in IdealXML,
Proc. of 12th Int. Workshop on Design,
Specification, and Verification of
Interactive Systems DSV-IS'2005,
Springer-Verlag, Berlin, 2005, pp. 161-
172.

[15] Montero, F., Lozano, M.D., González,
P., IdealXML: an Experience-Based
Environment for User Interface Design and

pattern manipulation, Technical report
DIAB-05-01-4, University of Castilla-La
Mancha, Albacete, 24 January 2005

[16] Michotte, B., Vanderdonckt, J.,
GrafiXML, A Multi-Target User Interface
Builder based on UsiXML, Proc. of 4th
International Conference on Autonomic
and Autonomous Systems ICAS’2008
(Gosier, 16-21 March 2008), IEEE
Computer Society Press, Los Alamitos,
2008.

[17] Szekely P., Luo P. and Neches R. ,”
Facilitating the Exploration of Interface
Design Alternatives: the HUMANOID
model of interface design,” In CHI, pp.
507–515, 1992.

[18] Stirewalt K., ”Automatic Generation
of Interactive Systems from Declarative
Models,” PhD thesis, Georgia Institute of
Technology, 1997.

[19] Szekely A. P., Sukaviriya N. P.,
Castells P.,Muthukumarasamy J. Salcher
E., “Declarative Interface Models for User
Interface Construction Tools: The
MASTERMIND Approach,” In EHCI, pp.
120–150, 1995.

[20] Stirewalt K. and Rugaber S.
,“Automating User-Interface Generation
by Model Composition,” In Proceedings of
the IEEE International Conference on
Automated Software Engineering , 1998.

[21] Francois B., Hennebert A., Leheureux
J. and Vanderdonckt J, “ Towards a
Dynamic Strategy for Computer-Aided
Visual Placement,” In Workshop on
Advanced Visual Interfaces, pp. 78–87.
ACM press, 1994.

[22] Vanderdonckt J. and Bodart F.,
”Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection.
In ACM Conference on Human Aspects in
Computing Systems InterCHI’ 93, pp.
424–429. Addison Wesley, 1993.

http://uiml.org
http://www.consinsus-online.org
http://giove.cnuce.cnr.it/teresa.html
http://giove.cnuce.cnr.it/ctte.html

 ٤

[23] Forbrig P. and Stary C., “From Task
to Dialog: How Many and What Kind of
Models do Developers Need,” CHI’98
workshop, 1998.

[24] Clerxkx, T.; Luyten K.; Conix, K.:
DynaMo-AID: a Design Process and a
Runtime Architecture for Dynamic Model-
Based User Interface Develoment, Proc.
EHCI-DSVIS’04, p. 142-160, 2004.

[25] Stanciulescu, A., Vanderdonckt, J.,
Design Options for Multimodal Web
Applications, Proc. of 6th Int. Conf. on
Computer-Aided Design of User Interfaces
CADUI'2006 (Bucharest, 6-8 June 2006),
Chapter 4, Springer-Verlag, Berlin, 2006,
pp. 41-56.

[26] Stanciulescu, A., Limbourg, Q.,
Vanderdonckt, J., Michotte, B., Montero,
F., A Transformational Approach for
Multimodal Web User Interfaces based on
UsiXML, Proc. of 7th Int. Conf. on
Multimodal Interfaces ICMI'2005 (Trento,
4-6 October, 2005), ACM Press, New
York, 2005, pp. 259-266.

[27] Vanderdonckt J. , Mendonca1 H., and
Molina J. Distributed user Interfaces in
ambient Envirinment, AMI 2007
workshop, Springer 2008 pp 121-130

[28] Vanderdonckt, J., Mendonça, H.,
Molina Massó, J.P., Distributed User
Interfaces in Ambient Environment, Proc.
of AmI-07 Workshop on “Model Driven
Software Engineering for Ambient
Intelligence Applications” MDA-AMI’07
(Darmstadt, November 7-10, 2007),
Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2007, pp. 44

[29] Nikolaos Georgantas and Val´erie
Issarny, User activity synthesis in ambient
intelligence environments.

[30] Shankar Ponnekanti, Brian Lee,
Armando Fox, Pat Hanrahan, and Terry
Winograd. ICrafter: A Service Framework
for Ubiquitous Computing Environments.
In Ubicomp 2001: Ubiquitous Computing,

Third International Conference Atlanta,
Georgia, USA, September 30 - October 2,
2001, Proceedings, Lecture Notes in
Computer Science, pages 56–75. Springer,
2001.

 [31] Winckler M., Vanderdonck J.,
Stanciulescu A. and Trindade F.,
cascading dialog modeling with UsiXML,
DSVIS 2008, LNCS 5136, pp. 121–135,
2008., Springer-Verlag Berlin Heidelberg
2008.

[32] Luyten, K., Clerckx, T., Coninx, K.,
Vanderdonckt, J.: Derivation of a Dialog
Model from a Task Model by Activity
Chain Extraction. In: Jorge, J.A., Jardim
Nunes, N., Falcão e Cunha, J. (eds.) DSV-
IS 2003. LNCS, vol. 2844, pp. 203–217.
Springer, Heidelberg, 2003.

