
 
 
 
 
 

Evolutionary System 
Induction through Multi 

Agent Algorithm 
 
Dr. Nada M. A. Al Salami 
E-mail: dr_nada71@yahoo.com 

Abstract  
This research solves system 

induction problems by using 
multi agent technique. System’s 
specifications are used to direct 
solution space. Such 
specification gives system 
behaviors rather than its 
structure. Finite State 
Automata are constructing in 
terms of input(s), state, and 
output(s. The evolutionary 
process adapts Ant Colony 
Optimization algorithm to 
search for a good Finite State 
Automata that efficiently 
satisfies input output 
specifications of the problem.  

 
 
Keywords: Evolutionary 

Computation; ACO; Multi 
agent; System theory. 
 
 
 
 
 

 
 
 
I. Introduction 
The main idea is to use the self-
organizing principles to coordinate 
populations of artificial agents that 
collaborate to solve computational 
problems. Self-organization is a set of 
dynamical mechanisms whereby 
structures appear at the global level of 
a system from interactions among its 
lower-level components. The rules 
specifying the interactions among the 
system’s constituent units are executed 
on the basis of purely local 
information, without reference to the 
global pattern, which is an emergent 
property of the system rather than a 
property imposed upon the system by 
an external ordering influence. For 
example, the emerging structures in the 
case of foraging in 
ants include spatiotemporally 
organized networks of pheromone 
trails. Self-organization relies on four 
basic ingredients [1][2]]: 
1. Positive feedback (amplification) is 
constituted by simple behavioral rules 
that promote the creation of structures. 
 
2. Negative feedback counterbalances 
positive feedback and helps to stabilize 
the collective pattern: it may take the 
form of saturation, exhaustion, or 
competition.  
3. Self-organization relies on the 
amplification of fluctuations (random 
walks, errors, random task-switching).  
 
4. All cases of self-organization rely on 
multiple interactions. They should be 
able to make use of the results of their 
own activities as well as others’ 
activities. 
When a given phenomenon is self-
organized, it can usually be 
characterized by a few key properties 
[3][4]: 

mailto:dr_nada71@yahoo.com


1. The creation of spatiotemporal 
structures in an initially homogeneous 
medium. Such structures include nest 
architectures, foraging trails, or social 
organization.  
2. The possible coexistence of several 
stable states (multi stability). Because 
structures emerge by amplification of 
random deviations, any such deviation 
can be amplified, and the system 
converges to one among several 
possible stable states, depending on the 
initial conditions.  
3. The existence of bifurcations when 
some parameters are varied. The 
behavior of a self-organized system 
changes dramatically at bifurcations.  
  

Ant Colony Optimization 
(ACO) is a population-based approach 
for solving combinatorial optimization 
problems that is inspired by the 
foraging behavior of ants and their 
inherent ability to find the shortest path 
from a food source to their nest. ACO 
is the result of research on 
computational intelligence approaches 
to combinatorial optimization 
originally conducted by Dr. Marco 
Dorigo, in collaboration with Alberto 
Colorni and Vittorio Maniezzo. The 
fundamental approach underlying 
ACO is an iterative process in which a 
population of simple agents repeatedly 
construct candidate solutions; this 
construction process is 
probabilistically guided by heuristic 
information on the given problem 
instance as well as by a shared memory 
containing experience gathered by the 
ants in previous iteration. ACO has 
been applied to a broad range of hard 
combinatorial problems. Problems are 
defined in terms of components and 

states, which are sequences of 
components. Ant Colony Optimization 
incrementally generates solutions paths 
in the space of such components, 
adding new components to a state. 
Memory is kept of all the 
observed transitions between pairs of 
solution components and a degree of 
desirability is associated to each 
transition depending on the quality of 
the 
solutions in which it occurred so far. 
While a new solution is generated, a 
component y is included in a state, 
with a probability that is proportional 
to the desirability of the transition 
between the last component included 
in the state, and y itself [4].  
 
II. Theoretical Definition  

We propose theoretical model 
is purports to describe the behavior 
of a program in terms of input(s), 
states, and output(s). Proposed 
method shares some feature with 
two of the main approaches to 
system analysis: data flow, and 
control flow. It equates what a 
system means with what it does. 
The meaning of system  S can be 
specified by set of functions from 
states to states; hence S effects a 
transformation: 

(S) X 
in i t ia l   X 

f i n a l  
on a state vector X, which 

consists of an association of the 
variable manipulated by the 
system  and their values, thus it’s 
length equal to the number of 
system variables. Two features 
characterize state transition function  z: 
 
1-  z ( -, -, t) =  ( Xinitial, 1),    



  if t = 0 
2- z ( f, X, t) = z ( f, z ( f(t-1), X, t-1))
          if t ≠ 0 
 
To execute system S,  t ransit ion 
funct ions are firing start ing 
from, t  = 0.  Execut ion terminate 
when t > T. The concept s o f 
reusable parameter ized 
subsyst ems can be implemented 
by restricting the transition 
functions of the main system, so 
that it has the ability to call and 
pass parameters to one or more 
such sub-systems. Suppose we 
have sub-system 'P, and main-
system P, then they can be defined by 
the following 9-tuples: 
*f is a special function we call it 
sub-SFSA function to distinguish it 
from other primitive functions in 
the set F. Also, we call the sub-
system •S, sub-SFSA, to 
distinguish it  from the main 
SFSA. Formally, a system •S is a 
sub-system of a system S, iff: •x 
⊆  x,  •T ⊆  T, •I  ⊆  I,  •O  ⊆  O, •γ 
must  be the rest rict ion of γ to  •O ,  
and •F ⊆  N ,  where N  is the set  of 
restrictions of F to •T. If (•f, •X, 
•t) is an element of •F × •X  × •T, 
then there exists f Є F, such that the 
restriction of  f  to •T is •f, and •z (•f, 
•X, •t) is z (f, X, t). 

The idea of recursive 
function could be simply applied 
with the proposed method using 
mathematical induction. The 
principle of mathematical 
induction can be used to construct 
system as well as proofs. 
Consider the following definition 
of the recursion function fr, which is 
highly reminiscent of proofs by 
mathematical induction: 
  
 
 
1. Input-Output Specification 

(IOS):  
An IOS is a modification 
for input-output 
specification used with 
system design theory (see 
Ref. [5]). IOS is 
establishing the input-
output boundaries of the 
system. It describes the 
inputs that the system is 
designed to handle and the 
outputs that the system is 
designed to produce. An 
IOS is not a system, but it  
determines the set of all 
systems that satisfy the IOS. 
It is a 6-tuples: IOS = (T, I, O, 
Ti, To, η). Where T, is the 
time scale of IOS, I is the set 
of inputs, O is a set of outputs, 
Ti is a set of input trajectories 
defined over T, with values in 
I, T,, is a set of output 
trajectories defined over T, 
with values in O, and η is a 
function defined over Ti 
whose values are subset of 
To; that is, η matches with 
each given input trajectories 
Ti the set of all output 
trajectories that might, or 
could be, or eligible to be 
produced by some systems 
as output, experiencing the 
given input trajectory Ti. A 
system P satisfies IOS if 
there is a state X of P, and 
some subset U not empty of 
the time scale T of P, such 
that for every input 
trajectory g in Ti, there is an 
output trajectory h in To 
matched with g by η such 
that the output trajectory 
generated by S, started in 
the state X . 
 
III. Ant Colony Algorithm for 
System Induction  



 A combinatorial optimization 
problem is a problem defined over a 
set C = c1, ......, cn of basic 
components. A subset S of components 
represents a solution of the problem; F 
⊆ 2C is the subset of feasible solutions, 
thus a solution S is feasible if and only 
if S ∈ F. A cost function z is defined 
over the solution domain, z : 2C 
à R, the objective being to find a 
minimum cost feasible solution S*, 
i.e., to find S*: S* ∈ F and z(S*) 
≤ z(S), ∀S∈F [8]. Given this, the 
functioning of an ACO algorithm can 
be summarized as follows (see also 
[9]). A set of computational concurrent 
and asynchronous agents (a colony of 
ants) moves through states of the 
problem corresponding to partial 
solutions of the problem to solve. They 
move by applying a stochastic local 
decision policy based on two 
parameters, called trails and 
attractiveness. By moving, each ant 
incrementally constructs a solution to 
the problem. The ACO system 
contains two rules: 

1. Local pheromone update rule, 
which applied whilst 
constructing solutions. 

2. Global pheromone updating 
rule, which applied after all 
ants construct a solution. 

 Furthermore, an ACO algorithm 
includes two more mechanisms: 
trail evaporation  

and, optionally, daemon actions. Trail 
evaporation decreases all trail values 
over time, in order to avoid unlimited 
accumulation of trails over some 
component. Daemon actions can be 
used to implement centralized actions 
which cannot be performed by single 
ants, such as the invocation of a local 
optimization procedure, or the update 
of global information to be used to 
decide whether to bias the search 
process from a non-local perspective 
[6]  

At each step, each ant 

computes a set of feasible expansions 
to its current state, and moves to one of 
these in probability. The probability 
distribution is specified as follows. For 
ant k, the probability of moving from 
state t to state n  depends on the 
combination of two values [7][8]: 

• the attractiveness of the move, 
as computed by some heuristic 
indicating the priori desirability 
of that move; 

•  the trail level of the move, 
indicating how proficient it has 
been in the past to make that 
particular move: it represents 
therefore an a posteriori 
indication of the desirability of 
that move. 

 
Following this general ant 

colony optimization procedure, the 
problem of system induction is solved. 
In the proposed algorithm a colony of 
ants moves through system states X 
={Xinitial, …….., Xfinal}.They move by 
applying the transition function Z, as 
defined in section II. This transition is 
policy based on two parameters, called 
trails and input-output specifications of 
the problem, i.e. data trajectory sets. 
By moving, each ant incrementally 
constructs a solution to the problem, in 
other words construct the 
transformation: 

(S) X 
in i t ia l              X 

f i n a l  
In the initial iteration of ACO 
algorithm, all ant begin from X 

in i t i a l ,   
and randomly move to each possible 
system states, as shown in figure:1. 
The number of system states in ACO 
depends on the number of system 
variables: 2x. In the rest iterations, each 
ant use, it’s memory to move from it’s 
current stat to next state may be any of  
2x  states including itself, i.e. loop 
state. System states change by 
applying z ЄZ, where:  z (f, X, t) = 
(•X, •t). These mean when ant move, 
system state and time are changed, 



outputs are produced as the type of 
readout function. In the next section, 
an example is given where mealy 
readout function is used, thus outputs 
are produced in the target states.   
During ants’ movements, trails are 
always modified toward satisfying 
input-output specifications. When an 
ant complete a solution, or during the 
construction phase, it evaluate the 
solution and modify the trail value on 
the components used in its solution. 
This pheromone information will 
direct the search of the future ants.    
 
 
Algorithm 
 An ACO consists of two main 
sections: initialization and a main 
loop. The main loop runs for a user-
defined number of iterations. These are 
described below: 
 ♦Initialization: 
  a. Set initial 
parameters that are system:     
  b. Set initial 
pheromone trails value. 
 ♦While termination conditions 
not meet do  
  a. Construct Ant 
Solution: 
  b. Apply Local Search 
  c. Best Tour check: 
  d.  Update Trails  
 End While 
 
 

                  
 

 
 

 
 
 
 
          
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Initial Iteration ACO 

Algorithm. 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Xinitia

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 

Xn 

X2 X1 X3 

Xinitial 
 

 

 

 

 

 

 
 

 

 
 

 

 

Figure 3: Final Solution of ACO Algorithm. 



 
References: 
[1] J. Holland, “Adaptation in Natural 
and Artificial Systems”, Ann Arbor: 
University of Michigan Press, 1975. 
[2] George Rzevski, Petr Skobelev, 
“Emergent Intelligence in Large Scale 
Multi- Systems”, International  Journal 
of  Education and Information 
Technology Issue 2, Volume 1, 2007 
64, 
http://www.naun.org/journals/educatio
ninformation/eit-11.pdf. 
[3] Michae J.  Wooldridge, “Multi 
Agent Systems”, john wiley sons Ltd,  
2002. 
[4] Nicholas R. Jennings, and Michael 
J. Wooldeidge, “Agent Technology”, 
UNICOM, 2002. 
[5] M. Dorigo, M. Birattari, and T. 
Stitzle, “Ant Colony Optimization: 
Arificial Ants as a Computational 
Intelligence Technique, IEEE 
computational intelligence magazine, 
November, 2006. 
[6]  A. W. Wymore, “Theory of 
System”, Handbook of Software 
Engineering, CBS Publishers, pp. 119-
133, 1986. 
[7] Nada M. A. AL-salami, Saad 
Ghaleb Yaseen, “Ant Colony 
Optimization”, IJCSNS International 
Journal of Computer Science and 
Network Security, VOL.8 No.6, pp 
351-357, June,  2008 
 [8] M. Dorigo, T. Stützle. “The ant 
colony optimization metaheuristic: 
Algorithms, applications and 
advances”, in F. Glover and G. 
Kochenberger, editors, Handbook of 
Metaheuristics, Kluwer Academic 
Publishers, To appear in 2002. 
 
.  
 
 
 

 

 

5, 5 

http://www.naun.org/journals/educatio

