
Modular Exam Scheduling using Genetic Algorithm

Dua’ Saadeh
Department of Computer Science, University of Jordan, Amman, Jordan

 Doaa.saadah@ju.edu.jo

Basel Abu-Jamous
Department of Computer Engineering, University of Jordan, Amman, Jordan

 bwaaj2002@hotmail.com

Fahad Mustafa, Muath Al-Hijjawi
Department of Computer Science, University of Jordan, Amman, Jordan

 fahadali1989@hotmail.com, muhejjawi27@hotmail.com

ABSTRACT

Automated scheduling is considered to be one of the most challenging problems because it is
very demanding in regards of performance and because of the existence of various methods to
solve this problem. In this paper a solution to solve this problem by using a genetic algorithm
re-enforced by a production system, although very performance demanding; this method
allows for very good exam schedules to be generated.

Keywords: genetic algorithm, scheduling, distributed, production systems

1. Introduction
One of the problems in universities is
building exams schedules. This problem is
commonly named Modular Exam
Scheduling Problem (MESP) [6].
Scheduling exam’s time and place usually
takes care of available rooms, supervisors
and students’ conflicts with other exams.
This problem gets bigger and bigger as the
number of courses and students increases
[1,8,9]. Some problems that arise when
building an exams schedule are:

• Invalid cases:
1. One supervisor supervises

on two rooms at the same
time.

2. One course exam sessions
held in different time slots.

3. One course exam has no
time to be held.

• Valid cases with serious problems:
1. One student has more than

one exam at the same time.

2. One course exam which
belongs to a faculty is held
in a different faculty room.

3. One supervisor which
belongs to a faculty
supervises on a room of
different faculty.

• Valid cases with acceptable
problems:

1. One student has two exams
at the same day.

2. Unbalanced distribution of
supervisors.

3. Long term timetable.

After taking a look on Previously designed
systems[2,3,4], they all try to solve this
problem using straightforward genetic
algorithms, although genetic algorithms are
considered to be a good method to solve
these kinds of problems, they are slow and
very performance demanding.

mailto:Doaa.saadah@ju.edu.jo
mailto:bwaaj2002@hotmail.com
mailto:fahadali1989@hotmail.com
mailto:muhejjawi27@hotmail.com

The method proposed for solving this
problem is also performance demanding
but the difference is that we use production
systems side by side with genetic
algorithms. The use of production systems
every few generations gives a significant
boost to overall fitness of the schedule
which reduces the amount of generations
needed. We also differ from the previous
approaches by:

• Taking more details into
consideration regarding the
scheduling process.

• Using production systems to fine
tune the produced schedules in all
its production phases.

• Using an accurate fitness function
that reflects the actual status of the
schedule as much as possible.

1.1 The genetic algorithm
It is an algorithm that imitates the
biological reproduction operation. Every
organism has a set of rules, describing how
that organism is built up from the tiny
building blocks of life. These rules are
encoded in the genes of an organism,
which in turn are connected together into
long strings called chromosomes [5, 6, 7].

The philosophy behind this algorithm is:

Initially, we have random group of
suggested instances of objects. The quality
of these initial objects is too low because
of the nature of the random process that
generates them.

Each individual of that objects is called a
chromosome. The group of the
chromosomes on which the GA is applied
is called the population.

Each chromosome (object) has many
characteristics and properties that
distinguish it. Each one of them is called a
gene. In other words: We have a
population of chromosomes, each
chromosome consists of a group of genes
that make it distinctive.

According to the nature of the problem, a
fitness value is given to each chromosome.
It represents the quality of that
chromosome. Calculating the fitness is
very important and sensitive and strict
process. A better fitness function a better
solution.

The steps that we may follow to apply
genetic algorithms:

1. Specify your problem, defining
your chromosome and gene.
And decide what values a gene
would take.

2. Create your initial population.
This population is a set of
chromosomes that are randomly
created. The number of these
initial chromosomes depends on
the nature of the problem and
on the abilities of the
performing computer.

3. The fitness function: Put the
fitness function which gives a
chromosome a value depending
on its quality (how much this
chromosome satisfies
conditions).

4. Crossover: It is an operation
that is done between two
chromosomes.

a. Select two random
chromosomes from the
population.

b. Select a random point
within the chromosome.

c. Divide both
chromosomes from that
point.

d. The new chromosome is
created by concatenating
the first part of the first
chromosome with the
second part of the
second chromosome.

5. Mutation: It is an operation that
is applied on the chromosomes
generated by the crossover
operation. Mutation is done by
changing the value of one
random gene.

6. Recalculate the fitness for these
new chromosomes and repeat
points 4 & 5 (crossover and
mutation).

The process of calculating fitness, creating
new chromosomes using cross over and do
mutation on these new chromosomes is
called reproduction process.

2. Genetic Algorithm Re-enforced with
Productions Systems (GARPS)
Since genetic algorithms are the main
building block of the GARPS technique, it
will be discussed first followed by the
production systems.
The population is consisted of a group of
exam tables where each table represents a
chromosome. Each table, which is a 2D-
array, considers the distribution of courses’
exams and supervisors on rooms in
different timeslots. The main architecture
of the chromosome is shown in figure 1.

 Timeslot1 Timeslot 2 ….

Room1 Course1

Superv A

Superv B

Course3

Superv E

Superv F

Room2 Course2

Superv C

Superv D

Course4

Superv H

Superv B

…
.

Figure 1: Chromosome Architecture

Crossover and mutation are applied on
courses and supervisors separately. When
applying them on courses we take into
consideration that each course exam will

not be held more than once, while
supervisors can supervise more than one
exam in different timeslots.

2.1 The fitness function
Each table will be given a fitness value
between 0% and 100%, higher is better.
Things taken in consideration in
calculating the fitness:

• Course – room faculty (f1)

Each course should be held in a room of its
faculty.

 (1)

Weight = 0.12
• Supervisor-room faculty (f2)

Each supervisor should supervise on a
room of his faculty.

...... (2)

Weight = 0.12

• Supervisions per supervisor (f3)

Supervisions should be distributed on
supervisors in a fair way.

 ……. (3)

 ……. (4)

Where σ is the variance and is the
standard deviation

0

20

40

60

80

100

0 0.5 1 1.5 2

fit
ne
ss

n

Supervisions per supervisor

Figure 2: Supervisions per supervisor

 ……… (5)

x: number of supervisions by supervisor
(i).

: Average number of supervisions per
supervisor.

Weight = 0.05

• Free supervisors (f4)

Supervisors should have no lectures in the
time they are required to supervise in.

 ……… (6)

Weight = 0.1

• Free rooms (f5)

Rooms should be free in the time they are
needed for an exam.

 ……… (7)

Weight = 0.1

• Supervisors on courses (f6)

Each course exam should have two
supervisors on it. No supervisors should be
put on empty rooms.

 ………. (8)

Weight = 0.05

• Short tables (f7)

Shorter tables are preferred. A maximum
timeline is assigned by the user for the
exams. In the first half of that maximum
timeline, a used room (holding an exam) is
better than an empty one. The case is
reversed in the second half. This is done by
giving each room in a specific timeslot a

“fitness value” then taking the average of
all fitness values calculated.

Let f(i , j) be the fitness of the room i in
the timeslot j.

 ……… (9)

Where:

• N: Number of timeslots – 1
• i, j starts from zero

•

 …….. (10)

Weight = 0.06

0

50

100

Fi
tn
es
s

Timeslots ---->

Empty room fitness

0

50

100

Fi
tn
es
s

Timeslots ---->

Used room fitness

Figure 3: Empty room fitness

Figure 4: Used room fitness

• Conflicts (f8)

Conflicts of students’ exams are one of the
most important reasons that caused the
MESP.

This issue has many things to consider:

• Worst case is that a student has
more than one exam in the same
time.

• Another bad case but is acceptable
that a student has more than one
exam in the same day.

• Less bad case is that a student has a
lot of time between two
consecutive exams (more than 5
days for example).

The best period of time left between two
consecutive exams is about 2.5 days.

A rough graph was drawn between fitness
values and spaces between consecutive
exams. Then an equation was set. That
equation is:

 ………. (11)

Where: (x) is the number of days between
each two consecutive exams.

The whole conflicts fitness is calculated by
averaging the fitness values of all students’
exams.

Note that the maximum fitness (100%) is
at (2.5 days) as discussed above. If the
time between two consecutive exams was
(0 days) then it’s a real conflict, which
results in zero fitness. If two exams where
in the same day the time between them will

be less that (1 day) which means a fitness
value less than 42%.

Increasing free time between consecutive
exams to values more than 2.5 days will

result in decreasing the fitness value.

Weight = 0.4

3. Results and analysis
The system has proved its capability of
building highly reliable tables in
significantly short time. The sample which
was used in testing was as following:

• About 2000 students registered in
45 different courses.

• About 30 supervisors.
• About 20 exams rooms.

The initial population is 30 tables. The best
table in the current generation (elite)
survives and is transferred to the next
generation. After experimenting with
various crossover probabilities, the best
choice for crossover probability is 0.75.
Our experiments with various mutation
probabilities concluded that a high
mutation probability was needed to ensure
faster fitness improvement, this probability
is 0.15.

To improve the performance the system
was implemented as a distributed system.
The test results were:

0

50

100

0 2 4 6 8

Fi
tt
ne
ss

Days between consecutive exams

Fitness of Collision

Figure 5: Fitness of Collision

The number of the students registered in
the course is taken into consideration as
well as the capacity of the rooms.

• One generation without production
systems takes about

 seconds….. (12)

• One generation with production

systems takes about
 seconds……(13)

Table 1: A sample Schedule

A sample of a result table after 10
generations of part of a single timeslot
was:

Table 1 shows how different supervisors
supervise on the exams at same time. It
also shows that each course exam is to be
held in a room (or more) of the same
faculty.

Course Date Supervisors Location
AI Thursday

1/1/2009
08:00

John, Ahmad IT105

Ali,
Mohammad

IT102

DB Thursday
1/1/2009
08:00

Mustafa,
Taha

IT301

Fatima, Jack IT101

Digital
Logic

Thursday
1/1/2009
08:00

David,
Michael

ENG102

Tom, Mary ENG104

Calculus Thursday
1/1/2009
08:00

Sean,
Mariam

SCI100

Jane, Nour SCI101

Anatomy Thursday
1/1/2009
08:00

Sara, Anas MED100

Robin, Kyle MED101

4. Conclusion
The solution used to solve the modular
exam scheduling problem by using a
genetic algorithm re-enforced by
production systems proved itself by
producing very high quality schedules in
acceptable time. The use of pure genetic
algorithms is performance demanding
while the use of the production systems
along with genetic algorithms in the
GARPS technique helped with both the

overall fitness which reduced the amount
of generations needed to get the job done.
It is also worth to mention the role of
distributed genetic algorithms in the
improvement of the overall performance of
the entire technique used.

5. Reference

[1] A. J. Page and T. J. Naughton,
"Framework for task scheduling in
heterogeneous distributed computing
using genetic algorithms," 15th Artificial
Intelligence and Cognitive Science
Conference, Castlebar, Ireland, September
2004, pp. 137–146

[2] Andrew J. Page, Thomas J. Naughton,
"Dynamic Task Scheduling using Genetic
Algorithms for Heterogeneous Distributed
Computing," 19th IEEE International
Parallel and Distributed Processing
Symposium (IPDPS'05) - Workshop 6,
2005, pp.189a.

[3] A. Schaerf and L.D. Gaspero, “Local
Search Techniques for Educational
Timetabling Problems”, Proc. 6th
International Symposium on Operations
Research in Slovenia, Preddvor, Slovenia,
2001, pp. 13-23.

[4] B. Sigl, M. Golub, and V. Mornar,
“Solving Timetable Scheduling Problem
by Using Genetic Algorithms”, Proc. 25th
IEEE Int. Conf. on Information
Technology Interfaces, Cavtat/Dubrovnik,
Croatia, 2003, pp. 519-524.

[5] D. Abramson, H. Dang, and M.
Krisnamoorthy, “Simulated Annealing
Cooling Schedules for the School
Timetabling Problem”, Asia Pacific
Journal of Operational Research, World
Scientific, 1999, vol. 16, pp. 1-22.

 [6] D. Corne, H.-L. Fang , C. Mellish ,
“Solving the modular exam scheduling
problem with genetic algorithms,”
Proceedings of the 6th international
conference on Industrial and engineering
applications of artificial intelligence and
expert systems, 1993, pp. 370 – 373

[7] E.K. Burke, D.G. Elliman, and R.F.
Weare, “A Hybrid Genetic Algorithm for
Highly Constrained Timetabling

Problems”, Proc. 6th Int. Conf. on Genetic
Algorithms, Pittsburg, Morgan Kaufmann,
, 1995,pp. 605-610.

[8] Nguyen Duc Thanh ,"Solving
Timetabling Problem Using Genetic and
Heuristic Algorithms," Eighth ACIS
International Conference on Software
Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed
Computing, 2007, pp. 472-477.

 [9] Taisir Eldos , "A New Migration
Model For Distributed Genetic Algorithms
," The 2005 International Conference On
Scientific Computing (CSC'05) June 20-23

