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ABSTRACT 
Recommender systems have recently gained much attention as a new business intelligence tool 

for e-commerce. Applying a recommender system for an online retailer store helps to enhance 

the quality of service for customers and increase the sale of products and services. One 

successful recommender system technology is collaborative filtering which employs statistical 

techniques to find a set of users known as neighbors, who have a history of agreeing with the 

target user. Collaborative filtering has been shown to produce high quality recommendations, but 

the performance degrades for a large number of users and products. The problems associated 

with high dimensionality in the recommender systems have been discussed in several studies. It 

has been reported that dimensionality reduction techniques are effective for k-NN algorithms 

used typically for collaborative filtering. Non Linear Dimensionality Reduction (NLDR) 

techniques in turn have performed better than linear dimensionality reduction techniques. 

However, manifold alignment for the purposes of collaborative filtering couldn’t be used as an 

effective approach. In this paper, some limitations of the use of nonlinear manifold learning for 

collaborative filtering will be considered. 
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1. Introduction 
Recommender systems apply knowledge 

discovery techniques to the problem of 

making product recommendations during a 

live customer interaction [1]. These systems 

are achieving widespread success in E-

commerce nowadays, especially with the 

advantage of the Internet. One successful 

recommender system technology is 

collaborative filtering, which works by 

matching customer preferences to other 

customers in order to make appropriate 

recommendations. Collaborative filtering 

(CF) has been shown to produce high quality 

recommendations, but the performance 

degrades with the number of customers and 

products.  

An E-commerce recommender system may 

easily involve millions of customers and 

products. This amount of data poses a great 

challenge to the CF algorithms in that the 

recommendations need to be generated in 

real-time. Furthermore, the algorithm also 

has to cope with a steady influx of new users 

and items. For the majority of the algorithms 

proposed to date, the primary emphasis has 

been given into improving recommendation 



  

accuracy. While accuracy is certainly 

important and can affect the profitability of 

the company, the operator simply cannot 

deploy the system if it does not scale to the 

vast data of the site. The tremendous growth 

of customers and products poses two key 

challenges for recommender systems [2]. 

The first challenge is to improve the quality 

of the recommendations for the consumers. 

Consumers need recommendations they can 

trust to help them find products they will 

like. If a consumer trusts a recommender 

system, purchases a product, and finds out 

he does not like the product, the consumer 

will be unlikely to use the recommender 

system again. Another challenge is to 

improve the scalability of the collaborative 

filtering algorithms. These algorithms are 

able to search tens of thousands of potential 

neighbors in real-time, but the demands of 

modern E-commerce systems are to search 

tens of millions of potential neighbors. In 

some ways these two challenges are in 

conflict, since the less time an algorithm 

spends searching for neighbors, the more 

scalable it will be, and the worse its quality. 

For this reason, it is important to treat the 

two challenges simultaneously so the 

solutions discovered are both useful and 

practical.  

New technologies are needed for 

dramatically improving the scalability of 

recommender systems. It has been reported 

that dimensionality reduction techniques are 

effective for k-NN algorithms used typically 

for collaborative filtering [3]. Non Linear 

Dimensionality Reduction (NLDR) 

techniques in turn have performed better 

than linear dimensionality reduction 

techniques. However, we identified some 

limitations of the use of nonlinear manifold 

learning for collaborative filtering. In this 

paper, they will be considered.  

The rest of the paper is organized as follows. 

The next section gives a brief overview of 

dimension reduction algorithms for 

collaborative filtering. Section 3 describes 

the selected two nonlinear techniques for 

dimensionality reduction and presents some 

of the challenges of these two nonlinear 

techniques for collaborative filtering. 

Section 4 delineates the assessment of non 

linear dimensionality reduction in the CF 

context.  The final section provides some 

concluding remarks and future research 

directions. 

 

2. Background   
Recommender systems emerged as an 

independent research area in the mid-1990s 

when researchers started focusing on 

recommendation problems that explicitly 

rely on the ratings structure. In its most 

common formulation, the recommendation 

problem is reduced to the problem of 

estimating ratings for the items that have not 

been seen by a user. This estimation is 

usually based on the ratings given by this 

user to some other items. Once we can 

estimate ratings for the yet unrated items, we 

can recommend to the user the item(s) with 

the highest estimated rating(s).  

Collaborative filtering utilizes the known 

preferences of a group of users to predict the 

unknown preference of a new user. 

However, the existing CF techniques have 

the drawback that requires the entire existing 

data be maintained and analyzed repeatedly 

whenever new user ratings are added. To 

avoid such a problem and improve 

computational efficiency of the existing CF 

techniques, a new approach called 

Eigentaste was proposed based on the 

principal component analysis (PCA). 

However, Eigentaste requires that each user 

rate every item in the so called gauge set for 

executing PCA, which may not be always 

feasible in practice [4].  

The next study was an iterative PCA 

approach in which no gauge set is required 

[5]. The developed approach and Eigentaste, 

combined with two clustering methods, are 

compared in terms of the mean absolute 

error (MAE) of prediction using three real 

data sets. Computational results indicate that 



  

the prediction accuracy of the proposed 

approach does not deteriorate even without a 

gauge set, and therefore, the proposed 

approach may be considered as a useful 

alternative when it is neither possible nor 

practical to define a gauge set. The iterative 

PCA approach using SVD takes a 

considerable amount of time and space to 

estimate a new user’s missing ratings. 

Moreover, SVD based algorithms suffer 

from a serious drawback - the offline SVD 

decomposition step is computationally very 

expensive. 

To alleviate this problem, two SVD update 

methods, the Zha and Simon [6] and the 

folding-in [2], are considered as possible 

alternatives. These alternatives are compared 

in terms of both the MAE and computational 

time using a real data set. The experimental 

results show that the SVD update method by 

Zha and Simon is better than the folding-in 

method.  

Since the ratings data for CF reflecting the 

many-sided interests of many users could 

have nonlinear dependencies, a dimension 

reduction technique based on nonlinear PCA 

is developed. The proposed method can 

update the local mean in each cluster 

whenever a new user enters the system, and 

then, the updated local mean is used for the 

next new users. The experimental results 

reveal that this nonlinear PCA approach has 

a decreasing MAE as the number of new 

users increase, due to the updating of the 

local mean. This is a desirable result since it 

implies that the developed approach can be 

applied, even if a large number of new users 

enter the system continuously. Finally, the 

three approaches developed are compared in 

terms of the MAE and computational time. 

From the experiments in which the 

prediction accuracy and computational time 

are used as the comparative criterion, it is 

concluded that the method by Zha and 

Simon is the best as a dimension reduction 

technique for CF.  

An attempt to apply nonlinear 

dimensionality reduction in recommender 

systems was described in some papers [7], 

[8], [9]. They observed that manifold 

alignment using non-linear dimensionality 

reduction has the promise of an effective 

supervised learning technique for the 

purposes of cross system personalization. 

When a large number of users cross over 

from one system to another, carrying their 

user profiles with them, a mapping between 

the user profiles of the two systems can be 

discovered. The key idea is to embed user 

profiles from different systems in low-

dimensional manifolds such that profiles 

known to be in correspondence (i.e. profiles 

of the same user) are mapped to the same 

point. This means the manifolds will be 

aligned  at correspondence points. A simple 

NLDR to a manifold performs better than 

popular voting. The predicted votes become 

more accurate as more users cross over and 

their profiles are aligned. But, the 

predictions are worse than SVD or Pearson’s 

correlation based algorithm, which serve as 

the gold standard. 

Another possible approach to produce low-

dimensional presentation of the data is the 

use of domain-specific classification 

information to divide original user-item 

rating matrix into several low-dimensional 

dense user-item rating matrices [9]. Each 

item can be assigned to one or more 

classifications. For example, in the domain 

of movies, each movie can be classified 

according to the attribute “genre” of each 

item (the values of genre include Action, 

Adventure, Drama, and so on). In the 

domain of books, an attribute “category” of 

items is used to classify books. 

3. The Use of Nonlinear Techniques 

for Dimensionality Reduction in 

Recommender Systems 
In this section, we first review the non linear 

dimensionality  reduction  methods. More 

specifically, we focus on the selected two 



  

nonlinear techniques for dimensionality 

reduction and present some of the challenges 

of these two nonlinear techniques for 

collaborative filtering.  

  

3.1 Overview of Non Linear 

Dimensionality  Reduction  Methods 
Assume we have dataset represented in a 

n×D matrix X consisting of n datavectors xi 

(i {1, 2, . . . , n}) with dimensionality D. 

Assume further that this dataset has intrinsic 

dimensionality d (where d < D, and often d 

<< D). Here, in mathematical terms, intrinsic 

dimensionality means that the points in 

dataset X are lying on or near a manifold 

with dimensionality d that is embedded in 

the D-dimensional space. Dimensionality 

reduction techniques transform dataset X 

with dimensionality D into a new dataset Y 

with dimensionality d, while retaining the 

geometry of the data as much as possible. 

We shall assume that different yi do not lie 

randomly in R
d
, but approximately on a 

manifold, which is denoted by M. The 

manifold may simply be a hyperplane, or it 

can be more complicated. An example of a 

“curved” manifold with the data points lying 

on it can be seen in Figure 1. In general, 

neither the geometry of the data manifold, 

nor the intrinsic dimensionality d of the 

dataset X is known. Therefore, 

dimensionality reduction is an ill-posed 

problem that can only be solved by assuming 

certain properties of the data (such as its 

intrinsic dimensionality). 

 

 
Figure 1. An example of a manifold. This example is usually known as the “Swiss roll”. (a) 

Surface of the manifold. (b) Data points lying on the manifold.  

 

 

Figure 2. An example of a “curved" manifold 
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Under the assumption, that manifold in 

Figure 2 represents ratings given by the 

different users to the different items, we are 

trying to capture the relationships among 

pairs of customer based on ratings of 

products. The main distinction between 

techniques for dimensionality reduction is 

the distinction between linear and nonlinear 

techniques. Linear techniques assume that 

the data lie on or near a linear subspace of 

the high-dimensional space. Nonlinear 

techniques for dimensionality reduction do 

not rely on the linearity assumption as a 

result of which more complex embeddings 

of the data in the high-dimensional space can 

be identified. Most nonlinear techniques for 

dimensionality reduction have been 

proposed more recently and are therefore 

less well studied. In this section, we discuss 

two nonlinear manifold learning techniques 

recently proposed (Isomap [10] and Locally 

Linear Embedding (LLE) [11]). 

 

3.2 Isomap 

Multidimensional scaling has proven to be 

successful in many applications, but it 

suffers from the fact that it is based on 

Euclidean distances, and does not take into 

account the distribution of the neighboring 

datapoints. If the high-dimensional data lies 

on or near a curved manifold, such as in the 

Swiss roll dataset, MDS might consider two 

datapoints as near points, whereas their 

distance over the manifold is much larger 

than the typical interpoint distance. Isomap 

[12] is a technique that resolves this problem 

by attempting to preserve pairwise geodesic 

(or curvelinear) distances between 

datapoints. Geodesic distance is the distance 

between two points measured over the 

manifold. 

In Isomap [12], the geodesic distances 

between the datapoints xi (i {1, 2, . . . , n}) 

are computed by constructing a 

neighborhood graph G, in which every 

datapoint xi is connected with its k nearest 

neighbors xij (j {1, 2, . . . , n}) in the 

dataset X. The shortest path between two 

points in the graph forms a good 

(over)estimate of the geodesic distance 

between these two points, and can easily be 

computed using Dijkstra’s or Floyd’s 

shortest-path algorithm [13,14]. The 

geodesic distances between all datapoints in 

X are computed, thereby forming a pairwise 

geodesic distance matrix. The low-

dimensional representations yi of the 

datapoints xi in the low-dimensional space Y 

are computed by applying multidimensional 

scaling on the resulting distance matrix. An 

important weakness of the Isomap algorithm 

is its topological instability [15]. Isomap 

may construct erroneous connections in the 

neighborhood graph G. In the case of user-

item matrix, i × j matrix M consisting of 

ratings r given by the i users to the j items, 

user’s and item’s places are randomly 

posited in matrix. Therefore, the rating 

points lie randomly on a manifold. There is 

no reason to respect this shape trying to find 

similar users or similar items. It is possible 

to identify two users which rate different 

items, as neighbours on this manifold (dots 

marked in the Figure 2). It doesn’t mean that 

these users rate similarly.  

Such short-circuiting [16] can severely 

impair the performance of Isomap. Several 

approaches have been proposed to overcome 

the problem of short-circuiting, e.g., by 

removing datapoints with large total flows in 

the shortest path-algorithm [17] or by 

removing nearest neighbors that violate local 

linearity of the neighborhood graph [18]. A 

second weakness is that Isomap may suffer 

from ‘holes’ in the manifold. This problem 

can be dealt with by tearing manifolds with 

holes [19]. A third weakness of Isomap is 

that it can fail if the manifold is nonconvex 

[20].  
 

3.3 LLE 

Local Linear Embedding (LLE) [21] is a 

local technique for dimensionality reduction 

that is similar to Isomap i.e. it constructs a 



  

graph representation of the datapoints. In 

contrast to Isomap, it attempts to preserve 

solely local properties of the data. The 

preservation of local properties allows 

successful embedding of nonconvex 

manifolds. In LLE, the local properties of 

the data manifold are constructed by writing 

the datapoints as a linear combination of 

their nearest neighbors. In the low-

dimensional representation of the data, LLE 

attempts to retain the reconstruction weights 

in the linear combinations as good as 

possible.  

LLE describes the local properties of the 

manifold around a datapoint xi by writing the 

datapoint as a linear combination Wi (the so-

called reconstruction weights) of its k 

nearest neighbors xij. Hence, LLE fits a 

hyperplane through the datapoint xi and its 

nearest neighbors, thereby assuming that the 

manifold is locally linear. The local linearity 

assumption implies that the reconstruction 

weights Wi of the datapoints xi are invariant 

to translation, rotation, and rescaling. 

Because of the invariance to these 

transformations, any linear mapping of the 

hyperplane to a space of lower 

dimensionality preserves the reconstruction 

weights in the space of lower 

dimensionality. In other words, if the low-

dimensional data representation preserves 

the local geometry of the manifold, the 

reconstruction weights Wi that reconstruct 

datapoint xi from its neighbors in the high-

dimensional data representation also 

reconstruct datapoint yi from its neighbors in 

the low-dimensional data representation. 

This is done by choosing d-dimensional 

coordinates of Y to minimize the embedding 

cost function: 
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It can be shown that the coordinates of the 

lowdimensional representations yi that 

minimize this cost function can be found by 

computing the eigenvectors corresponding to 

the smallest d nonzero eigenvalues of the 

inproduct (I −W)
T
 (I −W). In this formula, I 

is the n × n identity matrix. LLE tends to 

collapse large portions of the data onto a 

single point. In [22], it is claimed that LLE 

performs worse than Isomap, because LLE 

has difficulties when confronted with 

manifolds that contain holes.  Some authors 

also make negative conclusion that LLE is 

only useful for small numbers of dimensions 

[12]. A possible explanation is that the 

practical data includes a large number of 

intrinsic features and have high curvature 

both in the observation space and in the 

embedded space, whereas present manifold 

learning methods strongly depends on the 

selection of parameters.  

 

 

4. Assessment of Non Linear 

Dimensionality Reduction in the CF 

context  
The tremendous growth of customers and 

products in E-commerce domain has 

motivated explorations of linear and 

nonlinear techniques for dimensionality 

reduction, both as a compressed 

representation of the data and as a basis for 

recommendations via regression. The main 

drawback of dimensionality reduction is the 

possibility of information loss. When done 

poorly, dimensionality reduction can discard 

useful instead of irrelevant information.  

Linear regression models generally have 

lower sample complexity per parameter than 

nonlinear and nonparametric models. The 

underlying assumption for nonlinear 

dimensionality reduction is that the data 

points do not lie randomly in the high-

dimensional space; rather, there is a certain 

structure in the locations of the data points 

that can be exploited, and the useful 

information in high dimensional data can be 

summarized by a small number of attributes. 

Local approaches like LLE attempt to 

preserve the local geometry of the data; 

essentially, they seek to map nearby points 

on the manifold to nearby points in the low-



  

dimensional representation. Global 

approaches like Isomap attempt to preserve 

geometry at all scales, mapping nearby 

points on the manifold to nearby points in 

low-dimensional space, and faraway points 

to faraway points. 

In the case of user-item matrix, matrix 

consisting of ratings given by users to items, 

user’s and item’s places are randomly 

positioned in matrix. Therefore, the rating 

points lie randomly on a manifold. There is 

no reason to respect this shape trying to find 

similar users or similar items. It is possible 

that nonlinear manifold learning techniques 

identify two users which rate different items, 

as neighbors on this manifold. It doesn’t 

mean that these users rate similarly. 

 

 

5. Conclusions and Future Work 
The current generation of recommender 

systems requires further improvements to 

make recommendation methods more 

effective in a broader range of applications. 

In this paper, we reviewed various 

limitations of the use of nonlinear manifold 

learning for collaborative filtering 

recommendation methods. 

We hope that the issues presented in this 

paper will advance the discussion in the 

recommender systems community about the 

next generation of recommendation 

technologies. 

Regarding future work, comparisons with 

further nonlinear methods need to be 

conducted. A comprehensive study, 

mentioned above, would be beneficial for 

the collaborative filtering as well as for 

scientists, who have to deal with high-

dimensional data. 
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