

Document Management in Distributed and Heterogeneous
Environments

Dragoslav Pešović1, Milan Vidaković2, Zoran Budimac1, Mirjana Ivanović1

1Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad
Trg D. Obradovića 4, 21000 Novi Sad, Serbia

 2Computing and Control Department, Faculty of Technical Sciences, University of Novi Sad, Trg
D. Obradovića 6, 21000 Novi Sad, Serbia

dragoslav@im.ns.ac.yu, minja@uns.ns.ac.yu, zjb@im.ns.ac.yu, mirjana.ivanovic@gmail.com

ABSTRACT
Workers, Inc. is a workflow management system fully supported by mobile agents. It is
suitable for implementation of different business processes in highly distributed and
heterogeneous environments. EXtensible Java-based Agent Framework (XJAF) is a pluggable
architecture of the hierarchical intelligent agents system with communication based on
KQML. The application of the above-mentioned systems will be considered in the area of
Document Management Systems.

Key words: Workflow, Mobile agents, Document management

1. Introduction
Generally speaking, mobile agent is an
autonomous program that is able to stop its
execution at one node in a computer
network, and to transfer itself to another
node where its execution continues.
Workflow [21] can be defined as the
automated part of a business process,
organized as a collection of activities,
where documents, information or tasks are
passed between participants according to a
set of procedural rules. A workflow
management system (WFMS) provides
defining, creating, and managing of
workflow instances. The usage of mobile
agents in modeling and implementation of
a workflow simplifies the workflow
management. Workers, Inc. [14] consists
of individual agents with autonomous
behavior. Mobile agents carrying out
workflow instances (so-called workers)
have the ability to move to different users,
where they can interact with them locally,
autonomously taking care of their current
position, state, and further itinerary. To
allow the exchange of process definitions
with various other workflow products, the
system had to be made compliant with
XML Process Definition Language
(XPDL) [22].

EXtensible Java-based Agent Framework
(XJAF) [18] is a pluggable architecture
and supports pluggable software managers
dealing with a particular job. The system is
compliant to the FIPA (Foundation for
Intelligent Physical Agents) specification
and has been implemented using Java
Enterprise Edition (JEE) technology.
The application of the above-mentioned
systems will be considered in the area of
Document Management Systems (DMS).
The rest of the paper is organized as
follows. In the next section, the related
work is presented. Section 3 describes the
architecture of Workers, Inc. Main
concepts of agent frameworks and the
architecture of XJAF are described in the
fourth section. The fifth section briefly
discusses an agent-oriented approach to the
design and implementation of DMS. Last
section concludes paper.

2. Related Work
Several authors have recently suggested a
usage of agents in workflow and document
management.
In contrary to approaches in [9, 12],
Workers, Inc. is highly decentralized and
consists solely of individual agents with

mailto:dragoslav@im.ns.ac.yu
mailto:minja@uns.ns.ac.yu
mailto:zjb@im.ns.ac.yu
mailto:mirjana.ivanovic@gmail.com

autonomous behavior. The only centralized
control in our system is the control of user
rights to create, access, and change agents
and templates. With respect to
decentralization, our system resembles
[16] that is based on static CORBA
(Common Object Requesting Broker
Architecture) objects. While
decentralization in [16] was one of explicit
design goals and had to be explicitly
implemented, decentralization in our
system comes as a natural consequence of
agent mobility.
While in [10] full decentralization of
using mobile agents is shortly mentioned,
the paper in fact describes the usage of
mobile agents in centralized and only for
external parties. Our system completely
relies on agents and is fully distributed
with autonomous agents.
Stromer in [17] describes similar goals and
advantages of using mobile agents in as
we are, but his implementation is different.
From the problem domain point of view,
frameworks can be general-purpose [1, 2,
6], or specialized ones, which solve
particular problems [20]. From the
technology point of view, agent
frameworks are based on either proprietary
solutions or on the distributed components
technology. Agent frameworks, like JAF
(Java Agent Framework) [6], are based on
proprietary solutions, while Aglets [1] and
JADE [2] are based on the RMI, CORBA
and Java EE technology.
The large number of papers is related to
the security issues in agent frameworks [3,
8, 20], like: code protection during agent
migration, protecting agent frameworks
from malicious agents.
This paper presents an implementation of
an agent framework in which all important
elements are implemented as plug-ins,
which provides flexibility in both design
and implementation.
Among DMS proposed over the years,
there are some that are agent-based [5, 15]
or agent-enhanced. However, none of them
emphasizes the benefits of agent mobility.
Proposed workflow and document
management systems bring some fresh

views not only in particular fields of
workflow and document management, but
in mobile computing as well. But the
advantages of decentralized/distributed
approach in such systems have not been
often recognized.
Our workflow and DMS emphasize the
fact that mobile agent has organizational
advantages as well. Solutions are easier to
program, understand, and maintain, if
implemented using mobile agents.

3. Workflow Management System
Using Mobile Agents
Workers, Inc. [4, 13, 14] is under
development at our University. It is
implemented using mobile agents and is
especially suited for highly distributed and
heterogeneous environments.
Workers, Inc. is envisioned as a
community of cooperative agents. The
current architecture is two-part, consisting
of work-agents (workers) and host-agents
(worker hosts). Workers, Inc. is built on
top of a Java-based mobile agent system.
Agent migration and inter-agent
communication benefit from Java RMI and
class serialization, and Java sandbox
security model is the basis for providing
secure agent execution environment. Java
API for XML Processing is used for XPDL
document parsing.
Process definitions are being completely
handled by workers, while the enactment is
achieved through the cooperation of a
worker carrying a process definition and
worker hosts residing at every node of the
network. Worker hosts represent central
components of the system mediating
between the underlying system, workers,
and human users.
Workers - Key system component that is
encapsulating both the process definition
and the execution state of a workflow.
While performing a workflow, a worker
itinerates among distributed resources
carrying process-specific information and
autonomously taking care of its execution
state. A worker’s behavior is entirely
defined by its execution context. When a

worker migrates, its entire execution
context is being transported and
reconstructed at the target location. The
most important part of a context is the
worker itinerary (in form of directed
graphs), which represents a flow of a
worker through a network. To allow
concurrent activity execution, agent social
abilities are employed. When a single

thread of control needs to split into two or
more threads, which can be executed in
parallel, the worker context is cloned and
multiple worker instances are allowed to
be executed simultaneously. On the other
hand, when multiple parallel threads of
execution need to converge into a single
thread, agent coordination mechanisms and
synchronization techniques are employed.

Figure 1. The architecture of Workers, Inc.

Worker Hosts - Every node in the
network contains a worker host - a
stationary system agent with privileges for
the access to host system resources. A
worker host spends most of its lifetime
receiving requests from workers or users
and coordinating their actions. There are
three main subcomponents of a worker
host: an application manager, a participant
manager, and a user interface.
Other Specialized Agents - Workers may
need additional services to finish their

work. Those services cannot be embedded
directly into the workers to keep them as
small as possible. Services are
implemented, as specialized stationary
agents.
Workers, Inc. is a fully distributed system,
without central administration, control, and
maintenance. All reports, control, and
management can be achieved by creating
and sending specialized agents that will
communicate with other agents in the
system and achieve the intended results.

Figure 2. Worker and its contexts

3.1 Worker Execution Contexts
The design of an execution context is done
so as to comply with the workflow meta-
model specification. From the control-flow
perspective, the itinerary is the most
important part of a context.
Itinerary - The itinerary has the structure
of an arbitrary complex directed graph,
where vertices of the graph represent
process activities, and edges of the graph
correspond to process transitions.
Activities - An activity is the smallest,
atomic unit of work in a business process.
Transitions - Transitions connect
individual activities. A transition may
contain a condition which must be fulfilled
for the worker to start performing the
target activity. If the transition does not
contain a condition, the worker will start
the target activity immediately after the
source activity has been completed. If the
performer assigned to the target activity is
different than the one of the source
activity, the worker will first transfer itself
to the appropriate node in the network,
before it starts the activity.

4. Agent Frameworks
Agent technology represents one of the
most consistent approaches in distributed

systems implementation. Besides solving
the problem, agents utilize a certain degree
of intelligence and autonomy that are
needed to solve the problem. Agent
framework represents programming
environment that controls agent life cycle
and provides all necessary mechanisms for
task execution (communication, agent
mobility, services and security). An agent
framework also provides agent mobility
and security (security mechanisms which
protect both agents and frameworks.)
Most of the existing agent frameworks are
implemented using Java. Such frameworks
usually use RMI (Remote Method
Invocation), CORBA (Common Object
Request Broker Architecture) [11] and
Java EE (Java Enterprise Edition) [7] for
distribute code execution.

4.1 XJAF
The EXtensible Java-based Agent
Framework (XJAF) [18] consists of clients
and facilitators. The clients refer to the
facilitators for task execution. The task is
being executed by the agents engaged by
the facilitator. The Figure 3 shows the link
between a client and an agent framework.

Client
Application

FacilitatorFacilitatorProxy

Figure 3. Client and Agent framework link

The client assigns the task to the
facilitator; the facilitator engages an agent
to execute the task and returns the result to
the client. The FacilitatorProxy class
ensures that the client application can
access the facilitator. It also hides all
techniques necessary for work with agents
from the client. The client only needs to
create an object of the FacilitatorProxy
class and to pass it the class representing
the task or the KQML (Knowledge Query
and Manipulation Language) message, as
well as the corresponding listener, which
would notify it of the result.

Extensibility of this framework is based on
the plug-ins, realized as pluggable
managers. The facilitator forwards the
parts of its job to the corresponding
pluggable managers. The managers are
instances of classes implementing the
corresponding managerial interfaces. The
AgentManager interface is responsible for
allocating and releasing agents. The
TaskManager interface manages the tasks.
The MessageManager interface is
responsible for interagent communication.
The ConnectionManager interface
manages facilitator connection and

relations. The SecurityManager handles
security of inter-agent communication. The

Figure 4 lists all the managers in the
framework.

Figure 4. Functionality of individual parts is assigned to managers

Agent Manager - Agent management is
done using the AgentManager component.
This component is also used as an agent
directory. This manager also keeps track of
all local agents required by external
facilitators, and of all agents that have been
moved to another facilitator.
Task Manager - The TaskManager
component manages tasks to be performed
by the agent framework. It also provides a
way of notifying the client about the task
execution progress.
When executing a task by sending a
KQML message to the agent, the client
application sends the KQML message to
the Facilitator component. This component
looks for the appropriate agent and sends
the message to it. When the task is

completed, the agent replies to the original
message and the message is forwarded to
the client using the FacilitatorProxy
component.
Message Manager - The agents actually
exchange KQML messages. Messages are
encapsulated in the base class
KQMLMessage. All the communication is
done by the MessageManager component.
Connection Manager - The
ConnectionManager component defines an
inter-facilitator connectivity mechanism.
This mechanism defines how separate
facilitators form a network.
The facilitators form a certain hierarchy
structure. The Figure 5 shows this
organization.

Primary Faci l itator

Faci l itator1

Faci li tator2 Faci li tator3

Faci li tator4

Faci l itator5 Faci l itator6

Figure 5. Component diagram of facilitator hierarchy

Security Manager - SecurityManager
component [18] handles security issues. It

provides encryption, decryption, signature
generation and verification for all

FacilitatorEJB

SimpleAgentManager
AgentManager

SimpleTaskManager
TaskManager

SimpleMessageManager

MessageManager

SimpleConnectionManager

ConnectionManager

SimpleSecurityManager

SecurityManager

ServiceManager

SimpleServiceManager

messages passing through the framework.
Also, this manager handles access to local
resources.
Service Manager - The ServiceManager
component implements service directory
subsystem. It manages the set of services
available to agents. The ServiceManager
component includes the service repository
which holds all available services. Services
can be added, removed, searched and used.

5. Document Management
A document management system (DMS)
[5, 15] is a computer system used to track
and store different forms of electronic
documents. Document management
controls the life cycle of documents in an
organization – how they are created,
reviewed, published, consumed, and
disposed of or retained. It organizes
content in a logical way, and makes it easy
to standardize content creation and
presentation across an enterprise. DMS
promotes knowledge management and
information mining and addresses the
following issues: Location, Filing,
Retrieval, Security, Retention period,
Archiving, Distribution, Workflow,
Creation, Authentication, Content types.

5.1 Agent-Oriented Approach
The usage of software agents in modeling
and implementation of a DMS simplifies
the document management because most
of its parts are uniformly implemented as
(mobile) agents:
• User agents to assist individual users

(with incorporated access rights).
Every user of the DMS would have a
devoted user agent to assist him/her in
the authoring and access processes.
Those user agents would communicate
with other agents in the system
directly, or create and send specialized
mobile agents in order to achieve the
intended results.

• Specialized agents for document
retrieval, indexing, archiving, etc.
Those agents may be mobile or
stationary, depending on the nature of

the task they are intended to
accomplish.

• Workflow agents to support all kinds
of workflows within the system.
Workgroups can benefit from agents to
coordinate their access efforts.

Since the system consists of many
autonomous agents, it is easily changed,
extended, and improved. It is often needed
just to introduce new agents, without the
need to change and even to understand the
rest of the system.

6. Concluding Remarks
The idea of implementing a DMS involved
two modern, attractive and promising
fields in computer science: Software
agents and Workflow. The approach to an
agent framework implementation using the
Java EE technology provides for
scalability and reliability. This approach
offers agent and service directory services,
security, message exchange, and agent
mobility.
The main characteristics of suggested
workflow system are almost full
decentralization and distribution of
workflow functions. The proposed
organization mimics usual user activities in
a real flow of work. Moreover, it relieves
them (or any centralized control) from the
need to know what to do next with the
work-agent. Every user takes care only of
work-agents that are currently on its node.
Where they came from, why they are here,
and where they will go later, is not concern
of the user.

References

[1] Aglets Home Page,
http://www.trl.ibm.com/aglets/, May 2003.
[2] Bellifemine, F., Poggi, A., Rimassa, G.:
"JADE – A FIPA-compliant agent
framework", Proc.of Practical Applications
of Intelligent Agents (PAAM'99), London,
April 1999, pp. 97-108.
[3] Binder, W., Roth, V.: "Secure mobile
agent systems using Java: where are we

http://www.trl.ibm.com/aglets/

heading?", Proceedings of the 2002 ACM
symposium on Applied computing, 2002,
Madrid, Spain, ISBN:1-58113-445-2, pp.
115-119.
[4] Budimac, Z., Ivanović, М., Popović,
A.: “Workflow Management System Using
Mobile Agents”, Proc. of ADBIS ‘99,
LNCS 1691, Springer Verlag, Berlin,
(Maribor, Slovenia), pp. 169 - 178, 1999.
[5] Ginsburg, M.: “An Agent Framework
for Intranet Document Management”,
Journal of Autonomous MAS, Vol. 2, No.
3, pp. 271-286, 1999.
[6] Java Agent Framework Home Page,
http://mas.cs.umass.edu, May, 2003.
[7] Java Enterprise Edition Homepage,
http://java.sun.com/javaee, May, 2003.
[8] Kim Tan, H., Moreau, L.: "Certificates
for mobile code security", Proceedings of
the 2002 ACM symposium on applied
computing, 2002, Madrid, Spain, ISBN:1-
58113-445-2, pp. 76-81.
[9] Meng, J., Helal, S., Su, S.: “An ad-hoc
workflow system architecture based on
mobile agents and rule-based reasoning”,
Proc. of Int. Conf. on parallel, and
distributed computing techniques and
applications, 2000.
[10] Merz, M., Liberman, B., Lamersdorf,
W.: “Using mobile agents to support inter-
organizational workflow management”,
Int. Jour. on applied artificial intelligence
11(6), pp. 551-572, 1997.
[11] Common Object Request Broker:
Architecture and Specification. OMG
Specification Revision 2.0, July 1995.
[12] Padalkra, A., Nabar, P., Arora, S.,
Naik, P.: “SWIFT: Scalable workflow
management system using mobile Agents”,
http://www.iitb.ac.in/~pranav/php/
paper.pdf, 2000.
[13] Pešović, D., Budimac, Z., Ivanović,
M.: “Towards a Visual Definition of a
Process in a Distributed Environment”,
2nd International Symposium on
Intelligent Distributed Computing 2008,
Catania, Italy, 2008.

[14] Pešović, D.: “A High-Level Language
for Defining Business Processes”, PhD
Thesis, University of Novi Sad, 2007.
[15] Roberto, V., Della Mea, V., Di
Gaspero, L., Conti, A.: “MANTHA:
Agent-based Management of Hypermedia
Documents”, Proceedings of 6th IEEE Int.
Conf. on Multimedia Computing and
Systems, Firenze, IEEE Computer Society,
vol II, pp. 814-818, 1999.
[16] Sheth, A., Kochut, K., Miller, J.,
Worah, D., Das, S., Lin, C., Palaniswami,
D., Lynch, J., Shevchenko, I.: “Supporting
State-wide Immunization Tracking using
Multi-Paradigm Workflow Technology”,
Proc. of 22nd VLDB Conference
(Bombay, India), 1996.
[17] Stormer, H.: “A flexible agent-based
workflow system”, Workshop on Agent-
based approaches to B2B, 2001.
[18] Vidaković, M., Sladić, G., Konjović,
Z., "Security Management In J2EE Based
Intelligent Agent Framework", Proc. of the
7th IASTED International Conference on
Software Engineering and Applications,
Marina Del Rey, USA, 2003, pp. 128-133
[19] Vidaković, M., Sladić, G., Zarić, M.:
"Metadata Harvesting Using Agent
Technology", Proceedings of the 8th
IASTED International Conference on
Software Engineering and Applications,
USA, 2004., pp. 489-493
[20] Wilson, L., Burroughs, D.,
Sucharitaves, J., Kumar, A.: "An agent-
based framework for linking distributed
simulations", Proceedings of the 32nd
conference on Winter simulation, 2000 ,
Orlando, Florida, pp. 1713 – 1721.
[21] “Terminology and Glossary”,
Homepage of Workflow Management
Coalition, 1999.
[22] Workflow Management Coalition:
“Workflow Process Definition Interface –
XML Process Definition Language,
Version 1.0”, Homepage of Workflow
Management Coalition, 2002.

http://mas.cs.umass.edu
http://java.sun.com/javaee
http://www.iitb.ac.in/~pranav/php/

