Genetic Access on Combinatorial Problems

C Prasanna Ranjith
Al Jabal Al Gharbi University
Gharyan, Libya
pr74 99@yahoo.com

Taher Omran Ahmed
Al Jabal Al Gharbi University
Gharyan, Libya
fenneer@yahoo.com

Abstract — Genetic Algorithms are adaptive methods, which may be used to solve search and optimization
problems. They are based on the genetic processes of biological organisms that evolve according to the
principles of natural selection and “survival of the fittest”. By mimicking this process, Genetic Algorithms are

able to “evolve” solutions to combinatoria problems.

The Objective of this paper isto consider Shortest Path Routing Problem and solve it using Greedy and
Exhaustive algorithms. The strengths and weaknesses of both the algorithms are studied. A simple agorithm is
proposed using the concept of GA that aimsto cure al the infeasibl e chromosomes with a smple repair function.
Analysis shows that the proposed algorithm exhibits a much better quality of solution and a much higher rate of

convergence.
INTRODUCTION

Many researchers have applied Genetic
Algorithm to the Shortest Path Routing problem,
multicasting routing problem, ATM bandwidth
alocation problem, and the dynamic routing
problem. It is noted that al these problems can be
formulated as some sort of a combinatorial
optimization problem. To solve large scale
optimization problems, we need new computing
infrastructure which enables us to easily access to
computational resources including hardware and
software library distributed across a wide area
network like the Internet. For example, Applegate
et a. [1] implemented the Danzig, Fulkerson and
Johnson's cutting plane method for the large scale
TSP (travelling salesman problem). They obtained
the optima solution of the TSP that has 15,112
cities (nodes) in Germany. The computation was
executed on anetwork of 110 processors located at
Rice and Princeton Universities. They estimated the
total computation time was 22.6 years, scaled to a
Compag EV6 (21264) Alpha processor running at
500MHz.

There are many algorithmic techniques
like Brute-Force Algorithms, Divide-and-Conquer
Algorithms, Dynamic Programming, Greedy
Algorithms, Genetic Algorithms, etc. Each of the
techniques has special properties that make them
appropriate for solving certain types of problems.

The objective of this paper is to prove that
Genetic Algorithm works well on combinatorial
problems than traditionally used algorithms. Thisis
done taking Shortest Path Routing Problem as an

example. The problem is solved using Exhaustive
method, Greedy Method and Genetic Algorithm,
which has been solved using practical examples.
This paper also provides information about the
merits and demerits of using the different
algorithms and justifies Genetic Algorithm.

Problem Specification

The problem is primarily concerned with
using Genetic Algorithms and other Heuristic
algorithms to solve Shortest Path Routing Problem.

Shortest Path Routing Problem

The underlying topology of multihop
networks can be specified by the directed graph G =
{N, A}, where N is a set of nodes (vertices), and A
isaset of its links (arcs or edges). There is a cost
C;; associated with each link {i,j}. The costs are
specified by the cost matrix C = | C;; |, where C;
denotes a cost of transmitting a packet on link {i,j}.
Each link has the link connection indicator denoted
by, which plays the role of a chromosome map
(masking) providing information on whether the
link from node i to node j is included in a routing
path or not.

Methods Adopted

Shortest Path problem is solved using the
following methods:
Exhaustive Algorithm
Greedy Algorithm
Genetic Algorithm

mailto:pr74_99@yahoo.com
mailto:fenneer@yahoo.com

Exhaustive Algorithm

The N-node Shortest Path Routing
problem is solved by systematically considering all
the permutations of the given n nodes. Then, the
minimum cost network is selected by comparing
the costs. Exhaustive Algorithm requires as input,
the number of nodes (N) and the cost matrix (C).

Algorithm EA (Exhaugive Algorithm) To find the
Shortest path route by systematically considering
al the permutations on the first N-1 positive
integers. In this way generate all possible routes
and choose ROUTE with the least cost MIN.
Exhaustive requires as input the number of nodes N
and the cost matrix C.

Step 0. [Initialize] Set ROUTE = /&
and MIN= p

Step 1. [Generate al permutations] For | = 1 to (N-
1)! do through step 4 od; and STOP.

Step 2. [Get new Permutation]
Set P=the Ith permutation of integers 1,2,..N-1

Step 3. [Congruct new Route] Construct the route
R(P) that corresponds to the permutation P; and
compute the cost COST(R(P)).

Step 4. [Compare] If COST(R(P)) < MIN the set
ROUTE = R(P) and MIN = COST(R(P)) fi.

Greedy Algorithm

Greedy Algorithm are usually very fast and
intuitively appealing. It is based on Hill-climbing
idea. The goal is to find a minimum-cost network.
It is one of the Heuristics Methods of solving a
problem. Heuristic is defined as having the
following two properties:

1. It will usually find good, although not
necessarily, optimum solutions.

2. It is faster and easer to implement than any
other known exact agorithms.

Algorithm GREEDY: To construct a candidate
least-cost route ROUTE, which has a cost COST,
for a N-node Shortest Path Problem with cost
matrix C, starting at vertex U.

Step 0. [Initialize] Set ROUTE = A& ; COST = O;
V = U; labd U "used" and al other vertices

"unsed”. (Vertex V is the present position in the
network.)

Step 1. [Vist al cities] For K = 1 to N-1 do
through step 2 od.

Step 2. [Choose next edge] Let (V,W) be the least
costly edge from V to any unused vertex W,

Set ROUTE = ROUTE + (V,W);

COST = COST + C(V,W); label W "used"; and
saV=W,

Step 3. [Complete ROUTE] set ROUTE = ROUTE
+ (V,1); COST = COST + C(V,1);and STOP.

Genetic Algorithm

Genetic Algorithms are search algorithms
based on the mechanics of Natural sdection &
natural genetic. They combine the fittest among
string structures with structured yet randomized
information exchange to form a search algorithm.
In every generation, a new set of artificial crestures
(strings) is created using bits and pieces of the
fittest of the old. An occasional new part istried for
good measure[2].

Algorithm is started with a set of
solutions (represented by chromosomes) called
population. Solutions from one population are
taken and used to form a new population. Thisis
done in a hope, that the new population will be
better than the old one.

Solutions which are selected to form
new solutions (offspring) are selected according
to their fitness - the more suitable they are the
more chances they have to reproduce. This is
repeated until some condition is satisfied.

Outline of Genetic Algorithm: [2]

1. [Start] Generate random population of n
chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitness f(x) of each
chromosome x in the population

3. [New population] Create a new
population by repeating following steps
until the new population is complete

a. [Selection] Select two parent
chromosomes from a population
according to their fitness (the
better fitness, the bigger chance
to be sel ected)

b. [Crossover] With a crossover
probability cross over the parents
to form a new offspring
(children). If no crossover was
performed, offspring is an exact
copy of parents.

c. [Mutation] With a mutation
probability mutate new offspring
a each locus (position in
chromosome).

d. [Accepting] Place new offspring
in anew population

4. [Replace] Use new generated population
for afurther run of algorithm

5. [Ted] If the end condition is satisfied,
stop, and return the best solution in current
popul ation

6. [Loop] Goto step 2

Encoding of a Chromosome

The chromosome should in some way
contain information about solution. The mostly
encoding isdone with a binary string.

Example : The chromosome:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome has one binary
string. Each bit in this string can represent some
characteristic of the solution.

For direct integer or real numbers is
also used to encode.

Crossover

Crossover sdlects genes from parent
chromosomes and creates a new offspring. The
smplest way how to do this is to choose
randomly some crossover point and everything
before this point copy from a first parent and
then everything after a crossover point copy
from the second parent.

Crossover can then look like this (| is

Chromosome 1 11011 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

There are other ways how to make
crossover, for example we can choose more
Crossover points.

Specific crossover made for a specific
problem can improve performance of the genetic
algorithm.

M utation

Thisisto prevent falling all solutionsin
population into a local optimum of solved
problem.

Mutation changes randomly the new
offspring. For binary encoding we can switch a
few randomly chosen bits from 1 to O or from O
tol.

Mutation can then be following:

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

The mutation depends on the encoding as well as
the crossover. For example when we are
encoding permutations, mutation could be
exchanging two genes.

FINDINGS

Exhaustive Algorithm

the crossover point):

This algorithm is exponentid. In an n-
node problem, Algorithm ETS requires exhaustive
permutation of the first n-1 positive integers. There
are around (n-1)! of these permutations. Once a

permutation is presented, it is possible to find the
corresponding route and its cost. The route and cost
are stored. As al the permutations are presented
with al the corresponding routes and costs, the
shortest path route is generated on comparison.

For example if N=5, it generates 120
routes, its costs and by comparing the cost of 120
routes, it gives all the routes with minimum cost. If
N = 6, then, 720 Routes are generated. If N = 10,
then, 36,28,800 ROUTES are to be generated.

As an example Condder a 7 node problem,
whose cost matrix isdefined | n table-1:

Nodes 0 1 2 3 4 5 6
0 0 6 12 4 8 1
1 6 0 10 4 3 3
2 8 7 0 11 3 11 8
3 5 4 1 0 5 8 6
4 5 2 7 8 0 3 7
5 6 3 11 5 4 0 2
6 2 3 9 7 4 3 0

Table-1: Cost Matrix

When the above problem is solved using this
algorithm, it suggests 6 routes with a Minimum cost
of 28 out of 5040 routes that were generated.

Greedy Algorithm

Greedy Algorithms are usualy very fast
and intuitively appedling, but they do not aways
work. Algorithm GTS is certainly easy to program
but they are not that fast. To solve a Shortest path
Problem it takes O (n?) operations [4].

Algorithm may prove to be good for a
reasonable large value of n. For example if N=5,
then the algorithm finds 5 different ROUTEs
having each node as darting node and its
corresponding costs. Then by comparison, the
ROUTE with least cost is produced as output. The
total number of possible ROUTEs that can be
generated for a 5-node problem is 120. But, Greedy
generates only 5 routes and selects one out of it.
Hence, there are possibilities of better solutions,
which areignored.

Another problem with this Greedy
Algorithm is the greedy way of sdlecting the next
node from a visited node. By doing so, there may
be a possibility to select node with larger costs
during the compl etion of the ROUTE [3].

For Example Condder the same 7 node

problem, whose cost matrix is defined in table-1
The solution for thisproblem is
4alasbabatal3azas

Total Min.Cost =29

Genetic Algorithm
ALGORITHM SPGA (SHORTEST PATH GA)

Considering the strengths and weaknesses of
both the algorithms, a new algorithm is devel oped.
This algorithm produces an optimum solution in a
fewer steps.

Algorithm SPGA (Shortest Path Genetic Algorithm):
To congruct a candidate least —cost ROUTE
ROUTE, which has a cost COST, for an N-node
shortest path routing problem with cost matrix C
gtarting at vertex U

StepO: [Initialize] set ROUTEN A COSTI(30;
Label U “used” and all other vertices

“unused” (Vertex V isthe present position in the
network)

Stepl: [Visit al nodes] For K31 to N-1 do step?
od;

Step2: [Choose next edge] Let(v,w) be theleast
cost edge from V to any unused vertex W.

Set ROUTERROUTE + (V,W)
COSTIRCOST+C(V,W); label W “used” and set
VI3W.

Step3: [Complete route] Set
ROUTERROUTE+(V,1); COSTIRRCOST+C(V,1);

Step4: [Initialize] COST1130; COST2(30
Step5: [Assign ROUTE to §] SSROUTE;
Step6: [Divide §] Set X = §/2;

Step7:[Vidt nodes] For 1I=1to X+1 do
COST113COST1+COST (1)

Step8:[Vidt nodes] For I=X+1to N do COST213
COST2+COST(J)

Step9:[Compare] If COST1>COST2 then call
ETS(2,X+1) Else call ETS(X+1,N-1) fi

On the whole the algorithm can be viewed as
two phases, whose functionality are explained
bel ow:

Phase-1 (SELECTION of the fittest PARENT)

The above agorithm initially selects a
Parent Route by applying a simple Fitness function.
Here, the fittest of the Route is sdlected by using
the Greedy method.

Phase-11 (Applying Genetic Operator on the fittest
PARENT)

Now the Parent Route is divided into two
parts. The cost of each parts are caculated. The
costs are compared and the part that has the
maximum cost is considered for repair. Applying
Algorithm EA on this part of the route above
basically does the Repair. As aresult the best route
found by Algorithm EA is replaced in the original
parent, which is now the offspring. Cost of the
offspring isfound out.

Here the Algorithm SPGA reduces the
complexity and gives the optimum. Considering the
example problem, the agorithm produces the
following result:

Min.Total Cost =28 with 13 iterations

COMPARISON

From the examples above, it is clear that Algorithm
EA (Exhaustive) gives the Shortest Path route out
of 5040 routes, Algorithm Greedy gives the
Shortest Path route out of 7 routes and Algorithm
SPGA gives the Shortest Path route out of 13
routes as shown in thefollowing table-3.

Cost of
No. of No. Routes
Method Nodes Gener ated Best
Route
Exhaugtive 7 5040 28
Greedy 7 7 29
SPGA 7 13 28

Table-3: Comparison of the Methods

CONCLUSION

On observation, it is clear that Genetic
Algorithm works better on Combinatoria
Problems. Shortest Path Routing Problem being a
good example for Combinatorial Problems work
well when solved using Genetic Algorithm than the
other two methods.

This is only a smple attempt towards
optimum solution in a fewer iterations by fusing

both Greedy and Exhaustive algorithms which is
designed and tested. Even better results can be
achieved by developing more sophigticated
algorithm. Shortest Path Routing problem works
well when solved using SPGA Algorithm. This
innovative algorithm also needs less processing
time and storage.

REFERENCES

[1] Applegate, D., R. Bixby, V. Chvata and W. Cook,

(2]

“Implementing the Dantzig-Fulkerson-Johnson
Algorithm for Large Traveling Salesman
Problems’, Mathematical Programming, vol. 97,
2003.

Goldberg, D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning. Boston:
Addison ~Wesley, 1989.

[3] Goodman, S.E. & S.T. Hedetniemi, Introduction to

the Design and Analyss of Algorithm. New Y ork:
McGraw-Hill, 1977.

[4] Heillmen, Gregory L., Data Structures, Algorithms,

and Object-Oriented Programming. New Delhi:
Tata McGraw-Hill, 2002.

