

Genetic Access on Combinatorial Problems

C Prasanna Ranjith
Al Jabal Al Gharbi University

Gharyan, Libya
pr74_99@yahoo.com

Taher Omran Ahmed

Al Jabal Al Gharbi University
Gharyan, Libya

fenneer@yahoo.com

Abstract – Genetic Algorithms are adaptive methods, which may be used to solve search and optimization
problems. They are based on the genetic processes of biological organisms that evolve according to the
principles of natural selection and “survival of the fittest”. By mimicking this process, Genetic Algorithms are
able to “evolve” solutions to combinatorial problems.

The Objective of this paper is to consider Shortest Path Routing Problem and solve it using Greedy and

Exhaustive algorithms. The strengths and weaknesses of both the algorithms are studied. A simple algorithm is
proposed using the concept of GA that aims to cure all the infeasible chromosomes with a simple repair function.
Analysis shows that the proposed algorithm exhibits a much better quality of solution and a much higher rate of
convergence.

INTRODUCTION

Many researchers have applied Genetic
Algorithm to the Shortest Path Routing problem,
multicasting routing problem, ATM bandwidth
allocation problem, and the dynamic routing
problem. It is noted that all these problems can be
formulated as some sort of a combinatorial
optimization problem. To solve large scale
optimization problems, we need new computing
infrastructure which enables us to easily access to
computational resources including hardware and
software library distributed across a wide area
network like the Internet. For example, Applegate
et al. [1] implemented the Danzig, Fulkerson and
Johnson's cutting plane method for the large scale
TSP (travelling salesman problem). They obtained
the optimal solution of the TSP that has 15,112
cities (nodes) in Germany. The computation was
executed on a network of 110 processors located at
Rice and Princeton Universities. They estimated the
total computation time was 22.6 years, scaled to a
Compaq EV6 (21264) Alpha processor running at
500MHz.

There are many algorithmic techniques

like Brute-Force Algorithms, Divide-and-Conquer
Algorithms, Dynamic Programming, Greedy
Algorithms, Genetic Algorithms, etc. Each of the
techniques has special properties that make them
appropriate for solving certain types of problems.

The objective of this paper is to prove that
Genetic Algorithm works well on combinatorial
problems than traditionally used algorithms. This is
done taking Shortest Path Routing Problem as an

example. The problem is solved using Exhaustive
method, Greedy Method and Genetic Algorithm,
which has been solved using practical examples.
This paper also provides information about the
merits and demerits of using the different
algorithms and justifies Genetic Algorithm.

Problem Specification

The problem is primarily concerned with
using Genetic Algorithms and other Heuristic
algorithms to solve Shortest Path Routing Problem.

Shortest Path Routing Problem

The underlying topology of multihop
networks can be specified by the directed graph G =
{N, A}, where N is a set of nodes (vertices), and A
is a set of its links (arcs or edges). There is a cost
Cij associated with each link {i,j}. The costs are
specified by the cost matrix C = | Cij |, where Cij
denotes a cost of transmitting a packet on link {i,j}.
Each link has the link connection indicator denoted
by, which plays the role of a chromosome map
(masking) providing information on whether the
link from node i to node j is included in a routing
path or not.

Methods Adopted

Shortest Path problem is solved using the
following methods:
 Exhaustive Algorithm
 Greedy Algorithm
 Genetic Algorithm

mailto:pr74_99@yahoo.com
mailto:fenneer@yahoo.com

Exhaustive Algorithm

The N-node Shortest Path Routing
problem is solved by systematically considering all
the permutations of the given n nodes. Then, the
minimum cost network is selected by comparing
the costs. Exhaustive Algorithm requires as input,
the number of nodes (N) and the cost matrix (C).

Algorithm EA (Exhaustive Algorithm) To find the
Shortest path route by systematically considering
all the permutations on the first N-1 positive
integers. In this way generate all possible routes
and choose ROUTE with the least cost MIN.
Exhaustive requires as input the number of nodes N
and the cost matrix C.

Step 0. [Initialize] Set ROUTE = ∅;
and MIN = ∝

Step 1. [Generate all permutations] For I = 1 to (N-
1)! do through step 4 od; and STOP.

Step 2. [Get new Permutation]
Set P=the Ith permutation of integers 1,2,..N-1

Step 3. [Construct new Route] Construct the route
R(P) that corresponds to the permutation P; and
compute the cost COST(R(P)).

Step 4. [Compare] If COST(R(P)) < MIN the set
ROUTE = R(P) and MIN = COST(R(P)) fi.

Greedy Algorithm

Greedy Algorithm are usually very fast and
intuitively appealing. It is based on Hill-climbing
idea. The goal is to find a minimum-cost network.
It is one of the Heuristics Methods of solving a
problem. Heuristic is defined as having the
following two properties:

1. It will usually find good, although not

necessarily, optimum solutions.

2. It is faster and easier to implement than any
other known exact algorithms.

Algorithm GREEDY: To construct a candidate
least-cost route ROUTE, which has a cost COST,
for a N-node Shortest Path Problem with cost
matrix C, starting at vertex U.

Step 0. [Initialize] Set ROUTE = ∅ ; COST = 0;
V = U; label U "used" and all other vertices

"unsed". (Vertex V is the present position in the
network.)
Step 1. [Visit all cities] For K = 1 to N-1 do
through step 2 od.

Step 2. [Choose next edge] Let (V,W) be the least
costly edge from V to any unused vertex W;
Set ROUTE = ROUTE + (V,W);
COST = COST + C(V,W); label W "used"; and
set V = W;

Step 3. [Complete ROUTE] set ROUTE = ROUTE
+ (V,1); COST = COST + C(V,1);and STOP.

Genetic Algorithm

Genetic Algorithms are search algorithms
based on the mechanics of Natural selection &
natural genetic. They combine the fittest among
string structures with structured yet randomized
information exchange to form a search algorithm.
In every generation, a new set of artificial creatures
(strings) is created using bits and pieces of the
fittest of the old. An occasional new part is tried for
good measure[2].

Algorithm is started with a set of
solutions (represented by chromosomes) called
population. Solutions from one population are
taken and used to form a new population. This is
done in a hope, that the new population will be
better than the old one.

Solutions which are selected to form
new solutions (offspring) are selected according
to their fitness - the more suitable they are the
more chances they have to reproduce. This is
repeated until some condition is satisfied.

Outline of Genetic Algorithm: [2]

1. [Start] Generate random population of n
chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitness f(x) of each
chromosome x in the population

3. [New population] Create a new

population by repeating following steps
until the new population is complete

a. [Selection] Select two parent

chromosomes from a population
according to their fitness (the
better fitness, the bigger chance
to be selected)

b. [Crossover] With a crossover
probability cross over the parents
to form a new offspring
(children). If no crossover was
performed, offspring is an exact
copy of parents.

c. [Mutation] With a mutation
probability mutate new offspring
at each locus (position in
chromosome).

d. [Accepting] Place new offspring
in a new population

4. [Replace] Use new generated population

for a further run of algorithm

5. [Test] If the end condition is satisfied,
stop, and return the best solution in current
population

6. [Loop] Go to step 2

Encoding of a Chromosome

The chromosome should in some way

contain information about solution. The mostly
encoding is done with a binary string.
Example : The chromosome:

Chromosome 1

1101100100110110

Chromosome 2

1101111000011110

Each chromosome has one binary

string. Each bit in this string can represent some
characteristic of the solution.

For direct integer or real numbers is
also used to encode.

Crossover

Crossover selects genes from parent
chromosomes and creates a new offspring. The
simplest way how to do this is to choose
randomly some crossover point and everything
before this point copy from a first parent and
then everything after a crossover point copy
from the second parent.

Crossover can then look like this (| is

the crossover point):

Chromosome 1

11011| 00100110110

Chromosome 2

11011 | 11000011110

Offspring 1

11011 | 11000011110

Offspring 2

11011 | 00100110110

There are other ways how to make

crossover, for example we can choose more
crossover points.

Specific crossover made for a specific
problem can improve performance of the genetic
algorithm.

Mutation

This is to prevent falling all solutions in
population into a local optimum of solved
problem.

Mutation changes randomly the new
offspring. For binary encoding we can switch a
few randomly chosen bits from 1 to 0 or from 0
to 1.

Mutation can then be following:

Original offspring 1

1101111000011110

Original offspring 2

1101100100110110

Mutated offspring 1

1100111000011110

Mutated offspring 2

1101101100110110

The mutation depends on the encoding as well as
the crossover. For example when we are
encoding permutations, mutation could be
exchanging two genes.

FINDINGS

Exhaustive Algorithm

This algorithm is exponential. In an n-
node problem, Algorithm ETS requires exhaustive
permutation of the first n-1 positive integers. There
are around (n-1)! of these permutations. Once a

permutation is presented, it is possible to find the
corresponding route and its cost. The route and cost
are stored. As all the permutations are presented
with all the corresponding routes and costs, the
shortest path route is generated on comparison.

For example if N=5, it generates 120
routes, its costs and by comparing the cost of 120
routes, it gives all the routes with minimum cost. If
N = 6, then, 720 Routes are generated. If N = 10,
then, 36,28,800 ROUTEs are to be generated.

 As an example Consider a 7 node problem,
whose cost matrix is defined I n table-1:

 Table-1: Cost Matrix

 When the above problem is solved using this
algorithm, it suggests 6 routes with a Minimum cost
of 28 out of 5040 routes that were generated.

Greedy Algorithm

Greedy Algorithms are usually very fast
and intuitively appealing, but they do not always
work. Algorithm GTS is certainly easy to program
but they are not that fast. To solve a Shortest path
Problem it takes O (n2) operations [4].

Algorithm may prove to be good for a

reasonable large value of n. For example if N=5,
then the algorithm finds 5 different ROUTEs
having each node as starting node and its
corresponding costs. Then by comparison, the
ROUTE with least cost is produced as output. The
total number of possible ROUTEs that can be
generated for a 5-node problem is 120. But, Greedy
generates only 5 routes and selects one out of it.
Hence, there are possibilities of better solutions,
which are ignored.

Another problem with this Greedy
Algorithm is the greedy way of selecting the next
node from a visited node. By doing so, there may
be a possibility to select node with larger costs
during the completion of the ROUTE [3].

 For Example Consider the same 7 node

problem, whose cost matrix is defined in table-1

The solution for this problem is

 4à1à5à6à0à3à2à4

 Total Min.Cost = 29

Genetic Algorithm

ALGORITHM SPGA (SHORTEST PATH GA)

 Considering the strengths and weaknesses of
both the algorithms, a new algorithm is developed.
This algorithm produces an optimum solution in a
fewer steps.

Algorithm SPGA (Shortest Path Genetic Algorithm):
To construct a candidate least –cost ROUTE
ROUTE, which has a cost COST, for an N-node
shortest path routing problem with cost matrix C
starting at vertex U

Step0: [Initialize] set ROUTEß∅; COSTß0;
Label U “used” and all other vertices
“unused” (Vertex V is the present position in the
network)

Step1: [Visit all nodes] For Kß1 to N-1 do step2
od;

Step2: [Choose next edge] Let(v,w) be the least
cost edge from V to any unused vertex W.
Set ROUTEßROUTE + (V,W)
COSTßCOST+C(V,W); label W “used” and set
VßW.

Step3: [Complete route] Set
ROUTEßROUTE+(V,1); COSTßCOST+C(V,1);

Step4: [Initialize] COST1ß0; COST2ß0

Step5: [Assign ROUTE to S] S=ROUTE;

Step6: [Divide S] Set X = S/2;

Step7:[Visit nodes] For I=1 to X+1 do
COST1ßCOST1+COST(I)

Step8:[Visit nodes] For J=X+1 to N do COST2ß
COST2+COST(J)

Step9:[Compare] If COST1>COST2 then call
ETS(2,X+1) Else call ETS(X+1,N-1) fi

 On the whole the algorithm can be viewed as
two phases, whose functionality are explained
below:

Nodes 0 1 2 3 4 5 6

0 0 6 12 6 4 8 1
1 6 0 10 5 4 3 3
2 8 7 0 11 3 11 8
3 5 4 11 0 5 8 6
4 5 2 7 8 0 3 7
5 6 3 11 5 4 0 2
6 2 3 9 7 4 3 0

Phase-I (SELECTION of the fittest PARENT)

 The above algorithm initially selects a
Parent Route by applying a simple Fitness function.
Here, the fittest of the Route is selected by using
the Greedy method.

Phase-II (Applying Genetic Operator on the fittest
PARENT)

 Now the Parent Route is divided into two
parts. The cost of each parts are calculated. The
costs are compared and the part that has the
maximum cost is considered for repair. Applying
Algorithm EA on this part of the route above
basically does the Repair. As a result the best route
found by Algorithm EA is replaced in the original
parent, which is now the offspring. Cost of the
offspring is found out.

 Here the Algorithm SPGA reduces the
complexity and gives the optimum. Considering the
example problem, the algorithm produces the
following result:

 Min.Total Cost = 28 with 13 iterations

COMPARISON

From the examples above, it is clear that Algorithm
EA (Exhaustive) gives the Shortest Path route out
of 5040 routes, Algorithm Greedy gives the
Shortest Path route out of 7 routes and Algorithm
SPGA gives the Shortest Path route out of 13
routes as shown in the following table-3.

Table-3: Comparison of the Methods

CONCLUSION

On observation, it is clear that Genetic
Algorithm works better on Combinatorial
Problems. Shortest Path Routing Problem being a
good example for Combinatorial Problems work
well when solved using Genetic Algorithm than the
other two methods.

This is only a simple attempt towards

optimum solution in a fewer iterations by fusing

both Greedy and Exhaustive algorithms which is
designed and tested. Even better results can be
achieved by developing more sophisticated
algorithm. Shortest Path Routing problem works
well when solved using SPGA Algorithm. This
innovative algorithm also needs less processing
time and storage.

REFERENCES

[1] Applegate, D., R. Bixby, V. Chvatal and W. Cook,

“Implementing the Dantzig-Fulkerson-Johnson
Algorithm for Large Traveling Salesman
Problems", Mathematical Programming, vol. 97,
2003.

[2] Goldberg, D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning. Boston:
Addison –Wesley, 1989.

[3] Goodman, S.E. & S.T. Hedetniemi, Introduction to
the Design and Analysis of Algorithm. New York:
McGraw-Hill, 1977.

[4] Heilmen, Gregory L., Data Structures, Algorithms,
and Object-Oriented Programming. New Delhi:
Tata McGraw-Hill, 2002.

Method No. of
Nodes

No. Routes
Generated

Cost of
Best

Route
Exhaustive 7 5040 28

Greedy 7 7 29

SPGA 7 13 28

