
Hierarchal Traveling Design Pattern for Mobile Agents in JADE
Framework

Mohammed Eshtay
Applied Science University

Faculty of IT, P.O.Box 11931, Amman-Jordan
M_eshtay@asu.edu.jo

ABSTRACT

Mobile agents are program that can migrate between different hosts, begin execution at some
point and then continue their execution at another host from the point they stopped. Many design
patterns have been proposed for different problems of mobile agents. Itinerary, Star-Shaped,
Branching, Master-Slave, MoProxy, Meeting, Facilitator, and Mutual Itinerary Recording are
examples of mobile agents design patterns, some of these patterns implemented and tested, some are
partially implemented and some still need implementation .

This paper proposes a design pattern called (Hierarchal Traveling design pattern) which is
concerned in the way that mobile agents will migrate between different host, this pattern can be
classified under the traveling design patterns.

Key Words:
Mobile Software Agents, Mobile Agents Design Patterns, Hierarchal Design Pattern, Itinerary Pattern,
Traveling Design Patterns, JADE Framework.

1. Introduction

Software agents are programs assist people
and act on their behalf [1]. Mobile agents are
software agents with an additional property
which is the ability to transport them from one
system to another system in the network; the
mobile agents are not bound to the system
where they begin execution, mobile agents can
begin execution in some part of the network
and then dispatch and travel to another part
and continue execution.

Using mobile agents help to improve the
creation of the distributed systems by reducing
the network load, overcome network latency,
execute asynchronously and they are robust
and fault-tolerant.

Distributed Information Retrieval, parallel
processing, and monitoring and notification

are some of the applications that can get great
benefit from using mobile agents.

In this paper the main concern is the design
patterns of mobile agents, design patterns can
help by capturing solutions to common
problems in agent design.

The use of design patterns is an approach to
improve the development process of
applications and the quality of the final
products.

Agent transfer:

The transfer process can be initiated by the
agent itself, by another agent residing in the
same place, or by an agent or no agent system
outside the place [1]
When an agent wants to travel to another
place, it must know its destination.

mailto:M_eshtay@asu.edu.jo

The following figure [figure 1] describes the
process of agent transfer.

Figure 1 - Agent Transfer Process

2. Hierarchal Model

2.1. Design Patterns

Design patterns can be classified into three
classes: traveling patterns, task patterns, and
interaction patterns

1. Traveling patterns: traveling patterns
deal with the movement of agents
between different parts of the network,
the Itinerary pattern is an example of
traveling patterns, this pattern,
proposed in [3], provides a way to
execute the migration of an agent,
which will be responsible for executing
a given task in remote hosts. The agent
receives an itinerary on the source
agency, indicating the sequence of
agencies it should visit. Once in an
agency, the agent executes its task
locally and then continues on its

itinerary. After visiting the last agency,
the agent goes back to its source
agency [2]. Branching and Forwarding
patterns are examples of traveling
patterns.

2. Task Patterns: task patterns are

concerned in breaking down the tasks
and how to distribute these tasks
among agents, single task can be
performed by one agent or by more
than one agent, master-slave pattern is
a common example of this type of
patterns, On the Master-Slave pattern
[4], a master agent delegates a task to
be done on a given agency to a slave
agent, in order continue executing
other tasks that cannot be interrupted.
The slave agent visits the indicated
agency, where it accomplishes the task
and then returns to the source agency
with the results. The master agent
receives the results from the slave
agent. Then, the slave one destroys
itself. Another example is Plan pattern.

3. Interaction Patterns: are concerned

with interaction and communication of
agents, Meeting and Finder are
examples of this pattern [1].

2.2. Model

The proposed model is related to traveling
patterns, the model is an extension of Itinerary
pattern. The hierarchal pattern is concerned
with the management of the movement of
mobile agents. This pattern will use the depth
first algorithm in the process of routing, we
can consider as a combination between
Itinerary pattern and depth first algorithm.

On the hieratical pattern the agent receives a
list of agencies that it has to migrate to. So, it
migrates to the first destination agency
beginning from the left most, where it
executes a task, then going to the other most
left agency, if the agent reaches a dead end it

Sender

Suspend Execution

Serialize Agent

Transfer Data

Encode Data

Receiver

Resume Execution

Deserialize Agent

Receive Data

Decode Data

will go back to the upper agency and then go
right and so on. The agent repeats this cycle
until it visits the last agency on its list. [Figure
2].

Figure 2 - Hierarchal Pattern

Another scenario of the hierarchal pattern is

that the agent receives a list of agencies to
visit and clones itself according to the
proposed number of nodes (agencies) in the
tree of agencies. Then all clones will visit an
agency of the received list. Each clone has to
execute its corresponding task and notify the
source agency when the task is completed.
The importance of this part of the pattern is
that it splits the tasks that can be executed in
parallel. [Figure 3]

Figure 3 - Hierarchal Pattern with Clones

2.3. Relationship between Hierarchal
Object and Agent Object

One of the main objectives of the hierarchal
pattern is to move the responsibility of
traveling from the agent itself to the associated
hierarchal object, the Hierarchal class [Figure
4] should be associated with the Agent class
and take the responsibility of navigation from
one host to another, the Hierarchal class must
implement an interface to communicate with
the agent and to dispatch the agent to the new
destination and it must define exceptions for
the expected exceptions that might appear, for
example if the Hierarchal class cannot dispatch
to the required host.

Figure 4 – Hierarchal Class

3. Implementation

For implementing hierarchal pattern we will
adopt JADE frameworks and then implement
the above classes and taking into consideration
the interface between Hierarchal classes and
JADE framework.

Implementing the hierarchal pattern is out
of the scope of this paper.

4. Conclusions and Future Directions

In this paper I am introducing a model for a
design pattern that can be used in application
development. The use of design patterns has

URL origin
…

abstract go()
abstract hasMoreDest()

go()
hasMoreDest()

Agent Itinerary

Hierarchal

been increased due to the advantages they can
bring to applications development, like reuse
and a better understanding of their project. In
this work we proposed a mobile agent design
pattern that can be implemented using JADE
framework. Hypothetically Hierarchal pattern
can be applied on problems that have the
nature of trees and the problems that can be
solved using parallel or distributed nature.
Using JADE for implementation eases this
process, one of the main advantages of JADE
is the possibility to check whether a
destination is available before transferring
agent to it or not, this is very useful for our
pattern because the pattern proposed deals
with the movement of mobile agents.
I will comment some future direction trends
based on this model:
• Implement the pattern in JADE framework
• Compare the results of using Hierarchal
pattern with other different patterns.
• applying some case studies using Hierarchal
pattern

5. References

[1] Y. Aridor and D.B. Lange. "Agent design
patterns: Elements of agent application
design." In Proceedings of the Second
International Conference on Autonomous
Agents. ACM Press, 1998.

[2] Emerson Ferreira de Araújo Lima,
"Implementing Mobile Agent Design Patterns
in the JADE framework 2003"

[3] Y. Tahara, A. Ohsuga, and S. Honiden.
"Agent system development method based on
agent patterns." IEEE Computer Society
Press, 1999.

[4] D.B. Lange and M. Oshima.
"Programming and Deploying Java Mobile
Agents with Aglets". Addison-Wesley,
Reading, MA, 1998.

[5] K. Yasser, A.Hesham, N. Elmahdi, S.
Allola, H. Ahmad. "Optimizing Mobile Agents
Migration Based on Decision Tree Learnin".
Proceedings of World Academy of Science
Engineering and Technology. 2007,

[6] P. Braun, W. Rossak."Mobile Agents:
Basic Concepts, Mobility Models and the
Tracy Toolkit". Centre for Intelligent & Multi-
Agent Systems, Morgan Kaufmann publishers,
Australia, 2004.

[7] S. Frederick, H. Lieberman. "Introduction
to Operations Research" 8th edition,
McGraw-Hill Education, USA, 2005.

[8] Faiz Al-Shrouf , Mohd Eshtay and Khaled
Abu Humaidan "Performance Optimization for
Mobile Agent Message Broadcast Model
Using V-Agent" IJCSNS International
Journal of Computer Science and Network
Security, VOL.8 No.8, p.p 285-290. 2008.

[9] Faiz Al-Shrouf, Mohammed Eshtay and
Ayman Turani, “Mobile Agent Optimization
Analysis of Least Time Approach Versus V-
Agent” EUROMEDIA'2009, April 2009.

[10] Munehiro Fukuda · Koichi Kashiwagi ·
Shinya Kobayashi “AgentTeamwork:
Coordinating grid-computing jobs with mobile
agents” Applied Intelligence, Springer
Netherlands, Volume 25, Number 2 / October,
2006, 181-198.

