
A Fast TS Algorithm for Solving the Flexible Job-shop Scheduling
Problem

Jun-qing Li

College of Computer Science, Liaocheng University, Liaocheng, 252059, People’s Republic of China
lijunqing@lcu.edu.cn

Quan-ke Pan

College of Computer Science, Liaocheng University, Liaocheng, 252059, People’s Republic of China
panquanke@lcu.edu.cn

Sheng-xian Xie

College of Computer Science, Liaocheng University, Liaocheng, 252059, People’s Republic of China
xsx@lcu.edu.cn

Yu-ting Wang

College of Computer Science, Liaocheng University, Liaocheng, 252059, People’s Republic of China
wangyuting@lcu.edu.cn

ABSTRACT

Flexible job-sop scheduling problem (FJSP) is harder than the classical JSP (Job-shop Scheduling
Problem). In this paper, a novel and fast tabu search (TS) algorithm are proposed for solving the FJSP, the
objective is to make the complete time minimum, i.e., to get the best makespan. In the new fast algorithm, TS
algorithm was used to produce initial solutions, and a new public critical block structure was proposed to find
a better solution around the solutions. The computational results have proved that the proposed hybrid
algorithm is efficient and effective for solving FJSP, especially for the problems with large scale.

Key Words: Flexible Job-shop Scheduling Problem; Tabu Search; public critical block structure.

1. Introduction
The classical job-shop problem (JSP) [1, 2]
schedules n jobs on m machines with some given
constraints and to minimize some given criterions.
Flexible job-shop problem (FJSP) is harder than the
classical job-shop problem. In FJSP, one operation
can be operated on a set of machines. Therefore,
there are two schedule parts in the FJSP: first,
assign a proper machine from a set of machines to
operation each operation; second, sequence each
operation on every given machine. The former
problem can be seen as a parallel machine problem,
which is also a NP-hard problem. The latter is equal
to a classical job-shop problem.

The FJSP recently captured the interests of many
researchers. The first paper about FJSP was
proposed by Brucker and Schlie (Brucker & Schlie,
1990), which discuss a simple FJSP model with two
jobs and operations performed on any machines

with the same processing time. To solve more genera FJSP
problems with more than two jobs and machines, many
researchers proposed hierarchical approaches, i.e.,
decomposing the problem into two stages: machine
assignment sub-problem and job shop sub-problem. The
first author to use the hierarchical idea was Brandimarte
(Brandimarte, 1993), who solved the first stage with some
existing dispatching rules and the second stage with tabu
search heuristic algorithms. Mati (Mati Rezg & Xie, 2001)
proposed a greedy heuristic for simultaneously dealing
with the two stages. Kacem (Kacem, Hammadi & Borne,
2002) solved the two stage problems with the GA. Zhang
(zhang & Gen, 2005) proposed a multistage-based GA to
solve multi-objective FJSP with k stages and m state. In
recent years, the tabu search algorithm has been verified by
many researchers adapt to solve the FJSP problems, and
has put up efficiency in solving the NP-hard combinatorial
optimization problems. Noureddine(Noureddine, 2007)
illustrated a combined ant system optimization with local
search methods, including tabu search for solving the FJSP

problems. However, the authors have not tested the
algorithm on large scale problems. Brandimarte
(Brandimarte, 199) proposed a routing and
scheduling method for the FJSP problems with the
tabu search algorithm. Saidi-mehrabad (Saidi-
mehrabad, 2007) gave a detailed solution for
solving FJSP with tabu search method.

In this paper, we give a new fast TS algorithm
for the FJSP solutions, and propose a public critical
structure for the sequence part. In each generation,
we use the TS algorithm to solve the machine
assignment problem, and then, we use the public
critical block structure to solve the operation
sequence problem. After a detailed experiment, the
result verifies that our novel method can get better
solutions in very short period.

2. Problem formulation
The FJSP can be an extension of the classical JSP;
therefore, we can formulate the FJSP based on JSP.
Consider a set of n jobs, noted },....,{ 21 nJJJJ = ,
every job in the set J has a given number operations,
and should be operated on a given machine from a
machine set named },....,{ 21 mMMMM = . So, there
are n jobs and m machines. In the classical JSP
problem, with n jobs and m machines, there are

mn * operations. However, in FJSP problems, the
operation number can vary with the problem
assumption. There are two kinds of FJSP, i.e., T-
FJSP and P-FJSP. For the T-FJSP, each job can be
operated on every machine from the set M; for the
P-FJSP, there is a problem constraint for the
operating process, in table 1, we can see that one
operation of a job must be processed by a set of
machines in MM ⊆' . In the sequencing stage for
the FJSP, we must consider the candidate machine
set size for every operation waiting for processed.
The detailed definition of the FJSP as follows:

 A set of J independent jobs.
 Each job iJ can be operated on a given

set of machines iM .
 The jiO , represents the jth operation of iJ .

The machines set waiting for processing
the jiO , noted by MM k ⊆ .

 We use kjip ,, to represent the processing

time of jiO , operated on the kth machine.

 There have two assumptions: a started
operation can not be interrupted; each
machine only can process one operation at
the same time.

 The objective in our paper is to find the
minimum time of the whole operations.

Table 1 Processing time table
 M1 M2 M3 M4

O11 7 6 4 5
O12 4 8 5 6

O13 9 5 4 7

O21 2 5 1 3
O22 4 6 8 4
O23 9 7 2 2

O31 8 6 3 5
O32 3 5 8 3

3. Encoding of Solutions
The FJSP problems involve two decision stages, i.e.,

machine assignment stage and operation sequence stage.
Therefore, a solution consists of two parts of vectors,

1A (machine assignment vector) and 2A (operation
sequence vector). 1A represents the corresponding selected
machine for every operation; 2A indicates the operation
sequence on every machine.

The length of vector 1A equals the total number of
operations. Each element in 1A represents the selected
machine number for processing the operation in that
position. For example, in Fig.1, the 5th element in 1A is 2,
which means machine 2 is selected to process the
operation 21O .

During the initialization phase, every solution in the
population will get a storage space for the string 1A with the
length equals l. For each position in 1A , the most suitable
machine will be selected from a set of alternative machines.
So, the computational complexity of the initialization
of 1A will be determined by the total number of operations,
and the average number of alternative machines for every

operation, and it can be noted as)(
1
∑
=

l

i
ialO .

For the vector 2A , Gen et al. proposed a relative nice
solution. They name all operations for a job with the same
symbol. For example, in Fig.2, we place the symbol 2 in
both position 1 and 4. The figure means that the first
operation selected to be processed is the first operation of
job 2, i.e., 21O , and the 4th operation is 22O . Each job i will
be placed in 2A exactly ni times, here, ni represents the
operation number of job i. so, the length of 2A also equals l.
The computational complexity of initialization of

2A is)(lO .
position 1 2 3 4 5 6 7 8

operation O11 O12 O13 O21 O22 O23 O31 O32

machine 4 3 2 1 2 1 2 3

Fig.1. Machine assignment vector example

position 1 2 3 4 5 6 7 8

operation 2 1 3 2 1 2 1 3

Fig.2. Operation sequence vector example

4. The fast TS Algorithm

4.1. The Tabu Search Algorithm
TSA is proposed by Glober in 1986, which is a
famous local search algorithm to solve combined
optimize problem [9]. TSA has two main features:
(1) the capability to avoid local optimization. TSA
uses a tabu table to memory the better local
neighbors which have been searched and will be
neglected; (2) the capability to find better resolution.
TSA uses an aspiration rule to exploit a prohibited
resolution. During a situation that all the resolution
in the tabu table is prohibited, the aspiration can
make the whole search processing continue. The
basic flow of the TS algorithm was shown in Fig3.

Fig.3. the flow of TS algorithm

4.2. Public Critical Block Structure
The critical problem of local search is how to define
the effective neighborhood around the given
solution. The promising neighborhood is based on
the concept of critical path, which was firstly
proposed by Adams (Adams, Balas, & Zawack,
1988) in solving JSP problems. Many researches
have verified that block structure neighborhood will
decrease the search space deeply. Block structure is
based on the critical path. The critical path is
composed by many critical operations which must
be operated on the same machine.

We propose a public critical block structure
based on the basic critical block theory. In order to
describe the new algorithm easily, we give several
definitions, JPi, JSi, MPi, MSi indicates the

immediate job predecessor, job successor, machine
predecessor and machine successor of the operation
respectively.

Fig.4. Rules 1

Fig.5. Rules 2

The process of the public critical block was illustrated

in Fig.6.
procedure : getPublicCriticalOperations
input: a set named Mc including all critical
operations
output: all public critical operations
begin
 for every critical operation COi in Mc
 get the start time si and the end time ei of the
operation
 for every other critical operatins in Mc
 get the start time sj and the end time ej
 if occurs one of the case as followings:

1) ei>ej && sj<si && si < ej
2) sj < ei && ei < ej && sj > si
3) sj > si && ej < ei
4) si > sj && ei < ej

 then mark the operation COi as a non-critical
operation
 end for
 end for
 output the unmarked operations in Mc.
end

Fig.6. the process of Public critical block
We give six rules as following:
Rules 1: As shown in Fig4. If a public critical path

block containing u and v also contains JSv, that is, v is the
block rear, and then inserts u right after v.

Rules 2: If a public critical path block containing u and
v also contains JSv, that is, v is the block rear, and then
inserts v right before the first successive internal operations.

Rules 3: If a public critical path block containing u and
v also contains JSv, that is, v is the block rear, and then
inserts each internal operation just after v.

Rules 4: If a public critical path block containing u and
v also contains JPu, that is, u is the block head, and then
moves u right after the first successive internal operations.

Rules 5: As shown in Fig5. If a public critical path
block containing u and v also contains JPu, that is, u is the
block head, and then inserts each internal operation exactly
before u.

5. Computational result
To test our novel algorithm, we realized our
algorithm with VC6.0. The hardware environment
of our testament is Pentium4 2GHZ. In our
experiment, we tested different values for a list of
algorithm parameters, and the detailed parameters
as follows:

 tabu table length: n*m/2;
 tabu period: n*m/4;
 neighbors radius: 300

The detailed makespan we have found were
illustrated in table 2. From the computational results,
we can see that our novel method seems better in
almost all MK case, especially the hard cases such
as MK09 and MK10. The GA [5] seems better than
our method in several cases such as MK02, MK07.
The reason is that the GA algorithm takes longer
computational time than our method. With our
novel and fast algorithm, we can find the optimal
solution in very short time.

Table 2 Computational result
Name n m [11] GA[5] our method
MK01 10 6 40 40 40
MK02 10 6 29 26 28
MK03 15 8 - 204 204
MK04 15 8 67 60 60
MK05 15 4 176 173 173
MK06 10 15 67 63 62
MK07 20 5 147 139 142
MK08 20 10 523 523 523
MK09 20 10 320 311 308
MK10 20 15 229 212 219

6. Conclusion
In this paper, we give a novel fast algorithm with
TS and public critical block structure. In the
sequencing stage, we use public critical block
structure to find the best solution, and in the
machine assignment stage, we use TS algorithm to
find the near optimize solution around the given
solution. The computational result shows that our
algorithm can get better result than the GA
algorithm. The next work should focus on how to
decrease the computation time and make the
algorithm more robust.

7. Acknowledgement
This research was partially supported by grants
2006AA01Z455 from the National High-Tech
Research and Development Plan of China,
60874075, 70871065 from National Science Found
from China, 2004ZX17 and 2004ZX14 from the
Natural Science Foundation of Shandong Province,
J08LJ20 from Science Research and Development
of Provincial Department of Public Education of

Shandong and X061015 from the Science Foundation of
Liaocheng University.

References
[1] Sonmez, A. I. & Baykasoglu, A. (1998). A new

dynamic programming formulation of (n *m)
flowshop sequencing problems with due dates.
International Journal of Production Research, 36,
2269-2283.

[2] M.R. Garey, D.S. Johnson, R. Sethi, The Complexity
of Flowshop and Jobshop Scheduling. Mathematics of
Operations Research. 1(2) (1996), 117-129.

[3] Zhang, H. and Gen, M., Multistage-based genetic
algorithm for flexible job-shop scheduling problem.
Journal of Complexity International, 11, 223--232,
2005

[4] Kacem, I., Hammadi, S. and Borne, P. (2002),
Approach by localization and multi-objective
evolutionary optimization for flexible job-shop
scheduling problems, IEEE Transactions on Systems,
Man and Cybernetics, Part C, 32(1):408-419.

[5] F. Pezzella, G. Morganti, G. Ciaschetti. A genetic
algorithm for the Flexible Job-shop Scheduling
Problem. Computers & Operations Research, 2008,
35:3202-3212.

[6] Jie Gao, Mitsuo Gen, Linyan Sun: A hybrid of genetic
algorithm and bottleneck shifting for flexible job shop
scheduling problem. GECCO 2006: 1157-1164

[7] Wang Ling. Shop Scheduling with Genetic Algorithms
[M]. Beijing: Tsinghua University Press, 2003.

[8] Xing Wen-xun, Xie Jin-xing. Modern optimization
algorithm [M]. Beijing: Tsinghua University Press,
2005.

[9] Nowicki E, Smutnicki C. A fast taboo search algorithm
for the job-shop problem, Management Science, 1996,
42:797-813.

[10] Wang L, Zheng DZ. An effective optimization
strategy for job-shop scheduling problems. Computer
and Operations Research, 2001, 28:585-596.

[11] Nhu Binh Ho, Joc Cing Tay, Edmund M.-K. Lai. An
effective architecture for learning and evolving
flexible job-shop schedules. European Journal of
Operational Research, 179(2007):316-333.

[12] Van Laarhoven P J M, Aarts E H L, Lenstra J K. Job
shop scheduling by simulated annealing. Operations
Research, 1992,40:113-125

[13] Glover F., "Tabu Search: A Tutorial", Interfaces,
1990,20(4):74-94.

[14] Wang Ling. Intelligent Optimization Algorithms with
Applications [M]. Beijing: Tsinghua University Press,
2001.

