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ABSTRACT 
 
In this paper, we use hidden Markov model which is based on statistical model as a higher 
knowledge representation scheme  to induce Censored Production Rules that are well known in 
real time systems. We present a modified version of censored production rule that can fit with 
hidden Markov model and present a scheme to compute the certainty values of the obtained 
conclusions out of the induced rules. To compute the certainty values for the rule actions 
(conclusions), we use only the probability values associated with the hidden Markov model, and 
there is no need to use any of the other well known certainty computation approaches.  
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1.Introduction 
In the introduction, we present an overview 
of  hidden Markov model and  the censored 
production rules to make a simple pavement 
for the research objectives in the next 
section. 
 
1.1 What is Hidden Markov Model? 
Hidden Markov Model (HMM) is a 
statistical model based on probabilities used 
in various applications such as cryptanalysis, 
machine translation, speech and hand 
recognition, natural language processing, 
gene prediction and bioinformatics 
[1][5][17-22].  A Markov model is a 
probabilistic process over a finite set, {S1, 
..., Sk}, usually called its states. Each state-
transition generates a character from the 
alphabet of the process.  In a regular Markov 
model, the state is directly visible to the 
observer, and therefore the state transition 
probabilities are the only parameters. In a 
hidden Markov model, the state is not 
directly visible, but variables influenced by 
the state are visible. Each state has a 
probability distribution over the possible 
output tokens. Therefore, the sequence of 
tokens generated by an HMM gives some 

information about the sequence of states. 
There are three problems associated with 
HMM, evaluation, decoding, and learning 
problems. The evaluation problem, given the 
parameters of the model, compute the 
probability of a particular output sequence, 
and the probabilities of the hidden state 
values given that output sequence. The 
evaluation problem can be solved by 
forward-backward algorithm.  The decoding 
problem,  given the parameters of the model, 
find the most likely sequence of hidden 
states that could have generated a given 
output sequence. This is solved by Viterbi 
algorithm The learning problem, given an 
output sequence or a set of such sequences, 
find the most likely set of state transition 
and output probabilities. This problem is 
solved by the Baum-Welch algorithm [23].   
 
1.2 Censored Production Rules 
The standard rule structure is very well 
known in the area of expert systems and also 
currently in data mining clustering and 
prediction. The structure of standard rule is 
(<IF condition THEN action>). As an 
extension of standard production rule, 
Michalski and Winston proposed the 



censored production rule (CPR) of the form 
(<IF condition THEN action UNLESS 
censor>) as an underlying representational 
and computational mechanism to enable 
logic based systems to exhibit variable 
precision logic (VPL) in which certainty 
varies, while specificity stays constant [16].  
CPRs are used in real time applications. The 
more time we have, we check more censors 
and become more certain about our 
conclusions. If we do not have enough time 
to check the censors (or some of them), the 
system takes the action of the rule with less 
certainty. The form of CPR is P           D ⎣ C, 
where P is the premise, D is the decision, 
and C is the censor. The premise is a 
conjunction of literals; the decision is a 
single literal; and the censor is a disjunction 
of literal. CPRs embody both object level 
and control level information. The object 
definition is false most of the time; we have 
certain expectations concerning the 
character of inferences made with such 
rules. These expectations may be used to 
control the inferences. To understand the 
implication of CPR, Michalski and Winston 
presented a quantitative definition for it, 
where two parameter γ and δ have been 
introduced. A CPR is then written: P              
D  (C1∨ UNK) : γ , δ, 
where  γ = prob(D\P), certainty of  P          
D, when it is not  known whether (C1  ∨ 
UNK) holds (UNK means not yet known 
censor conditions). The implication P       D 
is certainty 1, when  (C1  ∨ UNK)  is known 
to be false. When   δ = prob(D\P& ¬   C1), 
it is the certainty that P          D, when C1 is 
true. Obviously the a priori certainty of  ¬ 
(C1 ∨ UNK) must be equal to or smaller 
than a priori certainty that  ¬ UNK. 
Therefore, γ ≤  δ. Note that γ = 1 if it is 
certain that there are no conditions in the 
censor other than C1. As an example to 
CPR. 
 IF Working_Day               John_in_office  
      ⎣   John_is_sick, John_on_leave 
 

The system checks first working-day, if it is 
true and we have more time, the system 
checks the censors john-is-sick and john-on-
leave based on the given time. 
 
A lot of work and applications have been 
done on  VPL systems [2][3][4][6-15]. 
 
 
2. The Research Objectives 
There are two main objectives of this 
research: 

a) How to use HMM to represent 
CPRs. 

b) How to compute the certainty factor 
for the achieved conclusions. 

 
Before explaining our objectives, we shall 
raise a question, why should we try to make 
a relation between HMM and rule based 
systems in general ? As we know HMM is 
used in various AI applications, those 
applications might use various knowledge 
representation schemes based on the nature 
of  application and the knowledge structure. 
One of the very well known knowledge 
representations is rule based structure. In 
rule based systems, we usually use certainty 
factor to scale the certainty of the rule, 
which can be computed with many 
techniques  and approaches such as Baysian 
approach, emycin approach and dempster-
shafer approach. This raises another 
question, can we use the probability values 
used with HMM as certainty values for the 
obtained rules and how this can be done. To 
make the idea clear, we are trying to make 
HMM as a knowledge representation plus a 
model for fixing the certainty factor of the 
induced rules from the HMM without using 
any additional approach for computing the 
certainty factors. 
   
In the first objective, we shall try to find a 
method to represent and induce CPRs out of 
a given HMM. The problem in this case is 
how to specify the rule censors and how to 
write the CPR. 



The second goal is how to utilize the 
probability values of the HMM to get the 
certainty of the obtained conclusions from 
the CPRs.  
 
 
3. The Proposed Approach 
In this section, we discuss our approach to 
tackle our two defined objectives. 
 
3.1  Representation of CPR using HMM 
(First objective) 
In this section, we concentrate on the first 
objective. Let us assume the figure shown in 
Figure 1. 
 
 
                                

     
 
 
 
 
 
 
The summary of figure 1 says: 
 
P( cold | med) =  0.9, P(hot | med) = 0.1, 
P(cold | high) = 0.3, P(hot | high) = 0.7, 
P(med |med) = 0.2, P(high | med) = 0.8, 
P(high | high) = 0.6, P(med | high) = 0.4 
 

Before trying to formulate a way to put the 
Figure 1 in a CPR, we try first to present the 
figure using a rule structure as shown below: 
 
If  med Then cold  0.9 
If  med Then hot    0.1 
If  high then cold   0.3 
If  high then hot    0.7 
If  med then med  0.2 
If  med then high  0.8 
If  high then high  0.6  
If  high then med  0.4 
 
Now it is to be noted that the relation 
between the state med and the observations 
hot and cold are divided to values 0.9 and 
0.1 which means the observation hot is 
occurring more likely than cold given med. 
This may allow us to make a a modified 
CPR (MCPR) in the following form 
 
If    state then  observation/state  (p1)  unless 
c1  then  observation/state  (p2) 
 
Where p1 and p2  are  the probability of 
observation/state given state, and c1 is the 
censor condition. To make the format easy 
to understand, let us consider the following 
MCPR 
 
If   med then cold (0.9 ) unless c1 then hot (0.1)  
 
This rule is an improvement of  the ordinary 
CPR, it says if med is true then it is cold 
unless c1 is true (c1 has to be false in case 
we have time to check it). If c1 is true  then 
the result would be hot. In the ordinary CPR 
we decide about the conclusion if the 
condition is proved to be true but we do not 
know the result if  c1 is true.  Other rules 
that we can form are 
 
If  high then hot (0.7) unless c2  then cold (0.3)  
If  med then high (0.8) unless c3 then med (0.2) 
If  high then high (0.6) unless c4 then med (0.4) 
 

Figure 1. A HMM to describe a relation 
between the states Med. and High with the 
observations (invisible states) cold and hot.  



The main question here, how can we 
represent the censor  c associated with the 
rule ? For this purpose we have to present 
each censor/s related to  a certain 
observation above the observation’s arrow 
with the less value of probability. To 
understand this, let us look at Figure 2.  
 
                    

                       
 
 
 
  
 
 
 
 
Based on Figure 2, we can write the rules  as 
below: 
 
If   med  then  cold   unless  It is cloudy   
then    hot  
If  high   then  hot     unless  It is dry        
then   cold  
If  med   then  high   unless  It is sunny    
then   med 
If  high   then  high   unless  It is cloudy   
then   med  
 
Now the rule one reads as, if it is med is true 
then it is cold unless it is cloudy then the 
result would be hot. In general we might 

have more than one censor condition in the 
rule such as 
 
If condition  then  action1  unless c1, c2,… 
cn   then action2  
 
We have first to remember that censors are 
usually not checked unless we have time to 
do that. Also, to get advantage of the time, 
we have to arrange the censors in some way 
that can make us get benefit in terms of time 
out of this arrangement.  In the above rule 
structure, we  deal with the  censors in a way 
that each is a separate unit, which means the 
occurrence  of any of  the censors can lead 
to a failure of taking action1. This can be 
represented above the arrows connecting the 
visible states with the observations as  c1,  
c2, c3. In case we have time to check the 
censors, c1, c2 and c3, each has to be false 
to take a decision of action1. In case any of 
the censors is true, no need to check the rest 
of the censors even if we have enough time, 
and action 2 is taken. In this way, it  is good 
to have the censors ordered based on their 
occurrence (priority / importance), which 
will allow us to check the most important 
censors as the time permit. This will give a 
better certainty and also supports the real 
time systems. We shall discuss this point in 
the next section. 
 
3.2. Certainty Factor Computations 
(Second objective) 
Let us now go for more complex 
computation: 
 
If  sunny then walk (0.8) unless sick ,  has-
guest  then at-home (0.2) 
 
If we have enough time, we can check the 
censors sick and has-guest and if they are 
true, we can say that we are 100% that the 
result is true in this case. We are trying to 
elaborate the probability values and work 
with them as certainty factor and we do not 
want to use other approach. In this case we 

Figure 2. A HMM to describe a relation 
between the states Med. and High with the 
observations (invisible states) cold and hot. 
Also the censors concerned with alternative 
observation and states are presented on their 
corresponding arrows.  



shall assume that 0.8 is our certainty that 
walking occurs in case it is sunny, now if we 
check sick censor and find out that it is false, 
we go forward and check the next censor 
and if it is also false then the 0.2 is added 
with the 0.8, and we say that we are certain 
from our conclusion with value 1. If sick 
censor is true, then we do not need to check 
more censors and take a decision with at-
home with certainty 1.0. The following 
algorithm summarizes the computation of 
the certainty factor of the rules. 
 

1. Choose the rule to be fired from the 
matching box based on the used 
control strategy. 

2. Divide the p2 value equally among 
the censors (for now, our assumption 
is that all the censors are of the same 
importance). Let us call the censor 
share of the p2 for the ith censor ,  
shr-ci 

3. Check the condition part of the rule, 
if it is true do the following 

           cf = p1 
- while time is not over do 
          check the censor i based on     
            its order in the rule 
          if the censor is false then 
             cf = cf + por-ci   
          if the censor i is true then 
             cf = 1.0  
             take decision of action2  
             exit the while 

4. if time is over, then take a decision 
of action1 (we may quit of while 
because one of the censors is true). 

5. if the condition part is false , then 
check next rules based on the used 
control strategy. 

            
To make the above algorithm clear, let us 
consider the same rule presented above, in 
this case the sick censor will have a share of  
0.1 and a share of 0.1 for  has-guest censor. 
Let us assume that it is sunny  and we have 
time,  we check sick censor and find it is 
false, we add 0.1 to 0.8. Now we check 

again for the time, and let us assum that 
there is no more time, so we take a decision 
of walking with certainty 0.9. If still we 
have time, we check has-guest censor 
condition, and if it is false, we take a 
decision of walking with 1.0. In contrary, if 
we check the main condition and we still 
have some time,  we check sick censor. If 
sick is true, then we take a decision at-home 
with certainty factor 1.0 and we stop.  In this 
case we do not need to check for other 
censors even if we have time to do so.   
In case the censor conditions are sorted 
according to their importance, then we 
should not deal with them equally. To make 
the idea clear, let us consider the following 
MCPR 
 
If condition  then  action1 (0.7)  unless c1, 
c2,… cn   then action2  (0.3), given that c1 
is having higher priority than c2, and c2 is 
having higher priority than c3 and so on. We 
computer each probability portion for censor 
i as below 
                                     n 
shr-ci = (n – i + 1) / ( ( Σ i  ) *  p2),  
                                     i=1 
where n, is the number of censor conditions.                     
To make this formula clear, let us consider 
the following example 
 
If cond1 then action1  0.8 unless c1, c2 , c3 
then action2  0.2 
 
Then shr-c1 = (3/6) * 0.2 = 0.1 
         shr-c2 = (2/6) * 0.2 =  0.06666 
         shr-c3 = (1/6) * 0.2 =  0.03333 
 
Using this technique, after checking the 
cond1 and having more time, we check the 
censor c1. If c1 is false and no enough time 
to continue for checking, The system takes a 
decision action1 with certainty 0.8 + 0.1  = 
0.9. If more time is available  to check one 
more censor, the system checks c2. if c2 is 



again false then the system becomes certain 
of action1 by 0.8+0.1+ 0.06666 = 0.96666 
 
 
4. Complex MCPRs 
One big question may arise, if there are 
many observations associated with a state, 
how can we construct the MCPR and how 
can we do the computations. To illustrate the 
case, let us consider the following situation: 
 
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 
0.5}, 
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 
0.1}, 
 
where rainy and sunny are the visible states 
and walk, shopping and cleaning are the 
observations. We can construct the 
following MCPR as below 
 
If  rainy then  cleaning (0.5) unless c1 then 
shopping (0.4)  unless c11 then walking 
(0.1) 
 
In this case it is important for taking a 
decision of cleaning to prove the falsity of 
c1 and c11 if there is enough time to check 
them. If we have time to check one censor, 
we can check c1. If it is false we can take a 
decision of cleaning with 0.9. If  c1 is true, 
then the system will take a decision of 
shopping with a certainty of 1.0.  If time is 
enough to check the censors c1 and c11 and 
they both proved to be false, then action 1 
will be achieved with certainty 1.0. In case 
c1 is false and c11 is true then a decision of 
walking is achieved with certainty 1.0.  
 
5. Conclusions 
In this paper we used the HMM as a 
knowledge representation to induce rules 
that are very useful in real time systems, this 
rule is called CPR. We also presented a new 
form of CPR and called it MCPR. The main 
difference between the two structures is that 
using MCPR gives the ability to know what 
action to be taken if the censor condition of 

the rule is true, whereas in CPR there is no 
way to know that. Probability values 
associated with HMM are used to compute 
the certainty values of the concluded actions 
of the MCPR. This is an important step, 
because we need not to make another 
overhead by using some other certainty 
factor computing approaches.  During 
computations, censor conditions can be 
treated equally or based on their priority. 
Some of the future directions could be doing 
some implementations related to MCPRs 
and applying such systems to real time 
applications. Another direction would be 
developing  a software that can take Markov 
model as input and produces MCPRS as 
output. This will reduce a lot of work in 
developing real time systems based on 
MCPR.  
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