
An agent Based Approach to Web service Discovery

Berdjouh Chafik
Centre de Formation Professionnelle El-Meghaier

Wilaya El-OUED, ALGERIE
Berdjouh2006@yahoo.fr,

Kazar Okba

Département d'informatique
Faculté des sciences et sciences de l'ingénieur

Université Mohamed Khider 07000 Biskra, ALGERIE
kazarokba@yahoo.fr

ABSTRACT
Web services are emerging and promising technologies for the development, deployment and integration of Internet
applications. They are based on three main bricks that are SOAP (Simple Object Access Protocol), WSDL (Web Service
Description Language) and UDDI (Universal Description, Discovery and Integration). The language used behind these
protocols is XML (eXtensible Markup Language), which makes Web services independent of platforms and programming
languages. They have become very effective in the interoperability of systems. The need to introduce semantics in Web
services is felt to automate the different phases of their life cycle, namely the discovery phase.

The concept of semantic web services, is the result of convergence in the field of web services with the Semantic Web, in
fact its ultimate goal is to make web services more accessible to the machine by automating tasks that facilitate their use. In
this work, we study the problem of semantic discovery of services by providing a method that is based on agents.

Key Words: Web service, multi-agents system, semantic web

1. Introduction
Today, the Web is just an enormous warehouse

of text and images, its development has also made
it a service provider. The concept of "Web service"
is essentially an application available on the
Internet by a service provider and accessible by
clients through standard Internet protocols. In
essence, Web services are autonomous software
components and self-descriptive and thereby
constitute a new paradigm for application
integration.

Currently, Web services are implemented
through three technology standards: WSDL, UDDI
and SOAP. These technologies facilitate the
description, discovery and communication between
services. However, this basic infrastructure does
not yet allow Web services to keep their promise of
a largely automated management. This automation
is essential to meet the requirements to scale and to
reduce development costs and maintenance
services. Basically, it must accommodate a means
for describing Web services in a manner
understandable by a machine.

The Semantic Web [1] is a vision of future Web
in which information has a semantic understandable
by a computers. Applied to Web services, the
principles of the Semantic Web should enable to
describe the semantics of their functionality, and
reasoning are therefore induced a proposal for
automation of various tasks of their life cycle.

Combining the technologies of Web services and
Semantic Web has led to the concept of semantic
Web services.

The discovery of Web services is an emerging
area of research. Initially, the discovery is made in
the UDDI registry, it is based primarily on research
syntactic WSDL descriptions of Web services. But
with the development of Semantic Web
technologies, the techniques for discovery have
become essentially semantic. This semantics is
provided through one of ontologies important
technologies of the Semantic Web. Thus, software
agents can be developed to reason about these
ontologies, making the discovery of Web services
dynamic and automatic.

In this work, we propose an approach to
discovery of semantic web services using agent
technology and ontologies.

2. Emerging Technologies
2.1 Semantic Web and ontology
The Semantic Web [1] is an extension of the
current Web in which information is given well-
defined meaning, better enabling computers and
people to work in cooperation. In order to realize the
Semantic Web vision a set of standard technologies
have been defined (the Semantic Web layered
architecture):

− the Syntactic Layer (XML),

mailto:Berdjouh2006@yahoo.fr
mailto:kazarokba@yahoo.fr

− the metadata layer (RDF/RDFS),
− the semantic layer (Ontology languages),
− the Logical Layer (automatic reasoning),
− Proof and trust layer (proof)

The technology object which is fundamental for the
realization of the Semantic Web is the ontology.

Ontology is term borrowed from philosophy
meaning "systematic explanation of existence".
Ontology is similar to a dictionary or glossary but
with a large and detailed structure, that allows
machines to process its contents.
Bertrand [2] defines ontology as ”These are formal
representations of domain knowledge in the form of
terms with semantic relations”.

In the Semantic Web, the ontology allows the
user during a Web search to access not only to
documents related to keywords in the query, but
also those that are related ontologically
(semantically) to them, this makes the search more
relevant. It aims to describe concepts and
relationships that bind them, and with deduction
rules to make them more understandable and usable
by the different agents (human or software).

2.2 Ontology Web Language for
Services (OWL-S)
OWL-S (formerly known as DAML-S) [3] is
ontology for web services and it has been
developed to enable the following tasks: automatic
service discovery, automatic service invocation and
automatic service composition. The service
discovery is improved using ontologies because the
information needed to perform this task is
expressed using a machine-processable form. A
computer can access the description of a web
service and it can know exactly what the service
does thanks to the shared concepts contained in the
ontologies used in the description.

A service described using OWL-S provides three
types of knowledge: Service Profile, Process Model
and Service Grounding. The ServiceProfile
describes what the service does, including
functional information such as inputs, outputs, and
other non-functional information (category,
classification). It is normally used during the
automatic discovery of Web services. The Process
Model describes how the service works; it is an
abstract vision of the service operation. Finally, the
ServiceGrounding tells how to access the service; it
contains all the information related to the real
implementation of the service and is used to invoke
it automatically.

2.3 Role of Multi-Agent Systems
A multi-agent system (MAS) is a loosely coupled
network of software agents that interact to solve
problems and function beyond the capabilities of
any singular agent in the set-up. The agents in a
multi-agent system may be distributed on different
computers (or nodes), where each computer owns
its resources.

The characteristics of MAS are that each agent
has incomplete information or capabilities for
solving the problem and, thus, has a limited
viewpoint; there is no system global control; data
are decentralized; and computation is
asynchronous[4].

An MAS has the following advantages over a
single agent or centralized approach like distributed
systems [5]:
• An MAS distributes computational resources and
capabilities across a network of interconnected
agents. Whereas a centralized system may be
plagued by resource limitations, performance
bottlenecks, or critical failures, an MAS is
decentralized and thus does not suffer from the
"single point of failure" problem associated with
centralized systems.
• An MAS allows for the interconnection and
interoperation of multiple existing legacy systems.
By building an agent wrapper around such systems,
they can be incorporated into an agent society.
• An MAS models problems in terms of
autonomous interacting component-agents, which
is proving to be a more natural way of representing
task allocation, team planning, user preferences,
open environments, and so on.
• An MAS efficiently retrieves, filters, and globally
coordinates information from sources that are
spatially distributed.
• An MAS provides solutions in situations where
expertise is spatially and temporally distributed.
• An MAS enhances overall system performance,
specifically along the dimensions of computational
efficiency, reliability, extensibility, robustness,
maintainability, responsiveness, flexibility, and
reuse.

3. Our Approach
The proposed architecture is an extension of
service-oriented architecture (SOA). This
architecture is based on agents for discovering Web
services.

This architecture (shown in Figure 1)
incorporates software components and operating a
domain ontology is used during the discovery phase
of Web services, it facilitates the automatic
discovery of services since it allows to refine the
search process which matches a request and service
offerings. The use of this ontology allows the
implementation of filtering mechanisms
(comparison) between a request and offers to
implement anything other than simple equality.

Fig. 1. Proposed multi-agent architecture

3.1 Architecture description
3.1.1 Agent Web service interface
This software agent acts as an interface between the
system and the Web service provider, such that for
each Web service agent is associated. Agent Web
service interface allows the recording of the
description on the Semantic Web service.
Moreover, it allows updates information on the
Web service.

The internal architecture of the agent Web
service interface consists of three modules and a
registry backup, as shown in Figure 2.

Fig. 2. Architecture of the Web service interface agent

3.1.2 Agent registration Web services
The role of this agent is the preservation of
semantic descriptions of Web services in the UDDI
registry, it contains two modules and an interface as
shown in Figure 3.

Fig. 3. Architecture of agent registration Web services

3.1.3 Agent user interface
The agent user interface is the gateway to query the
system. It provides the user with the form to do a
query.

This is the agent who will initiate the discovery,
by issuing to the Agent discovery, a request
consists of inputs, outputs, a reference ontology
domain to use (e.g. the ontology of tourism) and
presents the results tailored to the preferences of
users after treatment.

The internal architecture of the agent user
interface is composed of three main modules and a
registry backup as shown in Figure 4.

Fig. 4. Architecture de agent user interface

3.1.4 Agent discovery Web services
It is a software agent that allows the discovery of
descriptions of Web services satisfying the request
sent by the agent user interface on the semantic.

The internal architecture of the discovery agent is
composed of two modules and a base of storage
services for storage the semantic descriptions of
services provided by UDDI as shown in Figure 5.
They are as follows:

• Inter-Agent communications Module : He
received from the agent user interface the query in
the form of a message and after that, he calls the
module of treatment. It also receives requests for
transmission of messages from the module of
treatment. Such requests for transfers are received
answers queries.

• Base of storage Services : is used to store the
semantic descriptions of Web services satisfying
the user query.

Module de communication

Description

Processing Module

Inter-Agent communications
Module

Registry

User communication

Inter-Agent communications
Module

Registry Processing Module

Requête

S.W providers User

Agent W.S
Interface

Agent
registration W.S

Agent
discovery W.S

Agent User
Interface

Ontologies

Inter-Agent communications Module

UDDI Interface

UDDI
Registry

Processing Module

Fig. 5. Architecture of agent Discovery Web service

• Processing Module: it has two tasks:
1) The task of analysis: selects the domain ontology
corresponding to the request (from base ontology
that stores ontologies in various domains), extract
the classes and their links and builds the
corresponding tree. In our context, this action is
possible since the vocabulary defined in the domain
ontology is described in a hierarchical form. Each
vertex of this tree corresponds to a class of the
ontology and each arc corresponds to a subclass.
This tree used to infer relationships of
generalization (subsumption) between the concepts,
i.e. that a concept is more general than another. A
concept C includes (subsumes) a concept C ' if the
extension of C' is included in that of C. Then we
say that C is more general than (or includes) C '.
This principle allows us to make comparisons
between flexible offers and requests.
2) The task of comparison: You can compare
applications and service offerings by considering
the ontology (see Figure 6) in accordance with four
main modes of comparison defined in [6] using a
matchmaking algorithm: Exact mode, Plug-In
mode, subsumes mode and Fail mode.
1. Exact mode selects an offer if it corresponds
exactly to a request (demand = offer) i.e. inputs and
outputs of the offer is equivalent to the input and
output of demand (matching exact);
2. Plug-in mode returns an offer if it includes a
request (demand <offer) ie the entries in the
application includes the supply of inputs and
outputs of the application are covered by the output
of supply in the domain ontology (inclusive
matching);

3. Subsumes mode returns an offer if it is included
in a request (demand > offer) (the inverse of plug-in
mode) (partial matching);
4. Fail method returns false if no match between
offer and demand (demand # offer) (matching
failure).

Fig. 6. methodogy for generating semantic descriptions
of Web services

Modes 2 and 3 for comparison using the domain
ontology. More specifically, the offers and requests
(demands) for services are expressed in OWL-S,
we compare, according to the four modes, all the
elements defined in the terms "input" and "output"
in the class ServiceProfile of offers and requests
(demands).

The comparison algorithm used in both plug-in
mode and subsumes mode uses the function
Includes [7] (see Figure 7).

The agent uses a subsumption test on outputs
(outputs) (see Figure 8) then we assign a score for
each mode matching: Exact (score = 3), Plug-In
(score = 2) subsumes (score = 1), Fail (score = 0)
(see Figure 9).

Ontology
DataBase

Inter-Agent
communications Module

Processing Module

UDDI Registry

Base
Of

storage
Services

Web Service
Web 1

Web Service

Web 2

Fig. 7. Function Includes

Fig. 8. Procedure of matching for the outputs

Fig. 9. Function returns the score of matching

The matching between inputs is computed
following the same procedure.
Equation (1) generalize the comparison between a
service concept C and a corresponding request
concept C :

 3 If C = C

 2 If C C

 1 If C C

 0 Else

(1)

Assuming there are m concepts in a service
description and there are m corresponding concepts
in a service request, the similarity or global match
between the request R and the service S can be
derived by summing up the match scores between
the a concept pair (equation (2)) :

 Similarity(D, O) = Match(C , C) (2)

Therefore, the matching between a request and a
set of services can be quantitatively measured. A
service with the highest similarity score represents
the most accurate service for the request. There
may be more than one most accurate service.
Besides the most accurate service(s), those services
with a similarity greater than zero are still useful as
backup services.

3.2 Illustrating example
Assume that there are three Web services sales : S1,
S2 and S3 published on the Web. Functional
parameters (inputs, outputs) are:

• S1 have two inputs "vehicle" and
"parts", and one output "price".

• S2 have two inputs "parts" and "car"
,and one output "price".

• S3 have two inputs "unit" and
"material" and one output "price".

Consider a user request R contains two inputs "Car"
and "Parts" and one output "Price"
Given the ontology fragment shown in figure 10.

Function Includes (E1 : string, E2 : String) : boolean
% This function returns true if E1 includes E2 false else
% E1 is an element of the clause Input or Output of Offer
% E2 is an element of the clause Input or Output of demand
% A represent the ontology (tree form)
% We uses the high level functions include :
% Father(E) : returns the father of E in A

% Root(A) : returns the root of A
Variables
SummitOngoing : ASummit % A summit under
discussion
TheAncestors: SetofSummits % The Ancestors of E2
Begin
TheAncestors ß ∅
If E2 = root(A) Then
% E2 does not an ancestor and can not be subsumed
TheAncestors ß ∅
Else
SommetCourant ß Father(E2)
TheAncestors ß Father (E2)
While (SommetOngoing <>Root(A)) Do

SummitOngoing ß Father(SummitOngoing)
 % «+» means adding a new element
 % throughout the Ancestors

TheAncestors ß TheAncestors +
SummitOngoing

End While
End If

Includes ß (E1 ∈ TheAncestors)
End

Function GetScore(rel : String) : Integer
% This Function returns the score of matching
Val =0
Begin

If rel = "Exact" Then val = 3
If rel = "PlugIn" Then val = 2
If rel = "Subsume" Then val = 1
If rel = "Fail" Then val = 0
End If
Return val

End

Procedure degreeOfMatch(OutD,OutO : String)
% This Procedure returns result of comparison
% OutD, OutO are the output of demand and offer
respectively
Begin

If OutO = OutD Then Return Exact
If Includes(OutO, OutD) Then Return PlugIn
If Includes(OutD, OutO) Then Return Subsume
Otherwise Return Fail
End If

End

O
i

∑
m

i =1

D
i

O
i

i
O

i

D

match(C , C) =

i
O

i

D

i
O

i

D
D
i i

O

i
D

Fig. 10. A fragment of the Vehicle ontology

If we apply the matching algorithm, we obtain the
following results:
• Comparison of inputs :

S1:
Car à vehicle, Founded Input Relation is = Plug-
in, Their score = 2, Total Score is : 2
Car à parts, Founded Input Relation is = Fail,
Their score = 0, Total Score is: 2
Parts à vehicle, Founded Input Relation is =
Fail, Their score = 0, Total Score is: 2
Parts à parts, Founded Input Relation is = Exact,
Their score = 3, Total Score is: 5

Inputs score weight = 5
S2:
Car à parts, Founded Input Relation is = Fail,
Their score = 0, Total Score is: 0
Car à car, Founded Input Relation is = Exact,
Their score = 3, Total Score is: 3
Parts à parts, Founded Input Relation is = Exact,
Their score = 3, Total Score is : 6
Parts à car, Founded Input Relation is = Fail,
Their score = 0, Total Score is : 6

Inputs score weight = 6

S3 :
Car à unit, Founded Input Relation is = Fail,
Their score = 0, Total Score is : 0
Car à material, Founded Input Relation is =
Fail, Their score = 0, Total Score is : 0
Parts à unit, Founded Input Relation is = Fail,
Their score = 0, Total Score is : 0
Parts à material, Founded Input Relation is =
Fail, Their score = 0, Total Score is: 0

Inputs score weight = 0

• Comparison of outputs :

S1 : price à price, Founded Output Relation
is = Exact, Their score = 3, Total Score is : 3

Outputs score weight = 3
S2 : price à price, Founded Output Relation is
= Exact, Their score = 3, Total Score is : 3

Outputs score weight = 3
S3 : price à price, Founded Output Relation
is = Exact, Their score = 3, Total Score is : 3

Outputs score weight = 3

• global matching:
S1: Total score (total score for inputs + total

score for outputs) = 5 + 3 = 8, Good
S2: Total score = 6 + 3 = 9, Best
S3: Total score = 0 + 3 = 3, Not Good

► Thus, the Web service S2 is regarded as the best
corresponding to the request.

4. Conclusions and Future Work
In this paper we presented a conceptual framework
and architecture based on Web services for
interoperability.

The discovery of Web services is an emerging
area of research. Various approaches have been
proposed. These approaches have shifted from a
search based keywords (discovery syntactic) to
methods based semantics. We proposed an
approach based on agents that models the discovery
of semantic web services. Our architecture based
agents consists of :

-An agent Web services interface;
-An agent user interface;
-An agent registration Web service;
-An agent Web service discovery.

Agent Web services discovery apply inferences
to match the user query with the services offered.
The pairing (matching) based on comparing the
outputs and inputs of the request with the outputs
and inputs of the service, and presents different
levels of matching: exact, plug-in, subsume and
fail.

In the short term, we will implement our
proposed architecture. To validate our work, we
will conduct tests with a variety of user queries and
a panel of Web services.

Regarding the prospects for our work, we expect
the following:

- As regards the matching algorithm could
provide for other search parameters such as
preconditions and effects, they increase the rate of
accuracy.
- Submit an indirect matching in the absence of
direct matching i.e. move to Web services
composition.
- We can try to use other types of agents such as
mobile agents and assess their effects on
performance.

References :

[1] Berners-Lee, T., Hendler, J. et Lassila, O., The
Semantic Web, In Scientific American, vol. 284
No. 5, May 2001, pp. 35 - 43.

[2] Bertrand Sajus, "La fonction Thésaurale au coeur des

systèmes d’information" ADBS, Avril 2002,
www.adbs.fr/adbs/prodserv/jetude/html/prog110
402a.html.

Thing

Vehicle

Bus Car

Sedan SUV Station

http://www.adbs.fr/adbs/prodserv/jetude/html/prog110

[3] W3C, OWL-S Semantic Markup for Web Services,
W3C Member Submission, Novembre 2004,
http://www.w3.org/Submission/2004/SUBM-
OWL-S-20041122/.

[4] Katia P. Sycara, Multiagent Systems,AI magazine,

Volume 19, 1998.

[5] Multi-Agent Systems, The Intelligent Software

Agents Lab, 2008, http://www.cs.cmu.edu/~
softagents/multi.html.

[6] Paolucci, M., Kawamura, T., Payne, T., Sycara,

K.,Semantic matching of web services capabilities.
In: Proceedings of the First International Semantic
Web Conference, LNCS 2342, Springer-Verlag,
2002, pp. 333 – 347.

[7] Bouzguenda L., «Coordination Multi-Agents pour le

Workflow Inter Organisationnel Lâche», Thèse de
Doctorat, Université de Toulouse 1, mai 2006, pp.
100 - 102.

http://www.w3.org/Submission/2004/SUBM
http://www.cs.cmu.edu/~

