
Analysis of Motion Feasibility of Multiple Mobile Agents on Graphs

Ellips Masehian,
Hiva Samadian,

Farzaneh Daneshzand
Tarbiat Modares University, Tehran, Iran

{masehian, h.samadian}@modares.ac.ir; f_daneshzand@aut.ac.ir

ABSTRACT
Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a
specified number of agents located on the graph’s vertices can be reached from any initial arrangement
through agents’ moves along the graph’s edges, while avoiding deadlocks (interceptions). In this pa-
per, the properties of Solvable Graphs are investigated, and a new concept in multi agent motion plan-
ning, called Minimal Solvable Graphs is introduced. Minimal Solvable Graphs are the smallest graphs
among Solvable Graphs in terms of the number of vertices. Also, for the first time, the problem of
deciding whether a graph is Solvable for m agents is answered.

Keywords - Solvable Graphs, Moving Agents, Motion Planning, Deadlocks

1. INTRODUCTION
 The necessity of planning the motions
of autonomous agents originally arose in
early 1970’s, when the first industrial ro-
bots were to perform automatic tasks of
manipulation and navigation. Soon it was
realized that the complexity of the robot
motion planning problem is PSPACE-hard
and NP-complete since the size of the solu-
tion space grows exponentially and gets
extremely complicated, especially for high
degrees of freedom [1].
 When multiple moving agents (e.g. ro-
bots) share a common workspace, the mo-
tion planning task becomes even more diffi-
cult and cannot be performed for just one
agent without considering others. In this
kind of problems, while pursuing their
individual (local) goals, agents must coordi-
nate their motions with each other in order
to avoid collisions with obstacles and one
another, thus contributing to the task of
achieving a global goal, which might be
minimizing the total time or distance. This
problem is called Multi Agent Motion Plan-
ning (MAMP) problem. In MAMP, each
agent is regarded as a dynamic obstacle for
other agents, and so the element of time
plays a major role in planning, especially
because of its irreversible nature [2].

 Space is the most limiting constraint in
a typical MAMP problem: often, because
of lack of sufficient space around moving
agents, they cannot reach their destinations
without obstructing each other’s way,
causing deadlocks. Deadlocks are situa-
tions in which two (or more) agents inter-
cept each other’s motions and are pre-
vented from reaching their goals. This hap-
pens generally in narrow passageways
where autonomous moving agents cannot
pass by each other. To resolve such a dead-
lock, one of the agents should leave and
evacuate the passageway (by usually back-
tracking), and let the opposite agent move
out of the passage. This kind of problems is
prevalent in large warehouses, plants, and
transportation systems, where Automatic
Guided Vehicles (AGVs) convey material
and products (Fig. 1).
 By reducing the workspace into a graph
with vertices including the starts and goals
of all agents, the MAMP problem can turn
into a sequencing problem where the
agents are planed to move sequentially (or
concurrently) toward their destinations,
without colliding with each other. The
graph structure stipulates them to remain
on predefined routs (i.e. graph edges), and
so avoid static obstacles existing in the
workspace.
 The main question in designing a prede-
fined graph, however, is to find out

whether the graph is ‘reachable’ (solvable)
for any initial and final configurations.
Solvable Graphs allow the transition of
any initial configuration of agents (e.g.
pebbles (beans), robots, or vehicles) to a
final state via their sequential moves along
the graph’s edges.

Fig.1. Planning the motions of AGVs to different
locations in shop floor is a real-world application of
MAMP.
 Wilson in [3] worked out a relation be-
tween the number of pebbles (k) and the
number of vertices (n) of only bi-connected
graphs as k = n − 1. Kornhauser in [4] im-
proved this result through generalizing the
decision problem for all graphs and any
number of agents. Auletta et al. in [5] and
[6] studied the above problem as pebble
motion problem by following the
generalization of the 15-puzzle and pre-
sented a linear algorithm for deciding the
reachability of trees. Ryan in [7] studied
the possibility of reaching destinations of
connected sub-graphs by simplifying the
multi robot motion planning between the
sub-graphs. He worked on predefined sub-
graphs like stack, clique and hall. In [8] it is
demonstrated that the environment can be
shown through any two-connected graph
which has a routing with a practical social
law for motion planning.
 In this paper, the main problem of find-
ing the maximum number of agents able to
navigate on a graph. The topologies and
properties of Solvable Graphs are exten-
sively dealt with through a number of lem-
mas and theorems. Also, considering the
fact that the complexity of graph searching
operations is directly influenced from the
graph size, finding solvable graphs with
minimum number of vertices can signifi-
cantly ease the motion planning task for

multiple agents. As a result, the concept of
Minimal Solvable Graphs (MSGs) is intro-
duced for the first time in this paper. Ac-
cordingly, it can be determined whether a
graph is solvable for a certain number of
agents or not.

2. DEFINITIONS AND ASSUMPTIONS
 As mentioned earlier, reducing (or map-
ping) the configuration space into a graph is
very advantageous regarding the significant
savings in required time and memory.
 In order to lay a proper mathematical
foundation for expressing and investigating
the properties of graphs, we adopt the stan-
dard terminology used in Graph Theory [9].
In addition, some definitions and symbols
have been introduced and defined specifi-
cally for this work, all presented in Table 1.
A number of these concepts are illustrated
in Fig. 2.

Table 1. Definitions of used terms and symbols.

Term/Symbol Description
|G| Order: The number of vertices of

the Graph G = (V, E).
||G|| The number of edges on G.
Path A non-empty graph P = (V, E) of

the form V = {v0, v1, ..., vk},
E = {v0v1, v1v2, ..., vk−1vk}, where all
vi are distinct.

Cycle A non-empty graph of the form V =
{v0, v1, ..., vk}, E = {v0v1, v1v2, ...,
vk−1vk, vkv0}, where all vi are dis-
tinct.

Cycle Edge An edge on a cycle.
Tree An acyclic subgraph connected to a

cycle.
Leaf, L A vertex with a degree d = 1.
Cycle Vertex,
C A vertex located on a cycle.

Internal Ver-
tex, I

A vertex with a degree d > 1 which
is not a Cycle Vertex.

Stem, S The longest path in the graph with
its one end (or both ends, if located
between two cycles) connected to a
cycle vertex and including it, and
not containing any Cycle Edges.
None of the edges of the Stem are
cycle edges. If not unique, the Stem
is selected arbitrarily. The number
of vertices on the Stem (i.e. its or-
der) is shown by |IS|.

Configuration An arrangement of agents on the
graph vertices such that no vertex is
occupied by more than one agent.

Fig. 2. Some concepts illustrated: L, I, and C denote
Leaf, Internal vertex and Cycle vertex, respectively.
The symbol indicates a cycle, and the dashed
area designates the Stem.

 When designing a graph or networks of
routs, it is always important to consider
current transportation demands, as well as
future developments of the system. In the
context of MAMP, this consideration re-
quires that the system designer decides the
proper topology of the network, the num-
ber of agents (as mobile robots or vehicles)
required to move along the routs, and the
possibilities of expanding the network for
future increased transportation traffic.
 Concerned about these issues, we will
comprehensively investigate the concept of
Solvable Graphs. To date, the notion of
graph solvability has been essentially de-
pended on the initial and final configura-
tions (situations) of the moving objects. For
instance, the question whether a tree-like
graph is solvable for a given initial and final
configuration of pebbles is solvable or not
is addressed in [5] and [6]. However, no
work exists in the literature for all types of
graphs, and never has the problem of decid-
ing if a graph is always solvable for a spe-
cific number of agents for any initial and
final configuration been mentioned or ad-
dressed.
 In this paper we focus on some related
problems, such as:
 - What is the maximum number of
agents a graph can accommodate such that
any final configuration can be reached
from any initial configuration?
 - What topology must a graph have to
be solvable for a specific number of
agents?
 - What is the ‘smallest’ graph solvable
for a specific number of agents?
 Before dealing with the answers to the
above questions, three new fundamental

and correlated notions are presented be-
low:

Definition 1. A Solvable Graph is a graph
on which any configuration of at most m
agents can be reached from any initial con-
figuration through their moves on graph
edges, and is shown by SGm.

Definition 2. A Partially Solvable Graph
is a graph on which only some configura-
tions of m agents can be reached from any
initial configuration through their moves
on graph edges, and is shown by PSGm.

Definition 3. A Minimal Solvable Graph is
the smallest graph on which any configura-
tion of at most m agents can be reached
from any initial configuration through their
moves on graph edges, and is shown by
MSGm. In this definition, ‘smallest’ can be
expressed and measured in terms of the
number of either vertices or edges.

 A Compound graph is a combination of
Cyclic and Acyclic graphs; that is, it con-
tains at least one loop and at least one leaf.
Since Compound graphs constitute a large
portion of graphs and have the broadest
applications among graphs, we will deal
with this kind of graphs in this paper, as a
part of our research on graph-based motion
planning. Therefore, all graphs mentioned
in the next Sections of the paper are Com-
pound graphs.

A) Assumptions
 In this paper some simplifying (yet not
limiting) assumptions about the graph and
agents are made as following:
1. An essential assumption is that the de-

signed graph is finite, connected, pla-
nar, undirected, and represents the free
space. This means that edges intersect
only at vertices.

2. The graph is assumed to be Compound,
i.e. has at least one cycle (loop) and at
least one Leaf. Actually this assumption
is not a restrictive one in most real-
world problems since a natural roadmap
near a simple disjoint obstacle always
forms a loop around it.

3. The initial and final locations of all
agents lie on the graph and are known.

LL I

C C I I L

C C

CL

C C

I L

C

CCCC

C

I

L

L

I

C

L

L

Stem

4. All agents share the same graph and can
(and may) move on the edges of the
graph and stay on the vertices of the
graph. A Move is defined as transferring
an agent from a vertex to its neighboring
vertex via their connecting edge.

5. Two or more agents may not
simultaneously occupy the same vertex
in the graph. That is, the vertices are
supposed to be spaced sufficiently far
apart so that two agents can occupy any
two distinct vertices without having
collision.

6. Agents have sequential (i.e. one at a
time) movements on non-Cycle Edges
of the graph. In other words, an agent at
vertex v can move to its neighboring
Leaf or Internal vertex u only if u is
unoccupied. Agents occupying other
vertices in the graph do not affect this
movement.

7. Agents can have concurrent movements
on Cycle Edges of the graph with the
following condition: an agent at Cycle
Vertex v can move to its neighboring
Cycle Vertex u if u is unoccupied, or
the agent on u can evacuate the vertex u
before the first agent reaches it, or no
other agent is approaching vertex u via
another edge.

3. SOLVABLE GRAPHS
 In Solvable Graphs (SGm) any
configuration of at most m agents can be
reached from any initial configuration
through agents’ moves along the graph’s
edges. However, a principal question is to
determine the maximum number of agents
a graph with known topology can
accommodate such that any final
configuration can be reached from any
initial configuration. This question can be
rephrased as “what topology a graph must
have to be solvable for a specific number
of agents?”
 It is noted that we are trying to find the
maximum number of agents a graph is
solvable for. Obviously, any graph solvable
for m agents is also solvable for k < m
agents since there will be more empty

vertices and so deadlocks can be resolved
more easily.
 For finding the maximum number of
agents a graph is solvable for, it is essential
to investigate the conditions for changing
the arrangements of a number of agents
through sequential or concurrent moves.
Regarding that the graph is assumed to be
cyclic, we will first study the solvability
conditions of a single cycle, and then
expand the results to general Compound
graphs through a number of lemmas and
theorems.
 Imagine a single cycle of k vertices: the
total number of distinct configurations of k
agents located on the vertices of the cycle
is k!. However, regarding that the only
permitted movements on a cycle is the
concurrent clockwise or counterclockwise
rotation of agents, only k distinct
configurations can be reached from an
initial configuration, all of which have the
same sequence. It follows that a single
cycle is not sufficient for achieving all k!
permutations of agents, and so additional
vertices are needed for changing the
sequence of agents. Lemma 1 formalizes
this fact:

Lemma 1. A specific sequence of agents
on a cycle can be reordered iff at least an
empty vertex is connected to the cycle.
Proof. A sequence of agents a1, a2, …, ak
can be reordered (rearranged) only when
any arbitrary agent, say ai, could be located
between any two other adjacent agents,
such as aj and ar. This is possible only by
removing ai from the agents’ chain
(sequence) and reinserting it between aj
and ar. Apparently, as Fig. 4 illustrates,
any outside vertex connected to the cycle
(such as vertex u) is a feasible position on
which ai can lay temporarily. If the
departure of ai from the cycle is not
possible directly, the whole sequence of
agents must rotate until ai resides on vertex
v, after which ai can move to u. The agents
remaining in the cycle further rotate until
aj and ar locate on both sides of the vertex
v. Now ai can re-enter the cycle, between
aj and ar.

 Conversely, if no vertex exists outside of
the cycle, then ai cannot exit the cycle and
therefore cannot locate between aj and ar. □
 For our future reference, we will define
a Basic Unicycle Graph (BUG) as a single
cycle fully occupied by agents connected
to one empty leaf (as shown in Fig. 3).

Fig. 3. Illustration for Lemma 1.

 As Lemma 1 implies, cycles and their
connected empty vertices play a critical
role in reordering the agents’ sequences,
and hence in the solvability of Compound
graphs. The connected empty vertices help
to make start-to-goal paths of agents as
free as possible and facilitate resolving
deadlocks.

Lemma 2. A graph is solvable iff any two
agents can interchange their positions.
Proof. If we show the transformation of a
configuration C1 to another configuration
C2 merely through position interchange of
any 2 agents by f2: C1 → C2, then using the
Chain Rule for n agents, the transformation
of any initial configuration Ci to any final
configuration Cf can be shown by a
sequence of 2-agent exchanges, as a
compound function fn: Ci → Cf ≡ f2

1 ○ f2
2 ○

…○ f2
n. It follows that if according to the

premise of the lemma any 2-agent
interchange is possible, then any n-agent
interchange is also possible due to the
Chain Rule, which means the graph is
solvable.
 On the other hand, if a graph is solvable,
then any configuration is reachable from
any initial configuration, a special case of
which could be the interchanging of just
two agents. This shows that graph
solvability and 2-agent interchanging are
logically equal. □

Corollary 1. A Basic Unicycle Graph is
solvable iff one vertex in the graph is
empty.
Proof. Regarding the proof of Lemma 1,
for m agents on a BUG, any final

arrangement is accessible from any initial
arrangement, and so the graph is solvable.
Conversely, if there is no empty vertex in
the graph, then no sequence can be
rearranged on the cycle. Therefore, the
assumption of no empty vertices is
incorrect. □

Corollary 2. A graph comprised of a chain
of i vertices connected to the leaf of a
Basic Unicycle Graph is solvable iff
h = i + 1 vertices in the graph are empty.
Proof. Let us first consider a graph made
of one extra vertex connected to the leaf of
a BUG occupied by k agents (as in Fig. 4).
If the extra vertex is empty (hence there
are k agents and 2 empty vertices in total),
then according to Lemma 1 the graph is
solvable for k agents. If the extra vertex is
occupied by an agent (hence there are k + 1
agents and 1 empty vertex in total), then
since the new agent cannot enter the cycle,
the graph is still solvable only for k agents,
and the number of necessary empty
vertices will be h = 2. By the same logic,
the graph is expanded by consecutively
appending up to i vertices to the leaf of the
BUG, for which the number of necessary
empty vertices must increase as much as i
+ 1. If h < i + 1, then there would be some
agents on the chain that are unable to reach
the cycle and hence cannot be reordered. □

Fig. 4. A Basic Unicycle Graph (gray vertices) is

connected to a chain of i vertices.

 For a later reference, at this point we
define a special type of graph derived from
the Basic Unicycle Graph, called an
Extended Unicycle Graph (EUG): An
Extended Unicycle Graph is a graph
comprised of j chains of vertices each with
lengths of 1 ≤ i ≤ lmax connected to some or
all vertices of a Basic Unicycle Graph such
that there is no internal vertex with degree
d(I) > 2. Fig. 5 depicts an example of EUG.

1 2 i

v u

ai

aj

ar

Fig. 5. In a typical Extended Unicycle Graph
(EUG) the length of the longest chain is lmax.

Lemma 3. An Extended Unicycle Graph is
solvable iff at least h = lmax vertices in the
graph are empty.
Proof. We know that the maximum
distance from the EUG’s cycle to any
vertex in the graph is lmax. The worst case
of interchanging the positions of two
agents occurs when an agent ai located on
the vertex with maximum distance from
the cycle (i.e. lmax) has to move to the
depth of another chain of the graph. Since
there is only one cycle in the graph, at least
the path P connecting the vertex v(ai) and
including the nearest cycle vertex must be
either initially empty, or able to be emptied
by motions of other agents. By having that
many empty vertices, ai can reach the
cycle and concurrently move with other
agents of the cycle. Moreover, since the
longest chain P is (or can be) emptied, then
all the agents on ai’s destination chain can
be accommodated on the P, making room
for ai to occupy its final destination vertex.
After relocation of ai, all other agents can
return to their original positions via moves
in reverse order of their evacuation. This
concludes that at least h = lmax vertices in
the graph should be empty to enable any
two agents to interchange and hence make
the graph solvable. □

Corollary 3. A Compound Graph is
solvable iff at least h = lmax vertices in the
graph are empty, where lmax is the length
(diameter) of the graph’s Stem.
Proof. Any Compound graph with c cycles
can be regarded as a set of c distinct
Extended Unicycle Graphs. Since the Stem
of the whole graph is the longest non-
cyclic path with a length of lmax, then any
path P connecting any agent on the graph to
its nearest cycle vertex has at most a length
of lmax. Because the graph is connected, it is
possible to make any non-cyclic path free

of agents by having at least h = lmax empty
vertices in the graph via agents moving.
Therefore, concluding from the Lemma 3,
all cycles of the graph are solvable, and
since each two adjacent cycles share a path
between, it is possible to move any agent to
any vertex of a ‘far’ EUG through moving
on intermediate cycles located in between.□

Theorem 1. The maximum number of agents
for which a Compound graph is solvable is
m = |G| − |IS| − 1, in which |IS| is the
number of Internal Vertices on the Stem.
Proof. As stated in Corollary 3, the number
of necessary empty vertices in a solvable
graph must be at least h = ||S||, in which ||S||
is the number of edges on the Stem.
Referring to the definition of the Stem in
Table 1 and Fig. 3, the length of a Stem can
be expressed as ||S|| = |IS| + 1, in which |IS|
is the number of its Internal vertices.
Regarding that the order of every graph is
equal to the sum of vertices occupied by
agents and empty vertices, i.e., |G| = m + h,
it is concluded that |G| = m + |IS| + 1, and
therefore the maximum number of agents
on a solvable Compound graph is
m = |G| − |IS| − 1. □

 The result of Theorem 1 serves as a
foundation for the next Sections of the paper.

4. CONVERTING SGM INTO SGM′
 As discussed in Theorem 1, the
maximum number of agents for which a
graph can be solvable is determined by the
order of the graph, |G|, and the number of
internal vertices on the Stem, |IS|. On the
other hand, sometimes it is desirable to
modify a given Solvable Graph SGm in
order to accommodate larger or smaller
numbers of moving agents. This happens
for instance when the graph represents the
routes of Automatic Guided Vehicles
(AGVs) on plant floor, or railways
connecting urban or rural districts.
 Converting an SGm into SGm′ has two
aspects:

(1) If m′ > m, then the SGm is partially
solvable for m′ agents (i.e., it is a
PSGm′). In this case, some vertices

 1 ij

1 i3

1 2 i2

1 2 i11 2

i4 1

2

i5 1

Stem

a

b b

a

Stem

and/or edges must be inserted or
relocated to give an SGm′.

(2) If m′ ≤ m, then the SGm is solvable for
m′ agents. In this case, there might be
some redundant vertices and/or edges
in the graph which can be truncated or
relocated to give a ‘lean’ SGm′.

 In this section, mainly the first case, i.e.
the problem of converting an SGm into an
SGm′ (m′ > m), is dealt with, where
n = m′ − m additional agents should
navigate on the graph. Regarding that in an
SGm the maximum number of agents is
m = |G| − |IS| − 1, accommodating n
additional agents requires that the
difference |G| − |IS| be increased by n. The
graph expansion/modification is done
through four basic operations: Vertex
Insertion, Vertex Relocation, Edge
Insertion, and Edge Relocation.
 It is noteworthy that for the second case
above (m′ ≤ m), all of the above basic
operations can be performed in reverse
order. Precisely, Vertex/Edge Insertion
operations change to Vertex/Edge Deletion
operations, respectively, and Vertex/Edge
Relocation operations remain Vertex/Edge
Relocations, but in reverse order.

A) Vertex Insertion
 In this operation the difference |G| − |IS|
increases by locating new vertices on the
graph in a way that augmenting |G| does not
increase |IS|. This is done generally by
creating cycle vertices, or inserting new
leaves or internal vertices. Table 2 illustrates
different variations of converting an SGm
into SGm+1 via vertex insertion. For obtaining
an SGm+n any combination of these
variations should be repeated for n times.

B) Vertex Relocation
 In this operation, instead of adding new
vertices to the graph, existing vertices plus
their connected edges are relocated such
that the difference |G| − |IS| is increased. For
converting an SGm into SGm+1, since |G|
remains constant, |IS| must be reduced by
relocating its Leaf to somewhere in the
graph other than the Stem (as in Fig. 6(a)),
through one of the methods explained in the

Table 2. The Vertex Relocation operation
must be repeated for obtaining an SGm+n.
 It is noted that when the Stem is not
unique (as in Fig. 6(b)), relocating its Leaf
will not increase the maximum number of
navigable agents since an alternative path
will be the new Stem with a length equal to
the previous Stem. In such cases, Vertex
Relocation must be repeated until |IS|
decreases (Fig. 6(c) and 6(d)). Note that
this operation must be done in a way that
the graph’s connectivity is maintained.

Table 2. Possible variations of converting an SGm
into SGm+1 through Vertex Insertion.

Graphical Example (for m = 7)
Description

SG7 SG8

Expanding a
cycle

Inserting a
Leaf on a

cycle vertex

Inserting a
Leaf on an

internal
vertex

Inserting an
internal

vertex such
that |IS| does
not increase

C) Edge Insertion
In this operation no new vertices are

added to the graph; instead, new edges
connecting existing vertices are inserted
such that the difference |G| − |IS| is
increased. For converting an SGm into
SGm+n through the Edge Insertion
operation, since |G| remains constant in
this operation, |IS| must reduce by
converting the Stem’s internal vertices into
cycle vertices. As a result, new cycles are
created, as shown in Fig. 7.

It is noted that when the Stem is not
unique (as {h-e-d} and {h-f-g} in Fig.
7(b)), similar to the Vertex Relocation
operation, inserting an edge on the Stem
will not increase the maximum number of
navigable agents since an alternative path

will be the new Stem with a length equal to
the previous Stem. In such cases, edge
insertion must be repeated until |IS|
decreases (Figs. 8(c) and 8(d)).

Fig. 6. Graph modification through Vertex
Relocation. Dashed areas indicate Stems. The
graphs are SG6, SG7, SG7, and SG8, respectively
from (a) to (d).

Fig. 7. Graph modification through Edge Insertion.
Dashed areas indicate Stems, which change as new
edges are inserted in the graph. The graphs are SG8,
SG9, SG9, and SG10, respectively from (a) to (d).

D) Edge Relocation
In this operation, instead of adding new

edges to the graph, existing cycle edges are
relocated to create ‘longer’ cycles (i.e.
cycles with larger number of vertices
within) such that the difference |G| − |IS| is
increased. For converting an SGm into
SGm+n through the Edge Relocation
operation, since |G| remains constant, |IS|
must reduce by converting the Stem’s
internal vertices into cycle vertices, as
shown in Fig. 8. Note that this operation

must be done in a way that the graph’s
connectivity is maintained.

As mentioned earlier, when the Stem is
not unique, relocating a cycle edge will not
increase the maximum number of
navigable agents since an alternative path
will be the new Stem with a length equal to
the previous Stem. In such cases, Edge
Relocation must be repeated until |IS|
decreases.

(a) (b)

Fig. 8. Graph modification through Edge
Relocation. Dashed areas indicate Stems. The
graphs are SG6 and SG7, respectively.

 It should be noted that in real world
applications, where existing of multiple
cycles or cycles with large number of
vertices are not practically feasible, instead
of expanding the number or size of cycles,
we may expand the trees connected to
cycles of graphs such that the difference
|G| − |IS| remains unchanged, and the graph
remains solvable for the same number of
agents.

5. MINIMAL SOLVABLE GRAPHS
 For a specific number of agents (m), a
notable subclass of Solvable Graphs SGm
is the set of Minimal Solvable Graphs
(MSGm) which have the minimum number
of vertices necessary for accommodating m
agents. Considering that the complexity of
graph searching operations is directly
influenced from the graph size, finding
Minimal Solvable Graphs would
significantly ease the tasks of graph
designing and multi agent motion
planning. In this Section the topologies of
Minimal Solvable Graphs are introduced
through a number of theorems. Also, a
special subset of MSGs are identified
which have the minimal number of edges.

a

b

c

b

c

a

b

a

c

(a)

(d)

(b)

(c)

b

c

a

a h

e

f c b

d

g

h

e

fc

d

gb

h

e

f

d

g b

a h

e

fcb

d

g

(a) (b)

(c) (d)

Theorem 2. The minimum number of
vertices for a graph to be solvable is
m + 1.
Proof. As stated in the Theorem 1, the
maximum number of agents in a solvable
graph is m = |G| − |IS| − 1, and so
|G| = m + |IS| + 1. For minimal number of
vertices, |IS| must take the least possible
value, which is 0. It follows that
|G| = m + 0 + 1 = m + 1, and so MSGms
have m + 1 vertices. □

Corollary 4. Minimal Solvable Graphs do
not contain any internal vertices.
Proof. As proved in Theorem 2, the Stem
in MSGs does not contain internal vertices
(i.e. |IS| = 0). On the other hand, since the
Stem is the longest non-cyclic chain and
no other path may have more internal
vertices than it, then there should be no
internal vertices in the entire graph. □

Corollary 5. An MSGm is not solvable for
more than m agents.
Proof. Since an MSGm has m + 1 vertices,
placing one more agent on the graph will
make the graph fully occupied, and hence
no sequential moves would be possible. □

Theorem 3. An MSGm with c cycles has
m + c edges.
Proof. According to the Euler’s Formula,
for a connected planar graph with V
vertices, E edges, and F faces, the
following equation holds: V − E + F = 2
(proved in [9]). Each cycle divides the
space into two faces: a finite face enclosed
in the cycle, and an infinite face outside of
the cycle. In the context of our definitions
and notations, by excluding the infinite
face from both sides of the Euler’s
Formula, it can be rewritten as

|G| − ||G|| + c = 1. (1)
 As proved in Theorem 3, in an MSGm,
m = |G| − 1. Therefore,

m + 1 − ||G|| + c = 1, (2)
⇒ ||G|| = m + c, (3)

which proves the theorem. □

Corollary 6. An MSG has minimal edges if
there is only one cycle in the graph.
Proof. It was proved previously that an
MSGm containing c cycles has m + 1
vertices and m + c edges. The number of

edges is minimal when c = 1, i.e. there is
be only one cycle in the graph. □

 For constructing MSGm, m + 1 vertices
must be connected such that at least one
cycle and no internal vertices are formed.
As an example, all possible topologies of
Minimal Solvable compound Graphs for m
= 6 agents are shown in Fig. 9. All these
graphs have 6 + 1 = 7 vertices, 0 internal
vertices, and 6 + c edges, in which c is the
number of cycles.
 In order to obtain various topologies for
MSGs, a number of transformation
operations are worked out and illustrated in
Table 3.

Fig. 9. All possible Minimal Compound Solvable

Graphs for m = 6 agents (MSG6).

Table 3. Operations for creating different
topologies of MSGs.

Description Graphical Examples (for m = 7)

Converting a cycle
vertex into a leaf

connected to a cycle

Converting a leaf
connected to a cycle
into a cycle vertex

Relocating a leaf
connected to a cycle

between cycle-vertices

Transforming cycles
with lengths of c1 and c2
into cycles with lengths

c1 − 1 and c2 + 1

 Since MSGms have |G| = m + 1 vertices
and ||G|| = m + c edges, and regarding that
compound graphs have at least one cycle,
Minimal Solvable Graphs with one cycle
have minimal number of edges, as well as
vertices. Therefore, for minimizing the
edges of an existing MSGm, multiple
cycles must be decomposed into one cycle,
via operations described in Table 4.

Table 4. Methods of creating MSGs with minimal
number of edges.

Method Description Graphical Examples (for m = 6)

Creating
larger
cycles

instead of
two or
more
cycles

V
er

te
x

R
el

oc
at

io
n

Converting
cycles

vertices
into leaves
connected
to cycles

V
er

te
x

D
el

et
io

n

Deleting
common
edges in
cycles

6. DISCUSSION AND CONCLUSION
 The time complexity of the proposed
method for verifying the solvability of a
graph is in O(n2) which is spent on
detecting cycles and identifying the Stem,
where n is the number of graph vertices.
Also, calculating the maximum number of
agents operable on a given graph takes is
performed in the same time order. In
contrast, investigating the solvability of a
Multi Agent Motion Planning problem of
m agents on a graph with n vertices
through exhaustive enumeration will

require !
()!

n
n m−

 different permutations of

agents to be checked, which is far beyond
the time order of the presented algorithm.
 Moreover, verifying whether a graph is

SGm would require
2

1

!
()!

m

i

n
n i=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠−∑ operations

to be checked, for any initial and final
configurations, which is again exponentially

time consuming. These figures demonstrate
the effectiveness of our findings in terms of
required time and memory.
 In designing transportation networks for
multiple autonomous agents (such as
mobile robots, AGVs, cars, etc.) which can
merely move along the network’s arcs, it is
important to make sure that the graph has a
proper topology and sufficient number of
vertices (relative to the number of agents)
to enable the agents move planning. This
paper deals with the topology of Solvable
Graphs and introduces the new concept of
Minimal Solvable Graphs and investigates
their properties, which are the smallest
graphs that satisfy the feasibility
conditions for multi agent motion planning
for any initial and final configurations of
agents.

References
[1] J. F. Canny, The Complexity of Robot

Motion Planning, The MIT press,
Cambridge, Mass., 1988.

[2] J.C. Latombe, Robot Motion Planning,
Kluwer Acad. Pub., London, 1991.

[3] R.M. Wilson, “Graph puzzles, homotopy,
and the alternating group”, Journal of
Combinatorial Theory, Series B, 1974,
Vol. 16, pp. 86-94.

[4] D. Kornhauser, G. Miller, and P. Spirakis,
Coordinating pebble motion on graphs, the
diameter of permutations groups and
applications", in Proc. 25th IEEE Symp. On
Found. Comp. Sci., (1984), pp. 241-250.

[5] V. Auletta, A. Monti, D. Parente and G.
Persiano, “A Linear-Time Algorithm for
the Feasibility of Pebble Motion on Trees”,
Algorithmica, 23(3) (1999), pp. 223-245.

[6] V. Auletta, D. Parente and G. Persiano, “A
New Approach to Optimal Planning of
Robot Motion on a Tree with Obstacle”, in
Proc. 4th European Symposium on
Algorithms (ESA), Spain, 1996, pp. 25-27.

[7] M.R.K. Ryan, “Multi-robot path planning
with subgraphs”, in Proc. 19th Australasian
Conf. Rob. Autom., New Zealand, (2006).

[8] S. Onn, and M. Tennenholtz,
“Determination of social laws for agent
mobilization”, Artificial Intelligence, Vol.
95, (1997), pp. 155-167.

[9] R. Diestel, Graph Theory, Springer-
Verlag, New York, 2000.

