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ABSTRACT 
Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a 
specified number of agents located on the graph’s vertices can be reached from any initial arrangement 
through agents’ moves along the graph’s edges, while avoiding deadlocks (interceptions). In this pa-
per, the properties of Solvable Graphs are investigated, and a new concept in multi agent motion plan-
ning, called Minimal Solvable Graphs is introduced. Minimal Solvable Graphs are the smallest graphs 
among Solvable Graphs in terms of the number of vertices. Also, for the first time, the problem of 
deciding whether a graph is Solvable for m agents is answered. 
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1. INTRODUCTION 
 The necessity of planning the motions 
of autonomous agents originally arose in 
early 1970’s, when the first industrial ro-
bots were to perform automatic tasks of 
manipulation and navigation. Soon it was 
realized that the complexity of the robot 
motion planning problem is PSPACE-hard 
and NP-complete since the size of the solu-
tion space grows exponentially and gets 
extremely complicated, especially for high 
degrees of freedom [1]. 
 When multiple moving agents (e.g. ro-
bots) share a common workspace, the mo-
tion planning task becomes even more diffi-
cult and cannot be performed for just one 
agent without considering others. In this 
kind of problems, while pursuing their 
individual (local) goals, agents must coordi-
nate their motions with each other in order 
to avoid collisions with obstacles and one 
another, thus contributing to the task of 
achieving a global goal, which might be 
minimizing the total time or distance. This 
problem is called Multi Agent Motion Plan-
ning (MAMP) problem. In MAMP, each 
agent is regarded as a dynamic obstacle for 
other agents, and so the element of time 
plays a major role in planning, especially 
because of its irreversible nature [2]. 

 Space is the most limiting constraint in 
a typical MAMP problem: often, because 
of lack of sufficient space around moving 
agents, they cannot reach their destinations 
without obstructing each other’s way, 
causing deadlocks. Deadlocks are situa-
tions in which two (or more) agents inter-
cept each other’s motions and are pre-
vented from reaching their goals. This hap-
pens generally in narrow passageways 
where autonomous moving agents cannot 
pass by each other. To resolve such a dead-
lock, one of the agents should leave and 
evacuate the passageway (by usually back-
tracking), and let the opposite agent move 
out of the passage. This kind of problems is 
prevalent in large warehouses, plants, and 
transportation systems, where Automatic 
Guided Vehicles (AGVs) convey material 
and products (Fig. 1). 
 By reducing the workspace into a graph 
with vertices including the starts and goals 
of all agents, the MAMP problem can turn 
into a sequencing problem where the 
agents are planed to move sequentially (or 
concurrently) toward their destinations, 
without colliding with each other. The 
graph structure stipulates them to remain 
on predefined routs (i.e. graph edges), and 
so avoid static obstacles existing in the 
workspace. 
 The main question in designing a prede-
fined graph, however, is to find out 



whether the graph is ‘reachable’ (solvable) 
for any initial and final configurations. 
Solvable Graphs allow the transition of 
any initial configuration of agents (e.g. 
pebbles (beans), robots, or vehicles) to a 
final state via their sequential moves along 
the graph’s edges. 

 
Fig.1. Planning the motions of AGVs to different 
locations in shop floor is a real-world application of 
MAMP. 
 Wilson in [3] worked out a relation be-
tween the number of pebbles (k) and the 
number of vertices (n) of only bi-connected 
graphs as k = n − 1. Kornhauser in [4] im-
proved this result through generalizing the 
decision problem for all graphs and any 
number of agents. Auletta et al. in [5] and 
[6] studied the above problem as pebble 
motion problem by following the 
generalization of the 15-puzzle and pre-
sented a linear algorithm for deciding the 
reachability of trees. Ryan in [7] studied 
the possibility of reaching destinations of 
connected sub-graphs by simplifying the 
multi robot motion planning between the 
sub-graphs. He worked on predefined sub-
graphs like stack, clique and hall. In [8] it is 
demonstrated that the environment can be 
shown through any two-connected graph 
which has a routing with a practical social 
law for motion planning. 
 In this paper, the main problem of find-
ing the maximum number of agents able to 
navigate on a graph. The topologies and 
properties of Solvable Graphs are exten-
sively dealt with through a number of lem-
mas and theorems. Also, considering the 
fact that the complexity of graph searching 
operations is directly influenced from the 
graph size, finding solvable graphs with 
minimum number of vertices can signifi-
cantly ease the motion planning task for 

multiple agents. As a result, the concept of 
Minimal Solvable Graphs (MSGs) is intro-
duced for the first time in this paper. Ac-
cordingly, it can be determined whether a 
graph is solvable for a certain number of 
agents or not.  

2. DEFINITIONS AND ASSUMPTIONS 
 As mentioned earlier, reducing (or map-
ping) the configuration space into a graph is 
very advantageous regarding the significant 
savings in required time and memory. 
 In order to lay a proper mathematical 
foundation for expressing and investigating 
the properties of graphs, we adopt the stan-
dard terminology used in Graph Theory [9]. 
In addition, some definitions and symbols 
have been introduced and defined specifi-
cally for this work, all presented in Table 1. 
A number of these concepts are illustrated 
in Fig. 2.  

Table 1. Definitions of used terms and symbols. 

Term/Symbol Description 
|G| Order: The number of vertices of 

the Graph G = (V, E). 
||G|| The number of edges on G. 
Path A non-empty graph P = (V, E) of 

the form V = {v0, v1, ..., vk}, 
E = {v0v1, v1v2, ..., vk−1vk}, where all 
vi are distinct. 

Cycle A non-empty graph of the form V = 
{v0, v1, ..., vk}, E = {v0v1, v1v2, ..., 
vk−1vk, vkv0}, where all vi are dis-
tinct.  

Cycle Edge An edge on a cycle. 
Tree An acyclic subgraph connected to a 

cycle. 
Leaf, L A vertex with a degree d = 1. 
Cycle Vertex, 
C A vertex located on a cycle. 

Internal Ver-
tex, I 

A vertex with a degree d > 1 which 
is not a Cycle Vertex. 

Stem, S The longest path in the graph with 
its one end (or both ends, if located 
between two cycles) connected to a 
cycle vertex and including it, and 
not containing any Cycle Edges. 
None of the edges of the Stem are 
cycle edges. If not unique, the Stem 
is selected arbitrarily. The number 
of vertices on the Stem (i.e. its or-
der) is shown by |IS|. 

Configuration An arrangement of agents on the 
graph vertices such that no vertex is 
occupied by more than one agent. 



  
Fig. 2. Some concepts illustrated: L, I, and C denote 
Leaf, Internal vertex and Cycle vertex, respectively. 
The symbol  indicates a cycle, and the dashed 
area designates the Stem. 

 When designing a graph or networks of 
routs, it is always important to consider 
current transportation demands, as well as 
future developments of the system. In the 
context of MAMP, this consideration re-
quires that the system designer decides the 
proper topology of the network, the num-
ber of agents (as mobile robots or vehicles) 
required to move along the routs, and the 
possibilities of expanding the network for 
future increased transportation traffic. 
 Concerned about these issues, we will 
comprehensively investigate the concept of 
Solvable Graphs. To date, the notion of 
graph solvability has been essentially de-
pended on the initial and final configura-
tions (situations) of the moving objects. For 
instance, the question whether a tree-like 
graph is solvable for a given initial and final 
configuration of pebbles is solvable or not 
is addressed in [5] and [6]. However, no 
work exists in the literature for all types of 
graphs, and never has the problem of decid-
ing if a graph is always solvable for a spe-
cific number of agents for any initial and 
final configuration been mentioned or ad-
dressed. 
 In this paper we focus on some related 
problems, such as: 
 - What is the maximum number of 
agents a graph can accommodate such that 
any final configuration can be reached 
from any initial configuration? 
 - What topology must a graph have to 
be solvable for a specific number of 
agents? 
 - What is the ‘smallest’ graph solvable 
for a specific number of agents? 
 Before dealing with the answers to the 
above questions, three new fundamental 

and correlated notions are presented be-
low: 

Definition 1. A Solvable Graph is a graph 
on which any configuration of at most m 
agents can be reached from any initial con-
figuration through their moves on graph 
edges, and is shown by SGm. 

Definition 2. A Partially Solvable Graph 
is a graph on which only some configura-
tions of m agents can be reached from any 
initial configuration through their moves 
on graph edges, and is shown by PSGm.  

Definition 3. A Minimal Solvable Graph is 
the smallest graph on which any configura-
tion of at most m agents can be reached 
from any initial configuration through their 
moves on graph edges, and is shown by 
MSGm. In this definition, ‘smallest’ can be 
expressed and measured in terms of the 
number of either vertices or edges. 

 A Compound graph is a combination of 
Cyclic and Acyclic graphs; that is, it con-
tains at least one loop and at least one leaf. 
Since Compound graphs constitute a large 
portion of graphs and have the broadest 
applications among graphs, we will deal 
with this kind of graphs in this paper, as a 
part of our research on graph-based motion 
planning. Therefore, all graphs mentioned 
in the next Sections of the paper are Com-
pound graphs. 

A) Assumptions 
 In this paper some simplifying (yet not 
limiting) assumptions about the graph and 
agents are made as following: 
1. An essential assumption is that the de-

signed graph is finite, connected, pla-
nar, undirected, and represents the free 
space. This means that edges intersect 
only at vertices. 

2. The graph is assumed to be Compound, 
i.e. has at least one cycle (loop) and at 
least one Leaf. Actually this assumption 
is not a restrictive one in most real-
world problems since a natural roadmap 
near a simple disjoint obstacle always 
forms a loop around it.  

3. The initial and final locations of all 
agents lie on the graph and are known. 
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4. All agents share the same graph and can 
(and may) move on the edges of the 
graph and stay on the vertices of the 
graph. A Move is defined as transferring 
an agent from a vertex to its neighboring 
vertex via their connecting edge. 

5. Two or more agents may not 
simultaneously occupy the same vertex 
in the graph. That is, the vertices are 
supposed to be spaced sufficiently far 
apart so that two agents can occupy any 
two distinct vertices without having 
collision. 

6. Agents have sequential (i.e. one at a 
time) movements on non-Cycle Edges 
of the graph. In other words, an agent at 
vertex v can move to its neighboring 
Leaf or Internal vertex u only if u is 
unoccupied. Agents occupying other 
vertices in the graph do not affect this 
movement. 

7. Agents can have concurrent movements 
on Cycle Edges of the graph with the 
following condition: an agent at Cycle 
Vertex v can move to its neighboring 
Cycle Vertex u if u is unoccupied, or 
the agent on u can evacuate the vertex u 
before the first agent reaches it, or no 
other agent is approaching vertex u via 
another edge. 

 
 

3. SOLVABLE GRAPHS  
 In Solvable Graphs (SGm) any 
configuration of at most m agents can be 
reached from any initial configuration 
through agents’ moves along the graph’s 
edges. However, a principal question is to 
determine the maximum number of agents 
a graph with known topology can 
accommodate such that any final 
configuration can be reached from any 
initial configuration. This question can be 
rephrased as “what topology a graph must 
have to be solvable for a specific number 
of agents?” 
 It is noted that we are trying to find the 
maximum number of agents a graph is 
solvable for. Obviously, any graph solvable 
for m agents is also solvable for k < m 
agents since there will be more empty 

vertices and so deadlocks can be resolved 
more easily. 
 For finding the maximum number of 
agents a graph is solvable for, it is essential 
to investigate the conditions for changing 
the arrangements of a number of agents 
through sequential or concurrent moves. 
Regarding that the graph is assumed to be 
cyclic, we will first study the solvability 
conditions of a single cycle, and then 
expand the results to general Compound 
graphs through a number of lemmas and 
theorems. 
 Imagine a single cycle of k vertices: the 
total number of distinct configurations of k 
agents located on the vertices of the cycle 
is k!. However, regarding that the only 
permitted movements on a cycle is the 
concurrent clockwise or counterclockwise 
rotation of agents, only k distinct 
configurations can be reached from an 
initial configuration, all of which have the 
same sequence. It follows that a single 
cycle is not sufficient for achieving all k! 
permutations of agents, and so additional 
vertices are needed for changing the 
sequence of agents. Lemma 1 formalizes 
this fact: 

Lemma 1. A specific sequence of agents 
on a cycle can be reordered iff at least an 
empty vertex is connected to the cycle. 
Proof. A sequence of agents a1, a2, …, ak 
can be reordered (rearranged) only when 
any arbitrary agent, say ai, could be located 
between any two other adjacent agents, 
such as aj and ar. This is possible only by 
removing ai from the agents’ chain 
(sequence) and reinserting it between aj 
and ar. Apparently, as Fig. 4 illustrates, 
any outside vertex connected to the cycle 
(such as vertex u) is a feasible position on 
which ai can lay temporarily. If the 
departure of ai from the cycle is not 
possible directly, the whole sequence of 
agents must rotate until ai resides on vertex 
v, after which ai can move to u. The agents 
remaining in the cycle further rotate until 
aj and ar locate on both sides of the vertex 
v. Now ai can re-enter the cycle, between 
aj and ar. 



 Conversely, if no vertex exists outside of 
the cycle, then ai cannot exit the cycle and 
therefore cannot locate between aj and ar. □ 
 For our future reference, we will define 
a Basic Unicycle Graph (BUG) as a single 
cycle fully occupied by agents connected 
to one empty leaf (as shown in Fig. 3). 

 
Fig. 3. Illustration for Lemma 1. 

 As Lemma 1 implies, cycles and their 
connected empty vertices play a critical 
role in reordering the agents’ sequences, 
and hence in the solvability of Compound 
graphs. The connected empty vertices help 
to make start-to-goal paths of agents as 
free as possible and facilitate resolving 
deadlocks. 

Lemma 2. A graph is solvable iff any two 
agents can interchange their positions. 
Proof. If we show the transformation of a 
configuration C1 to another configuration 
C2 merely through position interchange of 
any 2 agents by f2: C1 → C2, then using the 
Chain Rule for n agents, the transformation 
of any initial configuration Ci to any final 
configuration Cf can be shown by a 
sequence of 2-agent exchanges, as a 
compound function fn: Ci → Cf ≡ f2

1 ○ f2
2 ○ 

…○ f2
n. It follows that if according to the 

premise of the lemma any 2-agent 
interchange is possible, then any n-agent 
interchange is also possible due to the 
Chain Rule, which means the graph is 
solvable. 
 On the other hand, if a graph is solvable, 
then any configuration is reachable from 
any initial configuration, a special case of 
which could be the interchanging of just 
two agents. This shows that graph 
solvability and 2-agent interchanging are 
logically equal.         □ 

Corollary 1. A Basic Unicycle Graph is 
solvable iff one vertex in the graph is 
empty. 
Proof. Regarding the proof of Lemma 1, 
for m agents on a BUG, any final 

arrangement is accessible from any initial 
arrangement, and so the graph is solvable. 
Conversely, if there is no empty vertex in 
the graph, then no sequence can be 
rearranged on the cycle. Therefore, the 
assumption of no empty vertices is 
incorrect.            □ 

Corollary 2. A graph comprised of a chain 
of i vertices connected to the leaf of a 
Basic Unicycle Graph is solvable iff 
h = i + 1 vertices in the graph are empty. 
Proof. Let us first consider a graph made 
of one extra vertex connected to the leaf of 
a BUG occupied by k agents (as in Fig. 4). 
If the extra vertex is empty (hence there 
are k agents and 2 empty vertices in total), 
then according to Lemma 1 the graph is 
solvable for k agents. If the extra vertex is 
occupied by an agent (hence there are k + 1 
agents and 1 empty vertex in total), then 
since the new agent cannot enter the cycle, 
the graph is still solvable only for k agents, 
and the number of necessary empty 
vertices will be h = 2. By the same logic, 
the graph is expanded by consecutively 
appending up to i vertices to the leaf of the 
BUG, for which the number of necessary 
empty vertices must increase as much as i 
+ 1. If h < i + 1, then there would be some 
agents on the chain that are unable to reach 
the cycle and hence cannot be reordered. □ 

 
Fig. 4. A Basic Unicycle Graph (gray vertices) is 

connected to a chain of i vertices. 

 For a later reference, at this point we 
define a special type of graph derived from 
the Basic Unicycle Graph, called an 
Extended Unicycle Graph (EUG): An 
Extended Unicycle Graph is a graph 
comprised of j chains of vertices each with 
lengths of 1 ≤ i ≤ lmax connected to some or 
all vertices of a Basic Unicycle Graph such 
that there is no internal vertex with degree 
d(I) > 2. Fig. 5 depicts an example of EUG.  

1 2 i

v u 

ai 

aj 

ar 



 
Fig. 5. In a typical Extended Unicycle Graph 
(EUG) the length of the longest chain is lmax. 

Lemma 3. An Extended Unicycle Graph is 
solvable iff at least h = lmax vertices in the 
graph are empty. 
Proof. We know that the maximum 
distance from the EUG’s cycle to any 
vertex in the graph is lmax. The worst case 
of interchanging the positions of two 
agents occurs when an agent ai located on 
the vertex with maximum distance from 
the cycle (i.e. lmax) has to move to the 
depth of another chain of the graph. Since 
there is only one cycle in the graph, at least 
the path P connecting the vertex v(ai) and 
including the nearest cycle vertex must be 
either initially empty, or able to be emptied 
by motions of other agents. By having that 
many empty vertices, ai can reach the 
cycle and concurrently move with other 
agents of the cycle. Moreover, since the 
longest chain P is (or can be) emptied, then 
all the agents on ai’s destination chain can 
be accommodated on the P, making room 
for ai to occupy its final destination vertex. 
After relocation of ai, all other agents can 
return to their original positions via moves 
in reverse order of their evacuation. This 
concludes that at least h = lmax vertices in 
the graph should be empty to enable any 
two agents to interchange and hence make 
the graph solvable.        □ 

Corollary 3. A Compound Graph is 
solvable iff at least h = lmax vertices in the 
graph are empty, where lmax is the length 
(diameter) of the graph’s Stem. 
Proof. Any Compound graph with c cycles 
can be regarded as a set of c distinct 
Extended Unicycle Graphs. Since the Stem 
of the whole graph is the longest non-
cyclic path with a length of lmax, then any 
path P connecting any agent on the graph to 
its nearest cycle vertex has at most a length 
of lmax. Because the graph is connected, it is 
possible to make any non-cyclic path free 

of agents by having at least h = lmax empty 
vertices in the graph via agents moving. 
Therefore, concluding from the Lemma 3, 
all cycles of the graph are solvable, and 
since each two adjacent cycles share a path 
between, it is possible to move any agent to 
any vertex of a ‘far’ EUG through moving 
on intermediate cycles located in between.□ 

Theorem 1. The maximum number of agents 
for which a Compound graph is solvable is 
m = |G| − |IS| − 1, in which |IS| is the 
number of Internal Vertices on the Stem. 
Proof. As stated in Corollary 3, the number 
of necessary empty vertices in a solvable 
graph must be at least h = ||S||, in which ||S|| 
is the number of edges on the Stem. 
Referring to the definition of the Stem in 
Table 1 and Fig. 3, the length of a Stem can 
be expressed as ||S|| = |IS| + 1, in which |IS| 
is the number of its Internal vertices. 
Regarding that the order of every graph is 
equal to the sum of vertices occupied by 
agents and empty vertices, i.e., |G| = m + h, 
it is concluded that |G| = m + |IS| + 1, and 
therefore the maximum number of agents 
on a solvable Compound graph is 
m = |G| − |IS| − 1.          □ 

 The result of Theorem 1 serves as a 
foundation for the next Sections of the paper. 

 

4. CONVERTING SGM INTO SGM′ 
 As discussed in Theorem 1, the 
maximum number of agents for which a 
graph can be solvable is determined by the 
order of the graph, |G|, and the number of 
internal vertices on the Stem, |IS|. On the 
other hand, sometimes it is desirable to 
modify a given Solvable Graph SGm in 
order to accommodate larger or smaller 
numbers of moving agents. This happens 
for instance when the graph represents the 
routes of Automatic Guided Vehicles 
(AGVs) on plant floor, or railways 
connecting urban or rural districts. 
 Converting an SGm into SGm′ has two 
aspects:  

(1) If m′ > m, then the SGm is partially 
solvable for m′ agents (i.e., it is a 
PSGm′). In this case, some vertices 
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and/or edges must be inserted or 
relocated to give an SGm′.  

(2) If m′ ≤ m, then the SGm is solvable for 
m′ agents. In this case, there might be 
some redundant vertices and/or edges 
in the graph which can be truncated or 
relocated to give a ‘lean’ SGm′. 

 In this section, mainly the first case, i.e. 
the problem of converting an SGm into an 
SGm′ (m′ > m), is dealt with, where 
n = m′ − m additional agents should 
navigate on the graph. Regarding that in an 
SGm the maximum number of agents is 
m = |G| − |IS| − 1, accommodating n 
additional agents requires that the 
difference |G| − |IS| be increased by n. The 
graph expansion/modification is done 
through four basic operations: Vertex 
Insertion, Vertex Relocation, Edge 
Insertion, and Edge Relocation. 
 It is noteworthy that for the second case 
above (m′ ≤ m), all of the above basic 
operations can be performed in reverse 
order. Precisely, Vertex/Edge Insertion 
operations change to Vertex/Edge Deletion 
operations, respectively, and Vertex/Edge 
Relocation operations remain Vertex/Edge 
Relocations, but in reverse order. 

A) Vertex Insertion 
 In this operation the difference |G| − |IS| 
increases by locating new vertices on the 
graph in a way that augmenting |G| does not 
increase |IS|. This is done generally by 
creating cycle vertices, or inserting new 
leaves or internal vertices. Table 2 illustrates 
different variations of converting an SGm 
into SGm+1 via vertex insertion. For obtaining 
an SGm+n any combination of these 
variations should be repeated for n times. 

B) Vertex Relocation 
 In this operation, instead of adding new 
vertices to the graph, existing vertices plus 
their connected edges are relocated such 
that the difference |G| − |IS| is increased. For 
converting an SGm into SGm+1, since |G| 
remains constant, |IS| must be reduced by 
relocating its Leaf to somewhere in the 
graph other than the Stem (as in Fig. 6(a)), 
through one of the methods explained in the 

Table 2. The Vertex Relocation operation 
must be repeated for obtaining an SGm+n. 
 It is noted that when the Stem is not 
unique (as in Fig. 6(b)), relocating its Leaf 
will not increase the maximum number of 
navigable agents since an alternative path 
will be the new Stem with a length equal to 
the previous Stem. In such cases, Vertex 
Relocation must be repeated until |IS| 
decreases (Fig. 6(c) and 6(d)). Note that 
this operation must be done in a way that 
the graph’s connectivity is maintained.  

Table 2. Possible variations of converting an SGm 
into SGm+1 through Vertex Insertion. 

Graphical Example (for m = 7) 
Description 

SG7 SG8 

Expanding a 
cycle 

 

Inserting a 
Leaf on a 

cycle vertex  

Inserting a 
Leaf on an 

internal 
vertex  

Inserting an 
internal 

vertex such 
that |IS| does 
not increase 

 

C) Edge Insertion 
In this operation no new vertices are 

added to the graph; instead, new edges 
connecting existing vertices are inserted 
such that the difference |G| − |IS| is 
increased. For converting an SGm into 
SGm+n through the Edge Insertion 
operation, since |G| remains constant in 
this operation, |IS| must reduce by 
converting the Stem’s internal vertices into 
cycle vertices. As a result, new cycles are 
created, as shown in Fig. 7. 

It is noted that when the Stem is not 
unique (as {h-e-d} and {h-f-g} in Fig. 
7(b)), similar to the Vertex Relocation 
operation, inserting an edge on the Stem 
will not increase the maximum number of 
navigable agents since an alternative path 



will be the new Stem with a length equal to 
the previous Stem. In such cases, edge 
insertion must be repeated until |IS| 
decreases (Figs. 8(c) and 8(d)). 

 

 
Fig. 6. Graph modification through Vertex 
Relocation. Dashed areas indicate Stems. The 
graphs are SG6, SG7, SG7, and SG8, respectively 
from (a) to (d). 

 

 
Fig. 7. Graph modification through Edge Insertion. 
Dashed areas indicate Stems, which change as new 
edges are inserted in the graph. The graphs are SG8, 
SG9, SG9, and SG10, respectively from (a) to (d). 

D) Edge Relocation 
In this operation, instead of adding new 

edges to the graph, existing cycle edges are 
relocated to create ‘longer’ cycles (i.e. 
cycles with larger number of vertices 
within) such that the difference |G| − |IS| is 
increased. For converting an SGm into 
SGm+n through the Edge Relocation 
operation, since |G| remains constant, |IS| 
must reduce by converting the Stem’s 
internal vertices into cycle vertices, as 
shown in Fig. 8. Note that this operation 

must be done in a way that the graph’s 
connectivity is maintained. 

As mentioned earlier, when the Stem is 
not unique, relocating a cycle edge will not 
increase the maximum number of 
navigable agents since an alternative path 
will be the new Stem with a length equal to 
the previous Stem. In such cases, Edge 
Relocation must be repeated until |IS| 
decreases. 

 
(a)        (b)  

Fig. 8. Graph modification through Edge 
Relocation. Dashed areas indicate Stems. The 
graphs are SG6 and SG7, respectively. 

 It should be noted that in real world 
applications, where existing of multiple 
cycles or cycles with large number of 
vertices are not practically feasible, instead 
of expanding the number or size of cycles, 
we may expand the trees connected to 
cycles of graphs such that the difference 
|G| − |IS| remains unchanged, and the graph 
remains solvable for the same number of 
agents.  

 

 

5. MINIMAL SOLVABLE GRAPHS 
 For a specific number of agents (m), a 
notable subclass of Solvable Graphs SGm 
is the set of Minimal Solvable Graphs 
(MSGm) which have the minimum number 
of vertices necessary for accommodating m 
agents. Considering that the complexity of 
graph searching operations is directly 
influenced from the graph size, finding 
Minimal Solvable Graphs would 
significantly ease the tasks of graph 
designing and multi agent motion 
planning. In this Section the topologies of 
Minimal Solvable Graphs are introduced 
through a number of theorems. Also, a 
special subset of MSGs are identified 
which have the minimal number of edges. 
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Theorem 2. The minimum number of 
vertices for a graph to be solvable is 
m + 1. 
Proof. As stated in the Theorem 1, the 
maximum number of agents in a solvable 
graph is m = |G| − |IS| − 1, and so 
|G| = m + |IS| + 1. For minimal number of 
vertices, |IS| must take the least possible 
value, which is 0. It follows that 
|G| = m + 0 + 1 = m + 1, and so MSGms 
have m + 1 vertices.        □ 

Corollary 4. Minimal Solvable Graphs do 
not contain any internal vertices. 
Proof. As proved in Theorem 2, the Stem 
in MSGs does not contain internal vertices 
(i.e. |IS| = 0). On the other hand, since the 
Stem is the longest non-cyclic chain and 
no other path may have more internal 
vertices than it, then there should be no 
internal vertices in the entire graph.  □ 

Corollary 5. An MSGm is not solvable for 
more than m agents. 
Proof. Since an MSGm has m + 1 vertices, 
placing one more agent on the graph will 
make the graph fully occupied, and hence 
no sequential moves would be possible. □ 

Theorem 3. An MSGm with c cycles has 
m + c edges. 
Proof. According to the Euler’s Formula, 
for a connected planar graph with V 
vertices, E edges, and F faces, the 
following equation holds: V − E + F = 2 
(proved in [9]). Each cycle divides the 
space into two faces: a finite face enclosed 
in the cycle, and an infinite face outside of 
the cycle. In the context of our definitions 
and notations, by excluding the infinite 
face from both sides of the Euler’s 
Formula, it can be rewritten as  

|G| − ||G|| + c = 1.     (1) 
 As proved in Theorem 3, in an MSGm, 
m = |G| − 1. Therefore, 

m + 1 − ||G|| + c = 1,     (2) 
⇒  ||G|| = m + c,    (3) 

which proves the theorem.      □ 

Corollary 6. An MSG has minimal edges if 
there is only one cycle in the graph.  
Proof. It was proved previously that an 
MSGm containing c cycles has m + 1 
vertices and m + c edges. The number of 

edges is minimal when c = 1, i.e. there is 
be only one cycle in the graph.     □ 

 For constructing MSGm, m + 1 vertices 
must be connected such that at least one 
cycle and no internal vertices are formed. 
As an example, all possible topologies of 
Minimal Solvable compound Graphs for m 
= 6 agents are shown in Fig. 9. All these 
graphs have 6 + 1 = 7 vertices, 0 internal 
vertices, and 6 + c edges, in which c is the 
number of cycles. 
 In order to obtain various topologies for 
MSGs, a number of transformation 
operations are worked out and illustrated in 
Table 3. 
 

 
Fig. 9. All possible Minimal Compound Solvable 

Graphs for m = 6 agents (MSG6). 

Table 3. Operations for creating different 
topologies of MSGs. 

Description Graphical Examples (for m = 7) 

Converting a cycle 
vertex into a leaf 

connected to a cycle 
 

Converting a leaf 
connected to a cycle 
into a cycle vertex 

 

Relocating a leaf 
connected to a cycle 

between cycle-vertices 
 

Transforming cycles 
with lengths of c1 and c2 
into cycles with lengths 

c1 − 1 and c2 + 1 
 



 Since MSGms have |G| = m + 1 vertices 
and ||G|| = m + c edges, and regarding that 
compound graphs have at least one cycle, 
Minimal Solvable Graphs with one cycle 
have minimal number of edges, as well as 
vertices. Therefore, for minimizing the 
edges of an existing MSGm, multiple 
cycles must be decomposed into one cycle, 
via operations described in Table 4. 

Table 4. Methods of creating MSGs with minimal 
number of edges. 

Method Description Graphical Examples (for m = 6) 

Creating 
larger 
cycles 

instead of 
two or 
more 
cycles 
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Converting 
cycles 

vertices 
into leaves 
connected 
to cycles 
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D
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n 

Deleting 
common 
edges in 
cycles  

6. DISCUSSION AND CONCLUSION 
 The time complexity of the proposed 
method for verifying the solvability of a 
graph is in O(n2) which is spent on 
detecting cycles and identifying the Stem, 
where n is the number of graph vertices. 
Also, calculating the maximum number of 
agents operable on a given graph takes is 
performed in the same time order. In 
contrast, investigating the solvability of a 
Multi Agent Motion Planning problem of 
m agents on a graph with n vertices 
through exhaustive enumeration will 

require !
( )!

n
n m−

 different permutations of 

agents to be checked, which is far beyond 
the time order of the presented algorithm. 
 Moreover, verifying whether a graph is 

SGm would require 
2

1

!
( )!

m

i

n
n i=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠−∑ operations 

to be checked, for any initial and final 
configurations, which is again exponentially 

time consuming. These figures demonstrate 
the effectiveness of our findings in terms of 
required time and memory. 
 In designing transportation networks for 
multiple autonomous agents (such as 
mobile robots, AGVs, cars, etc.) which can 
merely move along the network’s arcs, it is 
important to make sure that the graph has a 
proper topology and sufficient number of 
vertices (relative to the number of agents) 
to enable the agents move planning. This 
paper deals with the topology of Solvable 
Graphs and introduces the new concept of 
Minimal Solvable Graphs and investigates 
their properties, which are the smallest 
graphs that satisfy the feasibility 
conditions for multi agent motion planning 
for any initial and final configurations of 
agents. 
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