
Model-Based Approaches for Multi-Device User Interface Design
and Development

Eman Saleh

Alzaytoonah University, Jordan
jo.edu.alzaytoonah@dreman

Raafah Khazem

Alzaytoonah University, Jordan
jo.edu.alzaytoonah@drrafaa

Amr Kamel

Cairo University, Egypt
a.Kamel@fci-cu.edu.eg

ABSTRACT
Model-based approaches for user interface (UI) design and development typically focus on
creating mappings between concrete features and abstract features of the user interface design
and development. This work presents a review of the history of Model-Based User Interface
Design and Development focusing on the most recent approaches that had built an applicable
solution which can allow the designers to design and develop multi-device user interfaces
through a number of model-transformations.

Key Words: Model-Based User Interface Design, ConcurTaskTrees, Task Model, Domain Model,
Presentation Model, Dialog Model, User Interface Description Languages, HCI .

1. Introduction
Multi-device user interface design and
development has become an emerging
topic due to the large and continuously
increasing number of new interactive
devises offered to the market.
Model-Based UI approaches give the
researchers a new designing methodology
that eases the creation of user interface and
tackles the problems of producing a new
design for every new device. Model Based
systems was defined by Luyten[2] as “a
piece of software that uses a set of models
to support the design of user interfaces.”
Examples of model-based systems are
Mobi-D, Teresa and Dygimes, the last two
systems will be discussed in detail in the
next sections. High level User-interface
Description -Languages had been linked
extensively to Model-Based user interface
development because they offer multi-
device UI creation, more specific the
XML-BASED- High-Level User interface
description Languages, because most of

them have firmly focused on usability and
scalability: making one design for many
devices is the main goal, they succeed to
achieve this goal for form-based interfaces,
but its not the case for graphical multi-
modal interfaces. Examples of these
languages are the UIML[8], RIML[9],
Teresa XML[6], useML[5], ISML[7]…,
and there are many existing languages
differ in their degree of abstraction, model
coverage, Standardization and the
availability for users. This paper is
structured as follows: The next section
gives an overview of Model-Based User
Interface Development, then the Teresa
tool and Dygimes environment are
discussed and compared.

2. Model-Based User Interface
Development
The increased interest of the academic and
industrial HCI community in Model-Based
User Interface Development (and High-

mailto:a.Kamel@fci-cu.edu.eg

 ٢

Level User Interface Description
Languages is due to the applicability of
this technique for multi-device creation.
Clercks et al. [4] have discussed several
advantages of MBUID like: (1) abstraction
from implementation, (2) assist and/or
automatically generate user interfaces from
abstract models, (3) verify and validate
user interfaces, and (4) obtaining
consistency with older versions and other
user interfaces. Figure 1 shows a common
architecture for model-based systems and
how the different models can be positioned
inside Model-Based User Interface
Development. This architecture supports
user-centered design.

Figure 1. Model-Based User Interface Development
environments

A model can be informally defined as a
non-empty set with elements, with a set of
relations specified between these elements.
A model is an abstraction of a concept that
the UI should reflect; the model gathers
information about this concept.
Model-based user interface (UI) design
involves the creation of formal, declarative
models that describe both the look and feel
of the UI, and the tasks, domain, and users
that it is intended to support.
Puerta [1] defined model based user
interface development system as a system
that uses a limited number of selected

models and does not define how these
models are organized in the interface
design cycle. While model based user
interface development environment must
support three parts:

• Design time tools: Tools that allow
us to create and relate the different
models.

• Run Time System: A system that
allow to execute and combine
different models, resulting in a
concrete user interface.

• Run Time Tools: Tools that allow us
to manipulate and transform the
models while executing.

There are a wide range of different models
that can be used in Model-Based User
Interface Development: Task model (a
model that describes the goals that the user
hopes to accomplish, and the actions that
must be taken to accomplish them), Data
or Domain model (a model that describes
the objects and data that the user will be
concerned with), Application model, dialog
model (a model that describes the
mechanics of how the user is to interact
with the UI. It specifies the navigational
structure of the UI, and the used interaction
techniques), presentation model (a model
that describes the visual appearance of the
user interface. It specifies which widgets
have been selected, and where they are
placed, among other things) and user
model (that describes properties of the
users themselves, such as their level of
expertise, or their security clearance
model). The data, domain and application
model can be situated at the end of the
application logic of the system. They
define the type of objects and the
operations on objects that can be used or
needed to be supported by the interactive
system. The task and user model are
closest to the user and specify the tasks the
user executes and the user or user group
profile(s) respectively. The dialog model
and presentation model are closest to the
final user interface. An emerging new kind
of model is the Context model: a model
that can describe the context-of-use for an
interactive system. E.g. a context model
could specify a set of external parameters

 ٣

that can influence the appearance, usage,
… of an interactive system. This model is
the least explored, but becomes
increasingly important as modern
interactive systems are no longer bound to
a single place and situation. Some
approaches considered data model or
domain model as the first models to be
used in user interface design, while other
approaches started with the task model.
Abstract Models include: task, domain
and user models and Concrete models
include: presentation and dialog models
[3].

2.1 Relations and Mappings between
Models
MBUID environment is made up of set of
models, where one model is related to
another model that is, inter-model
relationships must be defined. Inter-model
relationships are considered as variations
of the mapping problem [10] where a
mapping can be expressed as a function
that maps one model to another. Five
mechanisms are identified to solve the
mapping problem:

• Model Derivation: information of
existing model is used to construct
another model. E.g. Use
information from task model to
derive a dialog model [11, 12, 13,
14].

• Partial Model Derivation: Adding
elements and the relationships
between elements of a model to
another model. E.g. adding
transitions between states of a
dialog model while examining a
task model [14].

• Model Linking: Linking models to
each other. E.g.: linking
presentation units to unit tasks of a
task model [15].

• Model Manipulation: Applying
user’s changes to the model
manually [1].

• Model Updating: Updating the
system according to the changes done by
the user. E.g. updating the task model
when parts of the presentation model are
changed [17].

There are five goals that can be considered
in MBUID, the first four were defined by
Szekely [16] while the fifth was added by
Kris Luytn [2]:
Challenge 1: Task-Centered Interfaces
Challenge 2: Multi-Platform Support
Challenge 3: Interface Tailoring
Challenge 4: Multi-Modal Interfaces
Challenge 5: Context-Sensetive Interfaces

3. Previous work
If we take the definition of MBUID as a
set of models, Mastermind [19]; is one of
the first projects to generate a user
interface by combining different models; it
used the presentation, application and
dialog models to automatically generate
the user interface [18, 20].
Trident (Tools foR an Interactive
Development EnvironmeNT) is a model-
based system to create an interactive
system. [21, 22]. It was one of the first
design tools that recognized the
importance of a clear separation between
an abstract representation of the
presentation model and a concrete
representation thus supporting a multitude
of interaction style alternatives for the
same functional core. It also integrated
task analysis as an important component to
create a usable interface. Together with
DON; which is an earlier tool supporting
the domain model and integrates the
presentation model in its design
methodology; Trident can be considered to
be one of the first “complete” Model-
Based User Interface Development
Environments that where available.
Tadeus (Task Analysis/Design/End User
Systems) is a Model-Based User Interface
Development environment that focuses on
a user model, a task model, a domain
model, a dialog model and later an
interaction model was added [23].
Mobi-D is a model-based integrated
development environment that combines
several declarative models and assists the
user interface designers with the creation
of these models and with the decisions
they will have to make during the design of
the user interface [1]. Mobi-D offers a

 ٤

complete design cycle with a set of tools,
and supports iterative refinements in the
design of the user interface. Mobi-D
works task driven.
Humanoid [25] interprets its models and
generates a user interface from these
models. On the other hand, FUSE [26]
generates C++ code that can be compiled
into a user interface.
The most recent MDUID are Teresa
(Transformation Environment for
interactive Systems representAtions) [3, 13
] and Dygimes (DYnamically Generating
Interfaces for Mobile and Embedded
Systems) [2],

3. ConcurrentTaskTrees Notation
CTT notation is the most usable and
modern specification notation used for task
modeling. It provides a graphical syntax,
an hierarchical structure and a notation to
specify the temporal relation between
tasks, an example of CTT task model is
shown in figure 2. With this notation, tasks
can be classified into four categories:

abstract tasks ,interaction tasks

,user tasks and application tasks

 . Tasks at the same level can be can
be connected by temporal operators like
choice ([]), independent concurrency (|||),
concurrency with information exchange
(|[]|), disabling ([>) , enabling (>>),
enabling with information exchange
([]>>), suspend/resume (|>) and order
independence (|=|). The precedence of
these operators from highest to lowest are :
[] > {|||, |[]|}> {[>,|>} > {>>,[]>>} [28].

Figure 2.Simple Example of CTT Task Model

 4. Teresa Tool

Teresa is a transformation-based
environment, with multimodal interfaces.
It provides a semi-automatic environment
that supports a number of transformations
to build and analyze the design at different
abstraction levels and consequently
generate the user interface for a specific
type of platform. The steps Teresa
followed for Model-Based Design [3, 27]
are:

• High level task modeling of Multi-
context application, In this phase the
logical activities and the relationships
among them must be specified, that is,
designer must develop one model to
address possible contexts of use and
the domain model to identify the
objects to perform tasks and the
relationships among objects. This was
done using the ConcurTaskTrees
(CTT) notation. By this tool, designers
indicate the platforms according to the
performance of each task. There are
many possibilities to describe how
tasks are performed on different
platforms: The same tasks are
presented in the same way on different
platforms(links in application are
presented in the same way on different
platforms), the same tasks are
presented using different User interface
objects on different platforms(a map
that can be appeared on desktop may
be replaced with links to every position
on the map), the same tasks are
presented using different domain
objects on different platforms (CTT
tool enable the designer to specify what
information can be presented according
to the type of platform), the same tasks
are presented using different task
decomposition on different platforms (
tasks can be decomposed into different
hierarchy according to the limitations
of platforms), the same tasks are
presented using different temporal
constraints on different platforms(
information that may be entered in
parallel way on desktop must be
entered in sequential way on mobile),
or Tasks performed on different
platforms are related to each other(with

 ٥

desktop an airline ticket can be
reserved while the reservation number
can be received at mobile)
• Filtering & Refining the Task Model
for different platforms where the task
model is filtered and refined according
to the desired platform. This implies
adding/removing tasks to/from task
model depending on whether the tasks
are supported or not by the target
platform.
• Generating abstract user interface
from task model, where an abstract
description of the user interface; that is
composed of a set of abstract
presentations; is obtained from
analyzing the task relationships and
structured by interactors. Temporal
relationships in task specification (CTT
task model) control the transitions
among the user interface presentations,
for example, tasks with the same parent
are logically related to each other on
the other hand concurrent tasks that
exchange information can be merged.
• Generating the User Interface: Here
the specific properties of the target
device have to be considered in order
to generate the UI, that is, generated UI
should take into consideration the
interactor capabilities available in the
target device such as the browser or
available soft-keys.

 Figure 3. Transformations Supported in Teresa

5. Dygimes Environment
Dygimes is a model-based run time
environment, Dygimes dynamically
generates the user interface for mobiles
and embedded systems, it is a task-
centered approach. The environment can
generate a concrete user interface from the
models without code generation.
Dygimes focused on three models: the task
model, the dialog model and the
presentation model. Application and
domain models were not considered
intensively. The steps Dygimes followed
for Model-Based Design are[2,29]:

• Providing the task specification using
the ConcurTaskTrees notation.
• Annotating leaves in task notation with
abstract UI description (user interface
building blocks), then a graphical tool (the
ConcurTaskTrees annotation tool] is used
to attach these UI building blocks to the
leaves of the tree.
• Providing one “annotated” task
specification by combining task
specification (XML document) and UI
abstract description (XML document) in a
single XML document that can be
processed by the system.
• Transforming the task tree generated in
the first step into a priority tree according
to the precedence of temporal operators.
• Computing the Enabled Task Sets:
"Tasks that can be active at the same time
and presented to the user all at once."
• Creating the dialog model depending on
temporal relations between tasks and the
enabled task sets computed in the third
step. The State Transition Network
(STN)[30], was used to specify the activity
chain: A chain that represents a path that
the dialog will follow to reach a certain
goal. Each state represents an enabled task
set and connected to other enabled task set,
this directed connection indicates the
transition between dialogs.
• Generating abstract user interface
description from enabled task sets and the
STN were the enabled task sets give the
content of a dialog and STN gives that
transition between the dialogs.
• Generating the actual user interface.
• Testing the user interface: Here the
designer feedback can change grouping or
splitting the enabled task sets according to

 ٦

heuristics rules presented by Paterno et al
[3]

 Figure 4.The Dygimes User Interface design
and generation process

6. Comparison between Teresa
and Dygimes

• Task Specification: Both Dygimes
and Teresa are built around the
ConcurrentTaskTrees notation but
while Teresa extended
ConcurTaskTrees Environment
(CTTE) to generate platform-
dependent task specification by adding
the attributes of specific platforms
(mobile, PDA, desktop) in each task
specification and filtering a task model
from the parts that are not supported by
a given platform, Dygimes generated
platform-independent task specification
annotated with user interface building
unit.
• Presentation Model: Both
approaches need to calculate Enabled
Task Sets using algorithm (Dygimes)
or heuristics (Teresa) to generate
presentation model, but in Dygimes,
we need to transform original task tree
into priority trees in order to compute
the Enabled Task Sets for a task
specification and then derive a dialog
model that is expressed in STN.
• Design Approach: Dygimes used a
bottom-up approach (starting with a
concrete XML-based User Interface
Description Language targeted towards

embedded systems. Using task modeling,
constraint based layout management,
dialog modeling and context-sensitive
models; support for user interface design
for embedded systems is added. Teresa
used a top-down approach (Designers
first have to create more logical
descriptions and then move on to more
concrete representations until they
reach the final system.
• Tool Supporting: Dygimes is
considered as a run time environment
with limited tool support while Teresa
is considered as a design environment
focused on tool support.
• XML-Based High-Level
Description Language: Dygimes
support User Interface Markup
Language (UIML) for rendering
because this language supports
presentation and domain models not a
task model which is supported by
XML-Based notation (CTTE). UIML
implements the four aspects of the
presentation model: structure of the user
interface, rendering hints, Widget
mappings and layout description. Teresa
supports Teresa XML which combines
XML-Based High-Level User Interface
Description Language with CTT XML-
Based Task Model Language and it
integrates task and presentation model
and implements two of four
presentation aspects: Structure of user
interface and the widget mapping
according to the output platform
(mobile, desktop, PDA).

7. Summary
In this work we reviewed Model-Based
Muti-Device User Interface Development
supported by using User Interface
Description-Languages UIDLs. Current
tools and frameworks have been reviewed;
intensively; the Teresa tool and the
Dygimes environment. Although these
systems got closer to the solution of the
problem of developing Muti-Device User
Interfaces they still suffer from
acceptability by industry for many reasons
such as: They can not influence the
organization of the final user interface

 ٧

presentation, and they did not give a full
coverage of modalities also they have poor
usability since the resulting UI may not
confirm the requirements of the user.
The use of UIDLs causes two problems the
first is that they cannot take full advantage
of the target widget set since most of
UIDLs have a predefines abstractions that
can be used to describe the user interface,
the second drawback is the complexity of
the process to transform the abstract user
interface description into a concrete
working UI for a specific platform.
Finally there is still lack of user-centered
design to narrow the gap between the
actual tasks that the user wants to perform
and the user interface exposed by Muli-
Device user interface to support these
tasks.

References

[1] Puerta A. ,”A model-based interface
development environment,” IEEE
Software., pp. 40–47, 1997.

[2] Coninx, K., Luyten, K., Vandervelpen,
C., Van den Bergh, J.and Creemers,
“Dygimes: Dynamically Generating
Interfaces for Mobile Computing Devices
and Embedded Systems,“ Mobile HCI,
volume 2795 of Lecture Notes in
Computer Science, pp. 256–270, Springer,
2003.

[3] Mori G., Paterno F. and Santoro C.,
“Design and Development of Multidevice
User Interfaces through Multiple Logical
Descriptions,” IEE Transactions on
Software Engineering, Vol.30, No. 8,
2004.

[4] Clerckx T. Winters F. and Coninx K.,
“Tool Support for Designing Context
Sensitive User Interfaces using a Model
Based Approach,” Proceedings of the 4th
international workshop on Task models
and diagrams TAMODIA '05, ACM Press,
2005.

[5] World Wide Web consortium, Useware
Markup Language http://www.uni-
kl.de/pak/useML/

[6] Luyten K., Abrams M., Limbourg Q.
and Vanderdonckt J., “Developing User
Interfaces with XML: Advances on User
Interface Description Languages,” Sattelite
workshop of Advanced Visual Interfaces
(AVI) 2004, Expertise Centre for Digital
Media, 2004.

[7] World Wide Web consortium, Interface
Specification Meta Language,
http://decweb.bournemouth.ac.uk/staff/scr
owle/ISML/

[8] World Wide Web consortium, User
Interface Markup Language,
http://uiml.org

[9] World Wide Web consortium,
Renderer Independent Markup Language,
http://www.consinsus-online.org

[10] Puerta A. and Eisenstein J.,”Towards
a General Computational Framework for
Model-Based Interface Development
Systems,”In IUI 1999 International
Conference on Intelligent UserInterfaces,
pp. 171–178, 1999.

[11] Limbourg Q., Vanderdonckt J. and
Souchon N., “The Task-Dialog and Task-
Presentation Mapping Problem: Some
Preliminary Results,” In Palanque and
Patern`o [PP00], pp. 227–246.

[12] Vanderdonckt J., Limbourg Q. and
Florins M., ”Deriving the Navigational
Structure of a User Interface,” In M.
Rauterberg and J. Wesson, editors,
Proceedings of 9th IFIP Conf. on Human-
Computer Interaction Interact’2003, pp.
455–462, 2003.

[13] Mori G., Patern`o F. and Santoro C.,
“ Tool Support for Designing Nomadic
Applications,” In Proceedings of the 2003
international conference on Intelligent user
interfaces, pp. 141–148, Miami, Florida,
USA, January 12–15 2003.

http://www.uni
http://decweb.bournemouth.ac.uk/staff/scr
http://uiml.org
http://www.consinsus-online.org

 ٨

[14] Luyten K., Clerckx T., Coninx K. and
Vanderdonckt J., “Derivation of a Dialog
Model for a Task Model by Activity Chain
Extraction,” DSV-IS 2003, Springer.

[15] Coninx K., Luyten K., Vandervelpen
C. ,Bergh J.and Creemers B. ,”Dygimes:
Dynamically Generating Interfaces for
Mobile Computing Devices and Embedded
Systems,” In Luca Chittaro, editor, Mobile
HCI, volume 2795 of Lecture Notes in
Computer Science, pp. 256–270, Springer,
2003.

[16] Vanderdonckt J,”Computer-Aided
Design of User Interfaces II,” volume 2.
Kluwer Academic, 1996

[17] Vanderdonckt J. and Puerta A.,
“Computer-Aided Design of User Interfaces
III,” volume 3. Kluwer Academic, 1999.

[18] Stirewalt K., ”Automatic Generation
of Interactive Systems from Declarative
Models,” PhD thesis, Georgia Institute of
Technology, 1997.

[19] Szekely A. P., Sukaviriya N. P.,
Castells P.,Muthukumarasamy J. Salcher
E., “Declarative Interface Models for User
Interface Construction Tools: The
MASTERMIND Approach,” In EHCI, pp.
120–150, 1995.

[20] Stirewalt K. and Rugaber S.
,“Automating User-Interface Generation by
Model Composition,” In Proceedings of the
IEEE International Conference on Automated
Software Engineering , 1998.

[21] Francois B., Hennebert A., Leheureux
J. and Vanderdonckt J, “ Towards a
Dynamic Strategy for Computer-Aided
Visual Placement,” In Workshop on
Advanced Visual Interfaces, pp. 78–87.
ACM press, 1994.

[22] Vanderdonckt J. and Bodart F.,
”Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection. In

ACM Conference on Human Aspects in
Computing Systems InterCHI’ 93, pp. 424–
429. Addison Wesley, 1993.

[23] Forbrig P. and Stary C., “From Task to
Dialog: How Many and What Kind of Models
do Developers Need,” CHI’98 workshop,
1998.

[24] Szekely P., Luo P. and Neches R. ,”
Facilitating the Exploration of Interface
Design Alternatives: the HUMANOID
model of interface design,” In CHI, pp.
507–515, 1992.

[25] Lonczewski F. and Schreiber S.
,”The FUSE-System: an Integrated User
Interface DEsign Environment,” In
Vanderdonckt [Van96], pp. 37–56.

[26] Patern`o F. ,Model-Based Design and
Evaluation of Interactive Applications,
Springer, 2000.

[27]Limbourg Q.,Jacob R. and
Vanderdonckt J., “Computer-Aided Design
of User Interfaces,” IV, volume 4. Kluwer
Academic, 2004.

[28] World Wide Web consortium,
ConcurrentTaskTrees
http://giove.cnuce.cnr.it/ctte.html

[29] Luyten K., Laerhoven V. T., Coninx
K. and Reeth V. F., ”Runtime
Transformations for Modal Independent
User Interface Migration. Interacting with
Computers,” 15(3):329–347, 2003.

[30] Wasserman A., “Extending State
Transition Diagrams for the Specification
of Human-Computer Interaction,” IEEE
Transactions on Software Engineering,
11:699–713, 1985

http://giove.cnuce.cnr.it/ctte.html

