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ABSTRACT 
  Nonlinear Programming (NP) problems have enormous practical applications, and as such they have been 
the subject of extensive research from both the theoretical and the practical aspects. Such applications require 
solutions to satisfy a set of non-linear constraints over real numbers or to optimize a non-linear function subject to 
non-linear constraints. Many researches are made and numerous nonlinear programming algorithms have been 
developed. The main goal of this paper is to provide illustrations of how neural networks can be used as a 
computationally efficient and relatively simple tool for implementing some of the well-known nonlinear 
programming techniques, namely, penalty function method and, augmented Lagrange multiplier methods. 
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1. Introduction 
There are several deterministic, stochastic, 

and cooperative solvers in solving both constraint 
satisfaction and constraint optimization 
problems. The methods include sequential 
quadratic programming (SQP), static penalty 
method, dynamic penalty method, augmented 
Lagrangian method, Neldermead simplex method 
and simulated annealing (SA).   
 Before we mention some of the previous 
work in the area and before addressing  the 
neural implementation of NP algorithms, let us 
revisit the definition of the problem. Based on the 
form the constraints, we can define three 
different forms of NP minimization problems [1]: 

• NP1 (NP problem with equality 
constraints); 

Minimize ),...,,()( 21 nxxxfxf =  … (1) 

Subject to 0)( =xhi       
where i = 1, 2,…, m   
• NP2 (NP problem with inequality 

constraints): 
Minimize  ),...,,()( 21 nxxxfxf =  … (2) 

Subject to 0)( ≤xgi      
where i = 1, 2,…, m   

• NP3 (NP problem with mixed 
constraints): 

Minimize   ),...,,()( 21 nxxxfxf =  … (3) 

Subject to   0)( =xhi     

 
 
where i = 1,2,…, p      and   

 0)( ≤xgj      where  j = p +1, p  +2,…, m .  

where 1×ℜ∈ nx  is the vector of the independent 
variables, ℜ→ℜ ×1:)( nxf  is the objective 
function, and functions 

ℜ→ℜ ×1:)(),( n
ii xgxh  represent 

constraints. To simplify the derivations of the 
algorithms we will assume that both the objective 
function and the constraints are smooth 
differentiable functions of independent variables. 

The study of algorithms for solving 
constrained optimization problems is difficult 
unless the problems can be represented in a 
unified way. Using surplus variables, the 
inequality constraints in problems NP2 and NP3 
can be converted to equality constraints. 
Similarly, each of the equality constraints can be 
converted to a pair of inequality constraints 
according to: 

0)(0)(0)( ≥≤⇔= xhandxhxh iii   
 … (4) 

 Earlier versions of the augmented Lagrange 
method suggested different update rates for the 
solution of x  and Lagrange multipliers [2, 3]. In 
these early versions a complete unconstrained 
minimization was performed   relative to x  
before each update of the Lagrange multipliers.  

There is also a class called Lagrangian 
relaxation [4, 5, 6, 7], which are based on 

mailto:thabitsm@yahoo.com
mailto:essaibrahimessa@yahoo.com


 2 
Lagrangian Duality theory [8]. These algorithms 
aims to find an optimal solution given an optimal 
dual solution, or vice versa. This approach is 
simple in the case of linear functions but does not 
work well for non-linear functions.   

Penalty transformations is an approach to 
transform a continuous constrained problem into 
unconstrained problem, consisting of a sum of its 
objective and its constraints weighted by 
penalties, before solving the penalty function by 
unconstrained methods [9,10, 11, 12]. 

Simulated annealing [13,14,15] and genetic 
algorithms [16, 17,18] are two stochastic 

optimization algorithms for solutions. Both 
approaches require a good choice of penalties in 
a penalty formulation for the search to converge 
to a constrained global minimum or otherwise 
may end up with infeasible solutions. 

There are number of software solvers. Some 
of them are available on the world wide web 
(WWW). Packages such as; (LGO, 
BARON,SBB, DICOPT) can be called from the 
GAMS modeling system [19]. Other examples of 
software solvers are Genocop, and COBYLA2 
[20]. 

 

2. Neural Networks for Penalty 
Function NP Methods 

Methods using penalty functions make an 
attempt to transform the NP problem to an 
equivalent unconstrained optimization problem, 
or to a sequence of constrained optimization 
problems. This transformation is accomplished 
through modification of the objective function so 
that it includes terms that penalize every 
violation of the constraints. In general, the 
modified objective function takes the following 
form:   
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Functions )2()1(
ii and ΦΦ  are called penalty 

functions, and they are designed to increase the 
value of the modified objective function )(xfA  
whenever the vector of independent variables 
violates a constraint, or in other words whenever 
it is outside the feasible region. Penalty functions 
are commonly selected as at least one-time 
differentiable. Table-I- shows the  requirements 
to satisfy the conditions of the penalty functions 
as well as their common choices. 

Table-I-: Constraints and common choices for the penalty functions.  
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For example, the typical modified objective 
function for the NP3 problem can be written as 
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where 0, 21 ≥ρρ . Parameters 0, )2()1( ≥ii KK  
are commonly referred to as penalty parameters 
or penalty multipliers, and in (6) we have 
assumed that a separate penalty parameter is 
associated with each of the penalty functions. In 
practice this is rarely the case, and commonly 
there is only one parameter multiplying the entire 
penalty term, that is, 
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 … (7) 
where )(xP  represents the penalty term. 

From the form of the augmented objective 
function in (7), it should be obvious that the 
solution resides in the region where the value of 
the penalty function )(xP  is small. As a matter 
of fact, if K is increased towards infinity, the 
solution of the unconstrained problem will be 
forced into the feasible region of the original NP 
problem. Remember that if the point is in the 
feasible region, all the constraints are satisfied 
and the penalty function equals zero. In the 
limiting case, when ∞→K   , the two 
problems become equivalent. The following 
theorem summarizes the equivalence of the two 
problems. 

 
Theorem 1 [21]:- 

Consider an NP problem given as follow: 
Minimize   ),...,,()( 21 nxxxfxf =  … (8) 

subject to
 1, ×ℜ⊂∈ nSSx  

where S  is constrained set (i.e., the feasible 
region) defined by a number of either equality or 
inequality constrains. Define a sequence of 
unconstrained optimization problems as follows: 

        Minimize )()(),( xPKxfxKq jj +=  
     … (9) 

where P  is a penalty function satisfying: 
0)( ≥xP          for 1×ℜ∈ nx   
0)( =xP   if and only if  Sx∈  

and ,...2,1, =jK j   is a sequence of real 
numbers satisfying : 
  ( jK j ∀> 0 ,  jKK jj ∀>+1 , 

and ∞→jK             as ∞→j ) 
The above equations show that a sequence of 

unconstrained optimization problems is 

generated, and the solution to the generated 
sequence converges to the solution of the original 
NP problem. When adopting neural networks as a 
tool for solution, some modifications on the 
implementation of the penalty methods are 
usually accomplished in either of following two 
ways: 
1.  Penalty parameter K  is made time-varying, 
and it is increased over the course of network 
training. 
2. Penalty parameter K  is selected as a 
sufficiently large positive number to ensure that 
the unconstrained problem represents a close 
approximation to its NP counterpart. 
Once the modified objective function is 
specified, any one of many gradient techniques 
can be used to perform the optimization task. For 
the sake of simplicity, we will demonstrate the 
use of steepest descent method. However, the 
conjugate gradient, Newton’s, and quasi-Newton 
methods can offer significantly faster 
convergence rates [4]. 
 
 Applying the steepest descent approach, we 
can generate the update equations in accordance 
with 

x
xfkxkx A

∂
∂

−=+
)()()1( µ        … (10) 

where 0>µ  is the learning rate parameter, 
and the gradient term on the right-hand side of 
(10) depends on the penalty function selection. 
For example, when the form of the objective 
function given in (7), is considered, with 

,21 =ρ  and 12 =ρ  we have: 
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After substituting (11) into (10), we have for the 
learning rule 
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The neural network architecture realization of 
this process in equation (12) is presented in 
Figure (1). 
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3. Augmented Lagrange 
Methods for NP2 Problems 

There are several important properties of 
augmented Lagrange multiplier method that need 
to be taken into consideration [2]: 

• Local-minimum property. Similar to the 
penalty function approach, the 
augmented Lagrange multiplier method 
guarantees convergence to the local 
minimum of the augmented Lagrangian. 
The local minimum of the Lagrangian 
converges to the constrained minimum 
of the objective function only in the 
limiting case when the penalty 
parameters in k are sufficiently large. 

• Choice of the penalty parameter. In 
general, the penalty parameters need to 
be chosen so that the Hessian matrix of 
the augmented Lagrangian is positive 
definite. If the values of the penalty 
parameters are too small the algorithm 
may fail to converge or it may converge 
to a value that is a local minimum of the 
augmented Lagrangian but dose not 
minimize the objective function itself. 
On the other hand, if the parameters are 
chosen too large, the algorithm may 
exhibit oscillatory in the vicinity of 
solution. 

• Convergence of the Lagrange 
multipliers. To find the optimal solution 
it is necessary that both x   and λ  
converge to their optimal values x~  and 

λ
~

 . In some cases the augmented 
Lagrangian can be very sensitive to the 
values for the multipliers, and it may 
take a considerable number of iterations 
before convergence is achieved. 

 
The method of the augmented Lagrange 

multipliers can be extended to NP problems with 
inequality constrains. To accomplish this, the 
augmented Lagrange is modified according to 
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where ,iλ  i =1,2,…, m  are Lagrange multipliers 

and , iK ,i = 1,2,…, m , are the penalty 
parameters. As can be seen from (13), any 
violation of the constraints increases the value of 
the Lagrangian; that is, only violated constraints 

are considered to be active. In a more compact 
form, (13) can be written as 
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where 
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 To derive a corresponding neural network, 
the updated equations can be obtained according 
to 

x
xLkxkx x ∂
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λ
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After substitution of the appropriate gradients of 
(14) into (15) and (16), we have 
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and  

))(()()1( kxgSkk jjjj λµλλ +=+   … (18) 
A neural network architecture realization of this 
process is shown in figure (2). 
 
 
4. Implementation of Neutral 
Networks and Results 

The following examples show how neural 
networks are adopted in solving nonlinear 
continuous constrained problems. In both 
examples the Matlab package is used, where the 
neural networks of figures (1), and (2) are 
simulated, and the results are shown in this 
section. 

 

Example.1:- Consider the following NP 
problem: 

       Minimize [ ]2
2

2
1 )5.1(exp)( xxxf +−=  

subject to 012
2

2
1 ≤−+ xx  

The above problem is obviously an NP 
problem with inequality constraints (i.e., NP2). 
The modified penalty function can be formed as: 
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[ ]2
2

2
1 )5.1(exp)( xxxfA +−=  

                { }1,0max
2

2
2

2
1 −++ xxK

 

By using the steepest descent method, the update 
equations can be computed as  

{ )5.11(2)(1)1(1 −−=+ xkxkx µ  

[ ] [ ] }1)12
2

2
1sgn(2

2
2)5.11(exp xxxKxx −++−  

and 
[ ]{ 2

2
2

1222 )5.1(exp2)()1( xxxkxkx +−−=+ µ
[ ] }2

2
2

2
1 1)1sgn( xxxK +−++  

where 
υ

υυ =)sgn(  is the sign function. The 

neural network architecture shown in Figure (1) 
was used to determine the solution of the NP 
problem. The neural network architecture 
realization of this process is presented in the 
neural network architecture consists of three 
separate modules, the first one module performs 
the objective function, the second module 
performs the equality constraints, and the last one 
module performs the inequality constraints. The 
results was tested, and verified in Matlab. 
Parameters of the network were chosen as k=5, 
and π =0.01, and initial solution was set 

as [ ]Tx 5.10= . The network converged in 
approximately 900 iterations.  
 
Example.2:-Let us consider the same problem in 
the above example, but using the method of 
augmented Lagrange multipliers. For the NP 
problem with equality constraints: 

          Maximize   ),...,,()( 21 nxxfxf =  

          subject to   0)( =xhi      
                                            where i = 1,2,…, m  

The augmented Lagrangian can be formed as: 
[ ] { 2

1
2
2

2
1 ,0max)5.1(exp),( xxxxL λλ ++−=

} { }22
2

2
1

2
2 1,0max

2
1 −++−+ xxKx  

The appropriate derivatives can be computed as 
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∂ xxxxxL
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The network shown in Figure (2) was used 

to perform the optimization task. The neural 
network architecture consists of two separate 
modules. The first module performs the update of 
the solution, and the second module updates the 
augmented Lagrange multiplier. The parameters 
of the network were set to the values used in 
example1, that is k=5, and 01.0=µ . Initial 
conditions were chosen as 

,0)0(,0)0( 21 == xx  and 1)0( =λ . The 
network converged in approximately 700 
iterations to the 

solution [ ]Tx 0002.0,0088.1~ = . 
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Figure (1): Discrete-time network for NP3 problems implementing penalty function method; implementation of 

Equation (12). 
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Figure (2): Discrete-time realization of the neural network for implementation of augmented Lagrange multiplier 

method for NP problems with inequality constrains. Equations (17) and (18) show the two learning rules. 
 

5- Conclusions 
Among the many methods used for solving 

nonlinear continuous constrained optimization 
problems, neural networks is proposed as an 
efficient method. The main idea of solution is to 
transform a nonlinear problem to an equivalent 
unconstrained optimization problem. Both the 
penalty function methods and the augmented 
Lagrange method problems are  modeled using 
neural networks. The network converged to give 
the  solution of a penalty function problem after 
about 900 iterations, while about 700 iterations 
are required for the network to converge for a 
solution for an augmented Lagrange problem. 
  Frankly, if the coefficients in k  are 
sufficiently large, the Hessian Matrix of the 
Lagrangian can be forced to have all eigenvalues 
greater than zero, which is of great importance 
from the neural network implementation 
standpoint, since the solution has to be sought in 
an iterative manner. The fact that the Hessian  

 
 
matrix is positive definite ensures existence of a 
neighborhood of the solution in which the 
function convex; and therefore, if the initial point 
in the optimization process is properly chosen, 
the algorithm will converge to global minimum. 
The accuracy of the solution depends on the 
accuracy of the Lagrange multiplier estimates, 
and computing will not converge to the optimal 
value of xx ~=  until the multipliers converge to 

optimal value λλ
~

= . 
 Therefore, every NP problem can be 
transformed into either the NP1 or NP2 form. 
However, it is preferred from the computational 
standpoint to consider the NP problem in its 
original form. Finally, note that the NP1 or NP2 
form of the problem can be regarded as special 
cases of a more general NP3. 
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