
 1

Solving Nonlinear Continuous Constrained Optimization Problems

Using Neural Networks
1 Dr. Thabit Sultan Mohammed, and 2 Mr. Essa Ibrahim Essa

1Al-Zaytoonah University, P.O.Box-130, Amman 11733-Jordan, email: thabitsm@yahoo.com
2 College of Science, University of Kirkuk, Iraq, email: essaibrahimessa@yahoo.com

ABSTRACT
 Nonlinear Programming (NP) problems have enormous practical applications, and as such they have been
the subject of extensive research from both the theoretical and the practical aspects. Such applications require
solutions to satisfy a set of non-linear constraints over real numbers or to optimize a non-linear function subject to
non-linear constraints. Many researches are made and numerous nonlinear programming algorithms have been
developed. The main goal of this paper is to provide illustrations of how neural networks can be used as a
computationally efficient and relatively simple tool for implementing some of the well-known nonlinear
programming techniques, namely, penalty function method and, augmented Lagrange multiplier methods.

Key words: nonlinear programming, neural networks, penalty function method, augmented Lagrange method,
steepest descent approach.

1. Introduction
There are several deterministic, stochastic,

and cooperative solvers in solving both constraint
satisfaction and constraint optimization
problems. The methods include sequential
quadratic programming (SQP), static penalty
method, dynamic penalty method, augmented
Lagrangian method, Neldermead simplex method
and simulated annealing (SA).
 Before we mention some of the previous
work in the area and before addressing the
neural implementation of NP algorithms, let us
revisit the definition of the problem. Based on the
form the constraints, we can define three
different forms of NP minimization problems [1]:

• NP1 (NP problem with equality
constraints);

Minimize),...,,()(21 nxxxfxf = … (1)

Subject to 0)(=xhi
where i = 1, 2,…, m
• NP2 (NP problem with inequality

constraints):
Minimize),...,,()(21 nxxxfxf = … (2)

Subject to 0)(≤xgi
where i = 1, 2,…, m

• NP3 (NP problem with mixed
constraints):

Minimize),...,,()(21 nxxxfxf = … (3)

Subject to 0)(=xhi

where i = 1,2,…, p and

 0)(≤xgj where j = p +1, p +2,…, m .

where 1×ℜ∈ nx is the vector of the independent
variables, ℜ→ℜ ×1:)(nxf is the objective
function, and functions

ℜ→ℜ ×1:)(),(n
ii xgxh represent

constraints. To simplify the derivations of the
algorithms we will assume that both the objective
function and the constraints are smooth
differentiable functions of independent variables.

The study of algorithms for solving
constrained optimization problems is difficult
unless the problems can be represented in a
unified way. Using surplus variables, the
inequality constraints in problems NP2 and NP3
can be converted to equality constraints.
Similarly, each of the equality constraints can be
converted to a pair of inequality constraints
according to:

0)(0)(0)(≥≤⇔= xhandxhxh iii
 … (4)

 Earlier versions of the augmented Lagrange
method suggested different update rates for the
solution of x and Lagrange multipliers [2, 3]. In
these early versions a complete unconstrained
minimization was performed relative to x
before each update of the Lagrange multipliers.

There is also a class called Lagrangian
relaxation [4, 5, 6, 7], which are based on

mailto:thabitsm@yahoo.com
mailto:essaibrahimessa@yahoo.com

 2
Lagrangian Duality theory [8]. These algorithms
aims to find an optimal solution given an optimal
dual solution, or vice versa. This approach is
simple in the case of linear functions but does not
work well for non-linear functions.

Penalty transformations is an approach to
transform a continuous constrained problem into
unconstrained problem, consisting of a sum of its
objective and its constraints weighted by
penalties, before solving the penalty function by
unconstrained methods [9,10, 11, 12].

Simulated annealing [13,14,15] and genetic
algorithms [16, 17,18] are two stochastic

optimization algorithms for solutions. Both
approaches require a good choice of penalties in
a penalty formulation for the search to converge
to a constrained global minimum or otherwise
may end up with infeasible solutions.

There are number of software solvers. Some
of them are available on the world wide web
(WWW). Packages such as; (LGO,
BARON,SBB, DICOPT) can be called from the
GAMS modeling system [19]. Other examples of
software solvers are Genocop, and COBYLA2
[20].

2. Neural Networks for Penalty
Function NP Methods

Methods using penalty functions make an
attempt to transform the NP problem to an
equivalent unconstrained optimization problem,
or to a sequence of constrained optimization
problems. This transformation is accomplished
through modification of the objective function so
that it includes terms that penalize every
violation of the constraints. In general, the
modified objective function takes the following
form:

[]∑

=

Φ
+=

p

i

iii
A

xhK
xfxf

1

)1()1()(
)()(

 []∑
+=

Φ+
m

pi
iii xgK

1

)2()2()(… (5)

Functions)2()1(
ii and ΦΦ are called penalty

functions, and they are designed to increase the
value of the modified objective function)(xfA
whenever the vector of independent variables
violates a constraint, or in other words whenever
it is outside the feasible region. Penalty functions
are commonly selected as at least one-time
differentiable. Table-I- shows the requirements
to satisfy the conditions of the penalty functions
as well as their common choices.

Table-I-: Constraints and common choices for the penalty functions.
Φ i

(1)

Φ i
(2)

Constraints 0)(0)1(

0)(0
≠>
==Φ xhfor

xhfori
i

i

Constraints 0)(0)2(

0)(0
>>
≤=Φ xgfor

xgfori
i

i

2

2
1

υ
{ }υ,0max

01
>ρυ

ρ
ρ

Common
choices

{ } 2),0(max υ

1cosh −υ

Common
choices

 + −)(
2
1ln υυ ee

For example, the typical modified objective
function for the NP3 problem can be written as

1)()()(
1 1

)1(
ρ

ρ
xhKxfxf i

p

i

i
A ∑

=

+=

 { }∑
+=

+
m

pi
ii xgK

1

)2(2)(,0max ρ … (6)

 3

where 0, 21 ≥ρρ . Parameters 0,)2()1(≥ii KK
are commonly referred to as penalty parameters
or penalty multipliers, and in (6) we have
assumed that a separate penalty parameter is
associated with each of the penalty functions. In
practice this is rarely the case, and commonly
there is only one parameter multiplying the entire
penalty term, that is,

+= ∑

=

p

i
iA xhKxfxf

1 1

1)(1)()(ρ

ρ

{ })()()(,0max
1

2 xKPxfxg
m

pi
i +=

+ ∑

+=

ρ

 … (7)
where)(xP represents the penalty term.

From the form of the augmented objective
function in (7), it should be obvious that the
solution resides in the region where the value of
the penalty function)(xP is small. As a matter
of fact, if K is increased towards infinity, the
solution of the unconstrained problem will be
forced into the feasible region of the original NP
problem. Remember that if the point is in the
feasible region, all the constraints are satisfied
and the penalty function equals zero. In the
limiting case, when ∞→K , the two
problems become equivalent. The following
theorem summarizes the equivalence of the two
problems.

Theorem 1 [21]:-

Consider an NP problem given as follow:
Minimize),...,,()(21 nxxxfxf = … (8)

subject to
 1, ×ℜ⊂∈ nSSx

where S is constrained set (i.e., the feasible
region) defined by a number of either equality or
inequality constrains. Define a sequence of
unconstrained optimization problems as follows:

 Minimize)()(),(xPKxfxKq jj +=
 … (9)

where P is a penalty function satisfying:
0)(≥xP for 1×ℜ∈ nx
0)(=xP if and only if Sx∈

and ,...2,1, =jK j is a sequence of real
numbers satisfying :
 (jK j ∀> 0 , jKK jj ∀>+1 ,

and ∞→jK as ∞→j)
The above equations show that a sequence of

unconstrained optimization problems is

generated, and the solution to the generated
sequence converges to the solution of the original
NP problem. When adopting neural networks as a
tool for solution, some modifications on the
implementation of the penalty methods are
usually accomplished in either of following two
ways:
1. Penalty parameter K is made time-varying,
and it is increased over the course of network
training.
2. Penalty parameter K is selected as a
sufficiently large positive number to ensure that
the unconstrained problem represents a close
approximation to its NP counterpart.
Once the modified objective function is
specified, any one of many gradient techniques
can be used to perform the optimization task. For
the sake of simplicity, we will demonstrate the
use of steepest descent method. However, the
conjugate gradient, Newton’s, and quasi-Newton
methods can offer significantly faster
convergence rates [4].

 Applying the steepest descent approach, we
can generate the update equations in accordance
with

x
xfkxkx A

∂
∂

−=+
)()()1(µ … (10)

where 0>µ is the learning rate parameter,
and the gradient term on the right-hand side of
(10) depends on the penalty function selection.
For example, when the form of the objective
function given in (7), is considered, with

,21 =ρ and 12 =ρ we have:

+

∂
∂

+
∂

∂=
∂

∂ ∑
=

)()()()(
1

xh
x
xhK

x
xf

x
xf

i

p

i

iA

 { }

∂
∂∑

+=

m

pi
i xg

x1

)(,0max … (11)

After substituting (11) into (10), we have for the
learning rule

∂

∂
+

∂
∂−=+ ∑

=

p

i

i

x
xhK

x
xfkxkx

1

)()()()1(µ

{ }

∂
∂+ ∑

+=

m

pi
i xg

x
K

1

)(,0max … (12)

The neural network architecture realization of
this process in equation (12) is presented in
Figure (1).

 4

3. Augmented Lagrange
Methods for NP2 Problems

There are several important properties of
augmented Lagrange multiplier method that need
to be taken into consideration [2]:

• Local-minimum property. Similar to the
penalty function approach, the
augmented Lagrange multiplier method
guarantees convergence to the local
minimum of the augmented Lagrangian.
The local minimum of the Lagrangian
converges to the constrained minimum
of the objective function only in the
limiting case when the penalty
parameters in k are sufficiently large.

• Choice of the penalty parameter. In
general, the penalty parameters need to
be chosen so that the Hessian matrix of
the augmented Lagrangian is positive
definite. If the values of the penalty
parameters are too small the algorithm
may fail to converge or it may converge
to a value that is a local minimum of the
augmented Lagrangian but dose not
minimize the objective function itself.
On the other hand, if the parameters are
chosen too large, the algorithm may
exhibit oscillatory in the vicinity of
solution.

• Convergence of the Lagrange
multipliers. To find the optimal solution
it is necessary that both x and λ
converge to their optimal values x~ and

λ
~

 . In some cases the augmented
Lagrangian can be very sensitive to the
values for the multipliers, and it may
take a considerable number of iterations
before convergence is achieved.

The method of the augmented Lagrange

multipliers can be extended to NP problems with
inequality constrains. To accomplish this, the
augmented Lagrange is modified according to

{ })(,0max)(),(
1

xgxfxL i

m

i
i∑

=

+= λλ

{ }2

1

)(,0max
2

xgK
i

m

i

i∑
=

+ …. (13)

where ,iλ i =1,2,…, m are Lagrange multipliers

and , iK ,i = 1,2,…, m , are the penalty
parameters. As can be seen from (13), any
violation of the constraints increases the value of
the Lagrangian; that is, only violated constraints

are considered to be active. In a more compact
form, (13) can be written as

 ++= ∑

=

2

1
)(

2
)()(),(xgKxgSxfxL i

i
ii

m

i
i λλ

 … (14)
where

{ 0)(0
0)(1

≤
>= xgif

xgifiS

 To derive a corresponding neural network,
the updated equations can be obtained according
to

x
xLkxkx x ∂

∂
−=+

),()()1(λ
µ … (15)

and

λ
λ

µλλ λ ∂
∂

+=+
),()()1(xLkk … (16)

After substitution of the appropriate gradients of
(14) into (15) and (16), we have

∂
∂

−=+
j

xjj x
kxfkxkx))(()()1(µ

 []

∂
∂

++ ∑
=

m

i j

i
iiii x

kxg
kxgKS

1

))((
))((λ

 … (17)
and

))(()()1(kxgSkk jjjj λµλλ +=+ … (18)
A neural network architecture realization of this
process is shown in figure (2).

4. Implementation of Neutral
Networks and Results

The following examples show how neural
networks are adopted in solving nonlinear
continuous constrained problems. In both
examples the Matlab package is used, where the
neural networks of figures (1), and (2) are
simulated, and the results are shown in this
section.

Example.1:- Consider the following NP
problem:

 Minimize []2
2

2
1)5.1(exp)(xxxf +−=

subject to 012
2

2
1 ≤−+ xx

The above problem is obviously an NP
problem with inequality constraints (i.e., NP2).
The modified penalty function can be formed as:

 5

[]2
2

2
1)5.1(exp)(xxxfA +−=

 { }1,0max
2

2
2

2
1 −++ xxK

By using the steepest descent method, the update
equations can be computed as

{)5.11(2)(1)1(1 −−=+ xkxkx µ

[] [] }1)12
2

2
1sgn(2

2
2)5.11(exp xxxKxx −++−

and
[]{ 2

2
2

1222)5.1(exp2)()1(xxxkxkx +−−=+ µ
[] }2

2
2

2
1 1)1sgn(xxxK +−++

where
υ

υυ =)sgn(is the sign function. The

neural network architecture shown in Figure (1)
was used to determine the solution of the NP
problem. The neural network architecture
realization of this process is presented in the
neural network architecture consists of three
separate modules, the first one module performs
the objective function, the second module
performs the equality constraints, and the last one
module performs the inequality constraints. The
results was tested, and verified in Matlab.
Parameters of the network were chosen as k=5,
and π =0.01, and initial solution was set

as []Tx 5.10= . The network converged in
approximately 900 iterations.

Example.2:-Let us consider the same problem in
the above example, but using the method of
augmented Lagrange multipliers. For the NP
problem with equality constraints:

 Maximize),...,,()(21 nxxfxf =

 subject to 0)(=xhi
 where i = 1,2,…, m

The augmented Lagrangian can be formed as:
[] { 2

1
2
2

2
1 ,0max)5.1(exp),(xxxxL λλ ++−=

} { }22
2

2
1

2
2 1,0max

2
1 −++−+ xxKx

The appropriate derivatives can be computed as

[]2
2

2
11

1

)5.1(exp)5.1(2),(xxx
x
xL

+−−=
∂

∂ λ

[][]1(1)1sgn(2 2

2
2
1

2
2

2
11 −+++−++ xxKxxx λ

[]2
2

2
12

2

)5.1(exp2),(xxx
x
xL

+−=
∂

∂ λ

[][]1(1)1sgn(2 2
2

2
1

2
2

2
12 −+++−++ xxKxxx λ

and

[])1(1)1sgn(),(2
2

2
1

2
2

2
1 −++−+=

∂
∂ xxxxxL

λ
λ

The network shown in Figure (2) was used

to perform the optimization task. The neural
network architecture consists of two separate
modules. The first module performs the update of
the solution, and the second module updates the
augmented Lagrange multiplier. The parameters
of the network were set to the values used in
example1, that is k=5, and 01.0=µ . Initial
conditions were chosen as

,0)0(,0)0(21 == xx and 1)0(=λ . The
network converged in approximately 700
iterations to the

solution []Tx 0002.0,0088.1~ = .

 6

Figure (1): Discrete-time network for NP3 problems implementing penalty function method; implementation of

Equation (12).

)(xhp

j

p

x
xg

∂
∂ +)(1

j

m

x
xg

∂
∂)(

)(1 xgp +

)(xgm

Σ Σ z-1

X

X

…

xj(k)

+

…

…

…

-

)(1 xh

jx
xh

∂
∂)(1

jx
xf

∂
∂)(

…

j

p

x
xh

∂
∂)(

…

X

X

1

1

k

-

µ

µ

x1 x2 xj xm

Objective function

Equality constraints

Inequality
constraints

xj(k +1)

 7

Figure (2): Discrete-time realization of the neural network for implementation of augmented Lagrange multiplier

method for NP problems with inequality constrains. Equations (17) and (18) show the two learning rules.

5- Conclusions
Among the many methods used for solving

nonlinear continuous constrained optimization
problems, neural networks is proposed as an
efficient method. The main idea of solution is to
transform a nonlinear problem to an equivalent
unconstrained optimization problem. Both the
penalty function methods and the augmented
Lagrange method problems are modeled using
neural networks. The network converged to give
the solution of a penalty function problem after
about 900 iterations, while about 700 iterations
are required for the network to converge for a
solution for an augmented Lagrange problem.
 Frankly, if the coefficients in k are
sufficiently large, the Hessian Matrix of the
Lagrangian can be forced to have all eigenvalues
greater than zero, which is of great importance
from the neural network implementation
standpoint, since the solution has to be sought in
an iterative manner. The fact that the Hessian

matrix is positive definite ensures existence of a
neighborhood of the solution in which the
function convex; and therefore, if the initial point
in the optimization process is properly chosen,
the algorithm will converge to global minimum.
The accuracy of the solution depends on the
accuracy of the Lagrange multiplier estimates,
and computing will not converge to the optimal
value of xx ~= until the multipliers converge to

optimal value λλ
~

= .
 Therefore, every NP problem can be
transformed into either the NP1 or NP2 form.
However, it is preferred from the computational
standpoint to consider the NP problem in its
original form. Finally, note that the NP1 or NP2
form of the problem can be regarded as special
cases of a more general NP3.

jx
xf

∂
∂)(

jx
xg

∂
∂)(1

j

m

x
xg

∂
∂)(

)(1 xg

)(xgm

Σ z-1 Σ

Σ Σ

Σ Σ

z-1

z-1

X

X

X

X

…

xj(k)

+

+

+

+ +

+ +

…

k

k

µλ

µλ

λm(k)

µx

λ1(k)
…

…

x1 x2 xj xm
-

 8

 References

1- Cichocki, A. and R. Unbhauen, “Neural
Networks for Optimization and Signal
Processing”, Chichester, England: Wiley,
1993.
2- Gill, P. E., W. Murray, and M. H. Wright,
“Practical Optimization”, London: Academic,
1981.
3- Powell, M. J. D.," A Method for Nonlinear
Constraints in Minimization Problems", In
Optimization, Ed, R. Fletcher, London;
Academic, pp.283-288, 1969.
4- Geoflrion, A.M., “Lagrangian Relaxation for
Integer Programming”, Mathematical
Programming Study, 2:82-114, 1974.
5- Giles, F.R., and W.R. Pulleyblank, ”Total
Dual Integrality and Integer Polyhedra”, Vol. 25,
Elsevier North Holland Inco., 1979.
6- Gavish, B., “On Obtaining the Best
Multipliers for Lagarangian Relaxation for
Integer Programming”, Computer & Operational
Research, 5:55-71, 1978.
7- Shang, Y. and B.W. Wah,” A Discrete
Lagarangian Based Global Search Method for
Solving Satisfiability Problems”, J. of Global
Optimization, 12(1): 61-99, January 1998.
8- Tind, J., and L.A. Wolsey, ” An Elementary
Survey of General Duality Theory in
Mathematical Programming”, Mathematical
Programming, pp:241-261, 1981.
9- Back, T., F. Hoffmeister, and H.P. Shwefel,”
A Survey of Evolution Strategies”, In Proc. of
4th Int. Conf. on Genetic Algorithms.
10- Glover, F. and G. Kochenberger, “Critical
Event Tabu Search for Mathematical Knapsack
Problems”, In Proc. of Int. Conf. on
Metaheuristic for Optimization”, pp: 113-133,
1995.
11- Joines, J., and C. Honck, “On the Use of
Non-stationary Penalty Functions to Solve
Nonlinear Constrained Optimization Problems”,
In Proc. of Int. Conf. on Evolutionary
Computation, pp: 579-584, 1994.
12- Michalewicz, Z., D. Dagupta, R.G. LeRiche,
and M. Schoenauer, “Evolutionary Algorithm for
Constrained Engineering Problems”, Computers
and Industrial Engineering Journal, 30 (2): 851-
870, 1996.
13- Wah, B.W., and T. Wang, “Simulated
Annealing with Asymptotic Convergence for
Non-linear Constrained Global Optimization”,
Principles and Practice of Constrained
Programming, 10: 461-475, 1990.
14- Su, H., and R. Hartley, “Fast Simulated
Annealing”, Physics Letters, A, 122(3-4): 157-
162, 1987.

15- Joong, I. K., and J.J. Lee, “Adaptive
Simulated Annealing Genetic Algorithm for
System Identification”, Eng. Application of
Artificial Intelligence, 9(5): 523-532, 1996.
16- Homaifar, A., S. H. Y. Lai, and X. Qi,
“Constrained Optimization via Genetic
Algorithms”, Simulation, 62:242-254, 1994.
17- Chen, X., “Optimal Anytime Search for
Constrained Nonlinear Programming”, MSc
Thesis, University of Illinois at Urbana-
Champaign, 2001.
18- Petridis, V., S. Kazarlis, and A. Bakirtzis,
“Varying Fitness Functions in Genetic Algorithm
Constrained Optimization: The Cutting Stock and
Unit Commitment Problems”, IEEE Trans. on
System, Cybernetic, 28(5): 629-640, 1998.
19- GAMS World, WWW-document 2003.
[http://www.gamsworld.org.]
20- Michalewics, Z., and G. Nazhiayath,
“Genocop III: A Co-Evolutionary Algorithm
From Numerical Optimization Problems with
Nonlinear Constraints”, Proceedings of the IEEE
Inter. Conf. on Evolutionary Computation,
2:647-651, 1995.
21. Luenberger, D. G., “Linear and Nonlinear
Programming”, 2nd ed., Springer, 2003.

http://www.gamsworld.org

