
Formal verification for STATEMATE models

Yousra HLAOUI Ben Daly

yousra.BenDalyHlaoui@esstt.rnu.tn

Research Unit of Technologies of Information and Communication

Ecole Superieure des Sciences et Techniques de Tunis

5, Avenue Taha Hussein, BP.56, Bab Menara, 1008 Tunis

Tunisia.

Fax: 00 216 71 39 11 66

Leila JEMNI BEN AYED

leila.jemni@fsegt.rnu.tn

Research Unit of Technologies of Information and Communication

Ecole Superieure des Sciences et Techniques de Tunis

5, Avenue Taha Hussein, BP.56, Bab Menara, 1008 Tunis

Tunisia.

Fax: 00 216 71 39 11 66

Abstract

We propose an approach based on automatic derivation schemes from STATEMATE model to an
FNLOG specification. STATEMATE is a semi formal method that pertains to the specification
and design of complex reactive systems and builds simulations and prototypes rapidly. Though
STATEMATE provides rigorous specifications, these are not verifiable to ensure and guarantee the
reliability of the system being developed. To fulfill this objective, a STATEMATE specification
is translated into a logic-based specification language called FNLOG which allows its verification.
This paper describes the translation approach, cross references between STATEMATE and FNLOG
features, and the translation algorithm.

Key Words: STATEMATE, FNLOG, formal method, semi formal method, combined method,
translation, verification, specification.

1 Introduction

Several approaches were proposed to provide
different methods and specification languages
for the development of complex reactive sys-
tems. These systems are characterized by a
complexity linked with their diverse ways to
react to external events. Most of these meth-
ods such as STATEMATE [9], Statecharts [9]
and UML [15] use state-transition diagrams
to describe complex system’s behavior. They
provide rigorous specifications which are not
verifiable to ensure and guarantee the reliabil-
ity of the system being developed. As these
methods are semi formal, they are not pro-
vided with proof systems unlike formal meth-
ods. It is for the reason, semi formal and
formal methods have been combined to en-
sure the verification of semi formal specifica-
tion ([17],[18],[19],[12],[14],[13],[?]). The com-
bination consists of transforming semi formal
specification to a formal one which is verifi-
able by the use of the proof system; hence, en-
abling the verification of a semi formal graph-
ical and comprehensive specifications. Sev-
eral works were elaborated in this context such
as the transformation from UML to B [13],
Statecharts to FuNction LOGic based specifi-
cation language called FNLOG ([17],[18],[19])
which extends Statecharts language and pro-
vides a compositional proof system for Stat-
echarts. Additional work has been elaborated
to integrate STATEMATE and FNLOG meth-
ods in a same specification approach ([12],[14]).
It is within the framework which formalize the
informal that our contribution is presented.
This paper attempts to develop a new ap-
proach to automatically transform STATEM-
ATE designs to FNLOG specification in or-
der to ensure its formal verification. We ex-
plore, in fact, the usefulness of the integra-
tion of semi formal and formal methods in
specifying complex reactive systems and ver-
ifying their expected properties; as well as

the compatibility of STATEMATE and FN-
LOG languages. FNLOG [19] which is a log-
ical specification language, was introduced for
the verification of Statecharts specifying reac-
tive system behavior and also to cover the sys-
tem functional aspects and to express prop-
erties in application domain and not just in
Statecharts. To ensure the verification of
Statecharts by FNLOG, a semantic bridge
([17],[18],[19]) is built between their compo-
nents. The STATEMATE notation allows the
specification of functional and behavioral as-
pects with activity-Chart and Statecharts lan-
guages. Thus, the compatibility between Stat-
echarts and FNLOG components is used and
extended to STATEMATE features specifying
the system functions in the translation schemes
between STATEMATE and FNLOG. The pro-
posed approach consists firstly on specifying
the system with STATEMATE notation which
provides clear and understandable specifica-
tion and secondly on translating this specifica-
tion to FNLOG notation to be verified. This
translation is automatic and based on deriva-
tion schemes from STATEMATE to FNLOG
specification. In the derivation schemes, all
functional and behavioral STATEMATE as-
pects are considered such as basic and com-
posed activities and states, events, actions and
conditions with their different forms, elemen-
tary, composed and textual. We introduce
also, FNLOG formulae to represent static sys-
tem reactions in a given state. In the works
presented in ([17],[18],[19],[12],[14]), a large
range of STATEMATE concepts were consid-
ered with the exception of connectors, dif-
ferent type of events, conditions, actions in
Statecharts and different kind of activities in
activity-Charts. These are considered in our
proposed approach. In addition the proposed
translation schemes support all kind of tex-
tual features, implicit events, time in time-
out event, scheduled action, predefined func-
tions and particulary decomposition of activ-
ities and states. Unlike works presented in
([17],[18],[19],[12],[14]), our approach stresses
on the automatization to translate a STATEM-

ATE specification into FNLOG one. To reach
this goal, we developed an algorithm trans-
lating a STATEMATE specification into FN-
LOG one. Thus, for each kind of STATEM-
ATE specification language component, we de-
fine transformation processes which are based
on our proposed derivation schemes. To use
the appropriate transformation process in the
algorithm, we define a set of predicates which
determine the nature of the current element
to transform. To do so, we were brought
about formalizing all Statecharts and activity-
Charts components. In addition, the decom-
position of states and activities in Statecharts
and activity-Chart languages is treated by the
recursive nature of the algorithm. In this pa-
per, we present our approach translation steps
and the algorithm translating STATEMATE
model to FNLOG specification.

2 STATEMATE overview

STATEMATE [9] is a graphic specification
method for complex real-time reactive sys-
tems. In STATEMATE, the descriptions used
to capture the system specification are orga-
nized into three views, of the system: func-
tional, behavioral and structural. The func-
tional view describes the system’s functions,
processes and activities with activity-Charts.
The behavioral view describes the system’s be-
havior over time with Statecharts. The struc-
tural one describes the subsystems, modules
and the communication between them with
module-Charts. Activity-charts [9] describe
the system’s functions, processes, or objects,
also called activities. Activities may be ba-
sic or composed. A compound activity may
have a control-activity as a sub-activity which
is refined by a Statechart. This Statechart de-
scribes control activity parent and sisters be-
haviors. A control activity is considered at
the same time an activity and a state. Stat-
echarts ([8],[9]) describe the system’s behav-
ior over time, including the dynamics of ac-
tivities, their control and timing behavior. A

Statechart specification can be viewed as a tree
of states. All other states are related by the
superstate-substate property. The superstate
at the top level is the specification itself. This
relation imposes a natural concept of ”depth”
as a refinement of states. There are three types
of states : AND, OR, and BASIC states. Tran-
sitions between states are specified by edges.
Transitions may be labelled with a label hav-
ing the form: Event-part [condition-part]
/ Action-part.

3 FNLOG overview

FNLOG is a logic-based functional specifica-
tion language, based on first-order predicate
logic with arithmetic, extended by quantified
temporal operators ([17],[18], [19]). An FN-
LOG specification is built from events and ac-
tivities occurring over time, connected by log-
ical and temporal operators [19]. Quantifica-
tion over time is allowed to simplify properties
description. The operators are of two types:
the logical operators (∨,∧,¬) and temporal
operators. In FNLOG, the past-time tempo-
ral logic operators, which some of them will
be described below, are used to capture rela-
tive and absolute time properties as well as the
causal relationships over time.

�t: true at time.
	t: true at the instant previous to t, ie at t-1
�t: true at some instant before t.

�t−k: true k instants before time t.

�t−k
t : true at some instant in the interval

[t-k,t]

�t−k
t ∃ i, t-k≤ i ≤ t : �t

An event is an instantaneous occurrence of
a signal, whereas an activity is a durative hap-
pening with an initial and an end instants and
a finite duration between them. Convention-
ally, an event or an activity is called a function.
Two special events are associated with every
activity A: initiate-A (init-A) and terminate-
A (term-A).

3.1 FNLOG specification

To specify any system using FNLOG, all the
activities which form part of the system are
identified. The top level specification is de-
fined as an OR or AND of these activities.
This specification is L which denotes the global
logic-based functional specification of a sys-
tem. Then: L ::= ∨A�t (A)| ∧A�t(A); Where
the A’s are defined by temporal formulae called
tformula. The syntax, the semantic and tem-
poral structure of FNLOG are presented in
[19].

4 STATEMATE-FNLOG

translation approach

Our approach Combining STATEMATE and
FNLOG [10] consists of four steps and it
is based on a systematic translation from a
STATEMATE specification into an FNLOG
one. The approach steps are presented by fol-
lows:

• Step 1: The system is specified with the
activity-Charts and Statecharts STATE-
MATE languages and the properties ex-
pected to be checked by the system are
described with FNLOG temporal formu-
lae.

• Step 2: The obtained system STATEM-
ATE specification is translated into FN-
LOG specification using cross referencing
schemes (See section 3.1). Our main con-
tribution concerns this step which is de-
tailed in Fig.1.

• Step 3: The properties are checked from
the obtained global system specification
using FNLOG proof system[19].

• Step 4: Once the FNLOG system spec-
ification is validated, the structural view
is provided using STATEMATE module-
Chart language.

Step 1 Conditions Schedule

Description, with FNLOG, of
properties which have to be

checked by the system.
System specification with

STATEMATE

Context activity Data Dictionary

Activity-Charts

 Control
activities

 Basic
activities

 Composed
activities

Statecharts

 Basic
States

 Composed
States

Translation into FNLOG specification

Global system FNLOG
specification

Checking properties from the global FNLOG
specification using FNLOG proof system

 System structural specification with
module-Chart STATEMATE language

Step 2

Step 3

Step 4

Figure 1: The translation Steps

As the translation is systematic, we define for
Statechart and activity-Charts special trans-
lation processes into FNLOG specification.
Starting with the top level of activity-Charts,
each activity of each level is translated into
FNLOG formulae and then refined in a top
down method using other simpler activities
which themselves are translated into FNLOG
specification. Once the bottom level of the
activity-Charts is reached, the FNLOG formu-
lae of this activities level will substitute their
FNLOG specification, denoted by L, appear-
ing in their parents FNLOG formulae. The
substitution or recomposition process will con-
tinue until achieving the top level of the Activ-
ity charts (See Fig.1).

5 Translation algorithm

In this section, we present the translation algo-
rithm which has as input the context diagram.
This diagram is refined by activity-Charts be-
longing to the different levels of abstraction

of the STATEMATE specification. To get a
global FNLOG specification of the system, we
have to transform all of these activity-Charts
as well as Statecharts modelling behaviors of
activity-Charts activities using two procedures
: translate-Activity and translate-Statechart.
These procedures are based on translation pat-
terns which match for a given activity or state,
the correspondent FNLOG specification. To
apply the right translation pattern, we test the
kind of activity or state by using predicates be-
longing to the predicates set presented in de-
tails in [10]. We define some of them in the e
following:

composed(Ac) =
True if ΩAc 6= ∅
false if ΩAc = ∅

Tests if an activity Ac is composed or not.
ΩAc is the set of sub-activities Ac.

have-actrl(Ac)=
True if Ac
has a control activity
False else

Tests if an activity Ac has a control activity
as sub-activity.

or-state(S)=

True if ΣS 6= ∅
and S is the disjunction of
states ∈ ΣS

False else
Tests if the state S is an Or-State. ΣS is the

set of sub-states of S.

5.1 STATEMATE and FNLOG
features cross references

STATEMATE and FNLOG provide some sim-
ilarities. They both use events and activities as
primitives. In this section we introduce map-
ping relations from STATEMATE models to
FNLOG formulae. We propose to match each
concept and element of the STATEMATE lan-
guage with an other of the FNLOG language.
Thus, as a durative happening, a STATEM-
ATE activity, state or action are represented
with an FNLOG activity. A STATEMATE
event is an instantaneous occurring over time,
is represented by an FNLOG event.

If an activity A is alive at an instant t, it
is represented by �t(A) which is an FNLOG

formula. If, in STATEMATE, an activity A is
composed with sub-activities A1 and A2 then,
in FNLOG, this corresponds to the following
formula: �t(A)=�t(A1)∧�t(A2).

For each composed or basic STATEMATE
state corresponds a composed or a basic activ-
ity in FNLOG.

STATEMATE FNLOG

S �n(S) = �n1 (init-S)∧
�n2 (term-S) ∧ (n1 < n < n2)

A transition is labelled with
event[condition]/action. The event corre-
sponds to an event in FNLOG language or
to an event expression when it is composed.
Whereas, the condition is represented by
an FNLOG logic expression. The action is
an activity in FNLOG. If at an instant t a
transition is triggered, that means, at the
same instant its relative event Ei occurs,
its conditions Ci holds and the action Ai
performs.

STATEMATE FNLOG

S1 S2
E[C]/A �n(Ti) = �n(Ei) ∧ �n(Ci)

∧ �n (Ai)

The other forms of events and cross references
between different kinds of actions and condi-
tions and FNLOG formulae are presented in
details in [10].

A composed transition is labelled with the
used connector which relates different com-
ponents of a transition. We distinguish c-
connector, s-connector, Junction, termination
connector, H-connector). the use of such of
such connectors allows the reduction of transi-
tions number in a STATEMATE model. We
give, in this paper, only correspondent FN-
LOG formulae for C-connector. Consider CT
as a composed transition of the form CT =
E[C1] or E[C2]. With E[C1] and E[C2] are
transition labels. The correspondent FNLOG
formula is given as follow :

STATEMATE FNLOG

�n(CT) = (�n(E) ∧ �n(C1))
∨(�n(E) ∧ �n(C2))

5.2 Proposed algorithm

We give, in the following, the main algorithm,
detailing the translate-activity procedure and

sketching only the main steps of Translate-
Statechart procedure. We define the integer
num as variable containing the number of the
last definition in FNLOG specification formu-
lae. All the unmentioned procedures are de-
tailed in [10].

Algorithm translation STATEMATE-FNLOG
begin

translate-activity(main activity, num)
End.

Procedure translate-activity(Ac:activity, VAR num:integer)
Begin

LAc=�n(Ac) (∀i ≥ 0) /*Ac FNLOG specification*/
If have-comp-sup(Ac) Then

If react-mini-spec(Ac) 6= 0 Then
Translate-mini-spec-reactive(Ac,react-mini-spec(Ac))

Else
Translate-mini-spec-proc-like(Ac,proc-like-mini-spec(Ac))

EndIf
Endif
If composed(Ac) Then

ΩAc ← sub-activity(Ac)

If have-actrl(Ac) Then
LAc ←LAc ∧ LAc CTRL

Add to the specification LAc the following definitions
/*the definition numbering starts with num+1 */
num+1.�n(Ac) = �n(Ac CTRL)
num+2.�n (init−Ac) = �n(init−Ac CTRL)
num+3.�n(term−Ac CTRL) = �n(term−Ac)
num+4.�n(term−Ac) =

∧
i�n(term−Aci)

/*Aci ∈ ΩAc: Ac sub-activities set.*/
num ←num+4.
Translate- Statechart(Ac CTRL, num, LAc CTRL)
ΩAc ← ΩAc/Ac CTRL

Else
LAc ←LAc∧iLAci
The definition set will be:
num+1.�n(Ac) = ∧i=1,p �n (Aci) ,∀Aci ∈ ΩAc

num+2.�n(Ac)→ �n1 (init−Ac) ∧ �n2 (term−Ac)∧
(n1 < n < n2)
num+3.�n(init−Ac)→ ∧i=1,p �n (init−Aci)
num+4.�n(term−Ac)→ ∧i=1,p �n (term−Aci)
num← num+4

EndIf
While ΩAc 6= ∅ Do

Ac-curent← Aci
ΩAc ← ΩAc/Aci
translate-activity(Aci, num)

EndWhile
Substitute the LAci , in LAC , expression with their
generated formulae

EndIf
End.

In the following, S denotes the current
state,∀i ≥ 0, T1i ∈ I denote in transitions set
of S state and T2i ∈ O out transitions set.

ProcedureTranslate-Statechart

Step 1 Provide the FNLOG specification corre-
sponding to the considered state as if it is basic
using the following pattern:

LS = �n(S) With:
1. �n(S)=�n1 (init-S)∧�n2 (term-S)∧(n1 < n < n2)
2. �n(init-S) =

∨
T1i∈I�n(T1i)

3. �n(term-S) =
∧

T2i∈O�n(T2i)

4. �n(Tj) = �n(Ej) ∧ �n(Cj) ∧ �n(Aj)
with Tj ∈O∪I and Ej/Cj/Aj transition label.

Go to the step 2.

Step 2 Test if the current state is composed using
composed predicate. In the affirmation go to step
4. In the negation, test if it exists other states non
transformed belonging to the same level of abstrac-
tion of the Statecharts description of the current
state. In the affirmation, choose one the states
which becomes a current state and go to the stage 1
to transform it. In the case with all states of all ab-
straction levels have been transformed, go to step 5.

Step4 According to the nature of the current state
resulting from (Or-State or And-State predicates)
modify its FNLOG specification provided in step1
using one of the patterns presented below:

And-state pattern
LS = LSbasic

∧
Si∈ΣS

LSi
)

Or-state pattern
LS = LSbasic

∧
(
∨

Si∈ΣS
LSi

)

Choose, arbitrarily, one of its sub-states and
consider it as current state then go to stage 1 to
achieve its transformation.

Step5 If the current abstraction level of the
specification is the first one then go to step 7. Else
substitute the L specifications states with their
formulae in their L specification parent state. Go
to step 6.

Step6 The current abstraction level of specification
becomes the level of the parent. If it doesn’t
remain other states non transformed in the current
level, go to step 5. Else choose one of the non
transformed state and go to step 1.

Step7 End of the procedure.

6 Illustration

In this section, the proposed approach and
the transformation algorithm are illustrated
over an example of train crossing system [?].
The system is composed of warning compo-
nents which forbid conductors to cross the rail
by detecting an arriving train. The warning
component is the light signal, while the for-
bidding component is represented by the bar-
rier. When a train, arriving from any direction,
comes in the train detection zone the light sig-
nal has to be set up after 9s of the train de-
tection, the barrier has to be down to prohibit

the conductors to cross the rails. Once the
train is far away from the detection zone, the
barrier becomes up and the light signal is off.
The system has to guarantee that it won’t be
a collision between cars and train or cars and
barrier.

In the following, STATEMATE specification
of the above system will be translated to FN-
LOG specification in order to verify system
properties which are described with FNLOG
formulae.

6.1 Step 1:Required properties de-
scription in FNLOG and system
specification in STATEMATE

6.1.1 Property description

(P1): The barrier is never down if
the light signal is not ON (to avoid
collisions between barrier and cars
at night). The correspondent FN-
LOG formula is: ¬(¬

⊙
n(Down) ∧⊙

n(ON))

(P2): The light signal is never OFF
only if it doesn’t exist any train in the
detection zone. In FNLOG, it will
be: ¬(¬

⊙
n(OnState)∧

⊙
n(train−

arrives))

(P3): The barrier don’t have to be
down only after 9s that the light sig-
nal is ON. The FNLOG formula is :⊙

n(OffState) ⇒
⊙n−9

n (OnState)

These proprieties have to be verified
by the following STATEMATE spec-
ification after translation into FN-
LOG specification.

6.1.2 STATEMATE specification

The system is specified with STATEMATE.
The specification starts with the context di-
agram (Figure.3) which is refined with the
activity-Chart represented by Figure.4. This
activity-Chart contains two sub-activities:
Train-Cross and Bar-Sig. Each of them has a

control activity as sub-activity: Train-Cross-
ctrl and Bar-Sig-ctrl. In this paper, we will
only present the associated Statecharts to the
Train-Cross-ctrl control activity (Figure.5),
because we will focus only on it, in the transla-
tion illustration, by translating Preventing and
OnState states into FNLOG.

Train-Cross-SysTrain-detector

Light
Signal

Barrier
train-arrives

 train-goes

Up

OFFOFF

Down

Figure 2: Train crossing system’s context dia-
gram

T rain-Detector

Light
Signal

Barrier

train-arrives

train-goes

Up

Down

allumeréteindre

@Train-Cross-Ctrl

Barrier -ac Signal-ac

@Bar-Sig -Ctrl

Train-Cross
Train-Cross-Sys

Bar-Sig

DownBUpB ONOFF

UpB DownBONOFF

Figure 3: Train crossing system’s activity-
Chart

6.2 Step2: Transforming the
STATEMATE specification
of cross train system to FN-
LOG specification

The transformation step is started by trans-
forming, to FNLOG, the activity representing
the context diagram, then the Train-crossing
system activity-Chart and finally the train-
Crossing control activity Statechart and the
Barrier-signal control activity Statechart. As

Allowing
OnState

OffState

Preventing>Train-Cross-Ctrl

Train-goes

Train-arrives

Tm(en(OnState),9)

Figure 4: Train-Cross-ctrl activity’s State-
charts

mentioned above, we will only present in this
section the translation of Preventing and On-
State states into FNLOG.

6.2.1 Translation Preventing state into
FNLOG

Apply, on Preventing state,the procedure
Translate-Statechart which translate a
STATEMATE state into FNLOG formulae.

1. Preventing state is considered as basic
state.
The correspondent specification FNLOG
will be:

LPreventing =
⊙

n(Preventing) with

1.
⊙

n(Preventing) =⊙
n1

(Preventing)
∧ ⊙

n2
(Preventing)

∧
(n1<n<n2)

2.
⊙

n(init-Preventing) =
⊙

n(Train-arrives)

3.
⊙

n(term-Preventing) =
⊙

n(Train-goes)

2. Test if this state is an And-State by evaluat-
ing the predicate and-state(Preventing).
In this case, and-state(Preventing)=
false. Preventing is not an And-state.

3. Test if Preventing state is an Or-
state by evaluating the predi-
cate OR-state(Preventing). OR-
state(Preventing)=true, Pre-
venting is the disjunction of the
states OnState and OffState.
ΣPreventing = {OnState,OffState} 6= ∅
The FNLOG specification of Preventing
state , LPreventing, will be:

LPreventing =
⊙

n(Preventing) ∧ (LOnState ∨ LOffState)

4. Continue with the transformation of the
substates of Preventing state. Choose
randomly a current state from the set sub-
states. Scurrent ←OnState

ΣPreventing ← ΣPreventing \ {OnState} = {OffState}.

ΣPreventing = {OffState} 6= ∅

6.2.2 Translation of the state OnState

Apply the procedure Translate-Statechart on
OnState

1. Consider the state OnState as basic state.
Its FNLOG specification is provided as
follow: LOnState =

⊙
n(OnState) with:

4.
⊙

n(OnState) =
⊙

n1
(init-OnState)∧ ⊙

n2
(term-OnState)

∧
(n1<n<n2)

IOnState = {default}

So we add the following definition:
5.

⊙
n(init-Preventing)→

⊙
n(init-OnState)

OOnState = {Tm(en(OnState),9)}.

So we add the following definition:
6.

⊙
n(term-OnState) =

⊙
n(Tm(in(OnState),9))

Tm(en(OnState),9) is a composed event,
thus we add to the above FNLOG
specification the following definition:
7.

⊙
n(Tm(en(OnState),9)) =

⊙
n−9(OnState)

2. The predicates Or-state(OnState) and Or-
state(OnState) are evaluated to false and
ΣOnState = ∅. Thus, OnState is not a com-
posed state. So, the transformation of the
state OnState is achieved. The correspon-
dent FNLOG specification is:
LOnState =

⊙
n(OnState) with:

4.
⊙

n(OnState) =
⊙

n1
(init-OnState)

∧⊙
n2

(term-OnState)
∧

(n1<n<n2)

5.
⊙

n(init-Preventing)→
⊙

n(init-OnState)

6.
⊙

n(term-OnState) =
⊙

n(Tm(en(OnState),9))

7.
⊙

n(Tm(en(OnState),9)) =
⊙

n−9(OnState)

2. Substitute LOnState with its formula⊙
n(OnState) in LPreventing FNLOG

formula which will changed to:

LPreventing =
⊙

n(Preventing) ∧ (LOnState ∨ LOffState)

6.3 Step3: Properties verifica-
tion

All of the three properties have been proofed in
our work with FNLOG deduction. In this sec-
tion we present only the proof of the property
P2.

(P2):
⊙

n(train-arrives)→
⊙

n(OnState)
Def 2 :

⊙
n(init-Preventing) =

⊙
n(Train-arrives)

That means:⊙
n(init-Preventing)→

⊙
n(Train-arrives) and⊙

n(Train-arrives)→
⊙

n(init-Preventing) (1)
Def 5 :

⊙
n(init-Preventing)→

⊙
n(init-OnState) (2)

(1) and (2):
⊙

n(Train-arrives)→
⊙

n(init-OnState) (3)
FNLOG Axiom :

⊙
n(init-OnState)→

⊙
n(OnState) (4)

(3) and (4) :
⊙

n(Train-arrives)→
⊙

n(OnState). (P2)
verified.

7 Conclusion

In this paper, we have presented a systematic
translation schemes from STATEMATE mod-
els to FNLOG specification. We have consid-
ered all features of STATEMATE such as ac-
tivities, states, connectors, static reactions, ac-
tivity in state, compound events, compound
conditions composed actions and predefined
functions. We have also proposed a solution
dealing with decomposition of activities and
states in a STATEMATE models. Cross ref-
erences, translation patterns have been devel-
oped to be used in our proposed translation
algorithm. Once, a STATEMATE specifica-
tion is translated into a FNLOG notation, the
specification becomes verifiable by using the
FNLOG axiomatic [19]. Our future focus shall
consists of validating transformation rules and
developing a tool supporting proposed trans-
formation rules to ensure the systematic veri-
fication of required properties.

References

[1] B.Berard, M.Bidoit, F.Laroussine, A.Petit
et P.Schnoebelen. Vérification des logiciels-
Techniques et outils du model-Cheking.
Vuibert, Paris, 1999.

[2] R.Bossow and W.Grieskamp. ”A Modular
Framework for the Integration of Heteroge-
nous Notations and Tools”. Proc. Of the
1st Intl. Conference on integrated Formal
Methods-IFM00’. Springer-Verlag. London.
(2000).

[3] S.Dupuy, Y.Lerdu et M.Chabre-peccoud.
”Translating the OMT dynamique model
into object-Z”. Proceeding of 11th Interna-
tional Conference of Z users. Berlin, Ger-
many. (1998).

[4] A.B.Ferrentino and H.D.Mills. ”State ma-
chines and their semantics in software engi-
neering”. Proc. IEEE COMPSAC’77 Con-
ference(1977) pp. 242-251.

[5] H.Fkih, L.Jemni Ben Ayed, and S.Murz.”
Transformation des Specification B en des
Diagrammes UML”. In AFADL: Approches
Formelles dans l’Assistance au developpe-
ment des logiciels. France.(2004). P 131–145

[6] H.Fkih, L.Jemni Ben Ayed, and S.Murz.
”Transformation of B Specifications into
UML Class Diagrams and State Machines”.
The 21st Annual ACM Symposium on Ap-
plied Computing. Dijon, France. (2006).

[7] A.Hammad and al. ”From a B Specification
to UML Statechart Diagrams. ”C.George
and H.Miao(Eds.):ICFEM 2002,LNCS
2495,pp.511-522, 2002.Spring-Verlag Berlin
Heidelberg. (2002).

[8] D.Harrel: ”Statecharts. A visual Formalism
For Complex System.” Communicated by
A.Pnueli. Received December 1984. Revised
July 1986. Sci-ence of Computer Program-
ming 8 (1987) 231-274. North-Holland.

[9] D.Harrel and M.Politi. Modeling reactive
Sys-tems with Statecharts. the STATEM-
ATE Ap-proach. McGraw-Hill Books. Soft-
ware Develop-ment Series.USA.

[10] Y.Hlaoui. Transformation automatique
d’un modele STATEMATE en une spec-
ification FNLOG pour la verification.
Januray 2006.

[11] A.Idani and Y.Ledru. ”Dynamic Graphical
UML Vues from Formal B Spacification”.
Journal of Information and Software Tech-
nology. (2005).

[12] L.Jemni, O.Mosbahi and S.Ben Ahmed.
”A Specification and Validation Method
Based on STATEMATE and FNLOG”.
MOSIM’03: Organisation and Conduct of
Industry Activities and Ser-vives. (2003).
Toulouse- France.

[13] H.Ledang and J. Souquières.” Modeling
class operations in B : a case study on the
pump component”. Technical Report A01-
R-011, Laboratoire Lorrain de Recherche en
Informatique et ses Applications. (2001).

[14] O.MosbahiL, L.Jemni, S.Ben Ahmed and
J.Jaray. ”A Specification and Validation
Technique Based on STATEMATE and
FNLOG”. 4th international conference on
Formal methods and Software Ingeneering
ICFEM,LNCS, Vol 2495, Chine October
2002.

[15] Object Modeling Group. Uinified Modelling
Language Specification, version 1.4. (2001).

[16] E.Sekerinski et R.Zurob.”Translating Stat-
echarts to B”. In M.Butler, L.Petre, and
K.Sere, editors, Proc of the 3rd Inter-
national Conference on Integrated Formal
Methods (IFM’02), volume 2335 of Lecture
Notes in Computer Science, pages 128-144,
Finland, 2002.Springer-Verlag.

[17] A.Sowmya and S.Ramesh. ”Extending Stat-
echarts with Temporal logic”.SCSE Re-
port 9401. School of Computer Science and
Engineering the university of New South
Wales.(1994).

[18] A.Sowmya and S.Ramesh. ”Extending Stat-
echarts with Temporal logic.” IEEE Trans-
actions on Software Engineering, Vol.24,
NO. 3. (1998).

[19] A.Sowmya and S.Ramesh. ”A Semantics-
Preserving Transformation of statecharts to
FNLOG” . Proc.14th IFAC , Seoul, Korea.
(1997).

