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ABSTRACT 
In this paper, the parallel implementation of the Wave-Equation Finite Difference Time 
Domain (WE-FDTD) method, using the Message Passing Interface (MPI) system, is 
presented. The WE-FDTD computational domain is divided into subdomains using one-
dimensional topology.  Numerical simulations have been carried out for a line current source 
radiating in two-dimensional domains of different sizes and performed on a network of 
different number of PCs interconnected with Ethernet. It has been observed that, for large 
computational domains, the parallel implementation of the WE-FDTD method provides a 
significant reduction in the computation time, when compared with the parallel 
implementation of the conventional FDTD algorithm. 
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1. Introduction 
Nowadays, numerical methods play a 
major role in almost all branches of 
science and technology as they accelerate 
and facilitate research and industrial 
development. The Finite-Difference Time-
Domain method (FDTD) [1] is one of the 
most widely used numerical time-domain 
techniques in electromagnetism, as it 
covers many applications [2], such as 
antennas, optics, high-speed electronic 
circuits, and semiconductors, etc. 
Furthermore, the FDTD method provides a 
wideband frequency response via a simple 
Fourier transform from the obtained time 
domain solutions. The primary advantage 
of the FDTD method is that it is a 
straightforward solution of the six-coupled 
field components of Maxwell’s curl 
equations. This method, known as Yee 
algorithm [1], computes the field 
components by discretizing the Maxwell’s 
curl equations both in time and space, and 
then solving the discretized equation in a 
time marching sequence by alternatively 

calculating the electric and magnetic fields 
in the computational domain [1]. 
Recently, the FDTD method has also been 
extended for solving the scalar Helmholtz 
wave equation in source-free domains [3]. 
Unlike the conventional FDTD approach, 
this new method, which is called the Wave 
Equation FDTD (WE-FDTD), allows 
computing any single field component 
without the necessity of computing other 
field components. Therefore, significant 
savings in the computational time and the 
memory storage can be achieved. In 
addition, it has been shown that the WE-
FDTD method is both mathematically and 
numerically equivalent to Yee’s algorithm 
[3] in source free regions. 
A major drawback of both the FDTD and 
the WE-FDTD schemes is that very large 
computational time and very large 
computer memory storage are required for 
analyzing large computational domains.  
This makes parallelizing these schemes 
necessary. In order to do this, the 
computational domain is divided into 
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subdomains, and each subdomain is 
processed by one processor. Recently, 
different techniques have been introduced 
for the parallel implementation of the 
conventional FDTD method [4, 5]. These 
techniques are based on the single-
program-multiple-data (SPMD) 
architecture. In [4], a one-dimensional 
parallelism using the parallel virtual 
machine (PVM) has been introduced. This 
approach is based on the TCP/IP protocol 
over the Ethernet for passing inter-
processor messages. In [5], a new parallel 
FDTD algorithm based on the message-
passing interface (MPI) system has been 
introduced. This approach is becoming 
new international standard for parallel 
programming and it is tending to replace 
the other parallel protocols, such as the 
PVM [6, 7]. 
In this paper, the MPI is used in the 
parallel implementation of the WE-FDTD 
algorithm. The two-dimensional 
computational domain is divided into 
subdomains along one direction by using 
the one-dimensional topology introduced 
in [4]. Numerical simulations have been 
carried out using a line current at the center 
and perpendicular to the domain. A line 
current source is a source which radiates 
equally in all directions. The test has been 
performed on a network of PCs 
interconnected with Ethernet. 
The paper is organized as follows. In 
section 2, the formulations of both the 
FDTD and the WE-FDTD algorithms are 
presented. In section 3, the proposed 
parallelization techniques are described. 
Section 4 includes the results of several 
numerical tests which evaluate the 
effectiveness of the proposed method. 
Finally, a summary and conclusions are 
included in section 5. 
 
 
2. Formulation 
In a linear, homogeneous, isotropic 
medium, the Maxwell equations can be 
written as 
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where E and H are, respectively, the 
electric and the magnetic field vectors, 0ε is 
the electric permittivity, and 0µ is magnetic 
permeability of the medium. In the 
rectangular coordinate system, the above 
coupled curl equations can be decomposed 
into a system of six scalar differential 
equations in terms of the Ex, Ey, Ez, Hx, Hy, 
and  Hz field components. For the sake of 
simplicity, consider the Maxwell's 
equations for the two dimensional 
transverse electromagnetic (TM) problem 
where only the field components Ez, Hx, 
and Hy exist. In this case, (1)-(2) give the 
following: 
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By using the Yee's algorithm [1], the 
above equations can be discretized in space 
and time as 
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where t∆  is the time step size and 
x y∆ = ∆ = ∆ is the space cell size in the x, and 

y directions, respectively. 
 
To reduce the computational requirements 
of the conventional FDTD algorithm 
described above, (3)-(5) can be combined 
in a source free two-dimensional domain 
[3] as 
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where c is the speed of light defined as  
0 0c 1/= ε µ . Equation (9) forms the basics of 

the WE-FDTD algorithm, which can be 
discretized as 
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To truncate open region problems, 
Absorbing Boundary Conditions (ABCs) 
are needed. In this paper, Mur's first order 
ABC is used [8]. As an example, the Ez 
field along the x=0 boundary can be 
computed as 
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3. Parallelizing the FDTD and the 
WE-FDTD Algorithms 
 In order to parallelize the above FDTD 
and the WE-FDTD algorithms, the 
computational domain is divided into 
subdomains. Using the one-dimensional 
topology introduced in [4], the 
computational domain is divided into 
subdomains along the x-direction, where 
each subdomain is assigned to one 
processor, as shown in Fig. 1.  At the 
computational domain boundaries, i.e., 
X=0, X=Xn, Y=0 and Y=Yn boundaries, 
the fields are computed by using ABCs [8]. 
At the internal cells of the subdomains, the 
fields are computed directly from (6)-(8), 
in the case of the FDTD method, or from 
(10), in the case of the WE-FDTD method. 
However, to calculate the fields at the 
subdomain boundaries, data from the 
neighboring subdomains are needed. In 
this paper, the MPI system is used to 
exchange data between processors.  A 
complete detail of the usage of the MPI is 
provided in [6, 7]. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Computational domain partitioning 

Figure 2 shows the data to be exchanged 
between neighboring subdomains in order 
to parallelize the conventional FDTD 
method. As can be seen from Fig. 2, to 
calculate the Ez using (6) at the cells 
located at the plane on the left boundary of 
the subdomain,  the values of the Hy field 
from the left subdomain are needed. 
Similarly, this subdomain must send the 
values of Hy at cells located at the plane on 
the right boundary of the subdomain to 
right subdomain. In the same manner, to 
calculate Hy using (8) at the cells located at 
the plane on the right boundary of the 
subdomain, the values of the Ez in the right 
subdomain are needed.  Also, this 
subdomain should send the values of the Ez 
at the cells located at the plane on the left 
boundary of the subdomain to the left 
subdomain. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Communications at the boundary of 
a subdomain for the one-dimensional 
topology of the conventional FDTD 
method 
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Fig. 3. Communications at the boundaries 
of a subdomain for the one-dimensional 
topology of  the WE-FDTD method 

Based on Fig. 2, the parallel 
implementation of the FDTD algorithm 
described in (6)-(8) can be summarized as: 

1. MPI initialization. 
2. Reading the simulation parameters. 
3. Divide the computational domain into 

subdomains. 
4. At each time step: 
           4.1 Calculate the Hy field 
component.  
           4.2  Communicate the Hy field 
component at the subdomain boundaries. 

             4.3  Calculate the Ez field 
component. 
             4.4  Communicate the Ez field 
component at the subdomain boundaries. 
5. Apply the ABCs at the domain 

boundaries. 
6. MPI finalization. 

Similarly, Fig. 3 shows the data to be 
exchanged between neighbouring 
subdomains to implement the WE-FDTD 
algorithm described in (10). In order to 
calculate the Ez field component at the 
cells located at the left and the right planes 
of the subdomain, the values of Ez from the 
left and the right subdomains are needed. 
Similarly, this subdomain must send the 
values of the Ez at the left and the right 
planes to the left and the right subdomains.  
Therefore, the steps for the parallel 
implementation of the WE-FDTD 
algorithm described in (10) can be 
summarized as: 
1. MPI initialization. 

2. Reading the simulation parameters. 

3. Divide the computational domain into 
subdomains.  

4. At each time step: 
4.1  Calculate the Ez field component.  

     4.2  Communicate the Ez field 
component at the subdomain boundaries. 
     4.3  Apply the ABCs at the domain 
boundaries. 
5. MPI finalization. 
 
 
4. Numerical Study 
To demonstrate the performance of the 
proposed parallel algorithms, numerical 
simulations were carried out for the 
Transverse Magnetic (TM) case [8]. In this 
test, a line current source is used to radiate 
electromagnetic waves at the center of a 
two-dimensional domain, as shown in Fig. 
4 [8]. The space cell size in the x and y 
directions was chosen as ∆ = ∆x = ∆y = 
0.015m [8]. The time step was 25ps, and 
the simulation time was taken to be 500 
time steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Computational domain for the 
numerical study 

The excitation used was a Gaussian pulse 
defined as 
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processors and for different computational 
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domain size. The simulation was carried 
out on a network of Celeron™ 333 MHz 
PCs running with 64 MB of memory each. 
The PCs were interconnected with a 10 
Mbit/s Ethernet.  Tables 1 and 2 show the 
simulation time (in seconds) for the 
parallel FDTD and the parallel WE-FDTD 
methods obtained by using one, three, and 
five PCs for three different domain sizes. 
 
Table 1. Simulation time (in seconds) for 
the parallel FDTD algorithm 

Number of PCs Grid size 
(cells) 1 PC 3 PCs 5 PCs 
150x50 8.09 4.40 3.55 
300x100 32.51 14.25 9.77 
600x200 129.08 49.06 31.70 

 

Table 2. Simulation time (in seconds) for 
the parallel WE-FDTD algorithm 

Number of PCs Grid size 
(cells) 1 PC 3 PCs 5 PCs 
150x50 3.34 2.57 3.58 
300x100 13.86 7.61 5.89 
600x200 55.72 22.69 16.28 

To measure the performance of the parallel 
algorithms, we computed the speedup, 
which is defined as 

 
S(P) T(1) / T(P) =    (13) 
 
where T(1) is the time needed to solve the 
problem using  one PC and T(P) is the time 
needed to solve the same problem using P 
PCs. 
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Fig. 5. Speed-up using the parallel FDTD 
algorithm 
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Fig. 6. Speed-up using the parallel WE-
FDTD algorithm 

Figures 5 and 6 show the speedup obtained 
with three and five PCs. For comparison 
purpose, the ideal speedup is also shown. 
From Figs. 5 and 6, it can be observed that 
as the computational domain size 
increases, the efficiency of the parallel 
FDTD and the WE-FDTD algorithms 
increases. On the other hand, when 
partitioning the computational domains 
over many processors, especially for the 
small domains, the efficiency of the 
parallelization will reach a limitation. This 
is because the computational time needed 
to update the fields will be reduced to point 
where it has the same order as the 
communication time needed to perform the 
data exchange between the processors.  
This explains the abnormal efficiency 
obtained with the parallel WE-FDTD 
algorithm for solving the 50x150 domain 
using five processors, as shown in Fig. 6. 
This abnormal phenomenon is not 
observed for the parallel FDTD algorithm. 
This is due to the fact that the 
computational time of the WE-FDTD 
method is much less than that of the FDTD 
algorithm as can be seen clearly from 
Tables 1 and 2. 
 
 
5. Conclusion 
In this paper, two parallel algorithms, 
based on the conventional FDTD and the 
new WE-FDTD algorithms have been 
implemented for solving the Maxwell's 
curl equations using the MPI system. The 
performance of these parallel algorithms 
has been studied by using a line current 
source radiating in a two-dimensional 



  

domain. It has been observed that the 
parallel implementations of these two 
methods provide a significant reduction in 
the simulation time as compared with the 
sequential solution. On the other hand, 
when partitioning the computational 
domains over many processors, especially 
for the small domains, the efficiency of the 
parallelization will reach a limitation. This 
is because of the computation time 
required to update the fields will be 
reduced to a point where it has the same 
order as the communication time needed to 
exchange the fields between the 
processors.  Finally, it has been observed 
that for large computational domains, the 
parallel WE-FDTD algorithm provides 
much more saving in the computational 
time compared with the parallel FDTD 
algorithm. The scheme can be generalized 
to two dimensional mesh of processors in 
the same manner. Finally, the new parallel 
algorithm can be improved by using better 
boundary conditions to truncate the 
computational domains, such as the 
Perfectly Matched Layer (PML) [9, 10]. 
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