

Parallel Implementation of the Scalar Wave-Equation FDTD
Method Using the Message Passing Interface

Omar Ramadan
Eastern Mediterranean University, Gazi Magusa, Mersin 10, Turkey

omar.ramadan@emu.edu.tr

Oyku Akaydin
Eastern Mediterranean University, Gazi Magusa, Mersin 10, Turkey

oyku.akaydin@emu.edu.tr

ABSTRACT
In this paper, the parallel implementation of the Wave-Equation Finite Difference Time
Domain (WE-FDTD) method, using the Message Passing Interface (MPI) system, is
presented. The WE-FDTD computational domain is divided into subdomains using one-
dimensional topology. Numerical simulations have been carried out for a line current source
radiating in two-dimensional domains of different sizes and performed on a network of
different number of PCs interconnected with Ethernet. It has been observed that, for large
computational domains, the parallel implementation of the WE-FDTD method provides a
significant reduction in the computation time, when compared with the parallel
implementation of the conventional FDTD algorithm.

Key words: Parallel Processing, Message Passing Interface, Finite-Difference Time-Domain, Local
Area Network, and wave equation.

1. Introduction
Nowadays, numerical methods play a
major role in almost all branches of
science and technology as they accelerate
and facilitate research and industrial
development. The Finite-Difference Time-
Domain method (FDTD) [1] is one of the
most widely used numerical time-domain
techniques in electromagnetism, as it
covers many applications [2], such as
antennas, optics, high-speed electronic
circuits, and semiconductors, etc.
Furthermore, the FDTD method provides a
wideband frequency response via a simple
Fourier transform from the obtained time
domain solutions. The primary advantage
of the FDTD method is that it is a
straightforward solution of the six-coupled
field components of Maxwell’s curl
equations. This method, known as Yee
algorithm [1], computes the field
components by discretizing the Maxwell’s
curl equations both in time and space, and
then solving the discretized equation in a
time marching sequence by alternatively

calculating the electric and magnetic fields
in the computational domain [1].
Recently, the FDTD method has also been
extended for solving the scalar Helmholtz
wave equation in source-free domains [3].
Unlike the conventional FDTD approach,
this new method, which is called the Wave
Equation FDTD (WE-FDTD), allows
computing any single field component
without the necessity of computing other
field components. Therefore, significant
savings in the computational time and the
memory storage can be achieved. In
addition, it has been shown that the WE-
FDTD method is both mathematically and
numerically equivalent to Yee’s algorithm
[3] in source free regions.
A major drawback of both the FDTD and
the WE-FDTD schemes is that very large
computational time and very large
computer memory storage are required for
analyzing large computational domains.
This makes parallelizing these schemes
necessary. In order to do this, the
computational domain is divided into

mailto:omar.ramadan@emu.edu.tr
mailto:oyku.akaydin@emu.edu.tr

subdomains, and each subdomain is
processed by one processor. Recently,
different techniques have been introduced
for the parallel implementation of the
conventional FDTD method [4, 5]. These
techniques are based on the single-
program-multiple-data (SPMD)
architecture. In [4], a one-dimensional
parallelism using the parallel virtual
machine (PVM) has been introduced. This
approach is based on the TCP/IP protocol
over the Ethernet for passing inter-
processor messages. In [5], a new parallel
FDTD algorithm based on the message-
passing interface (MPI) system has been
introduced. This approach is becoming
new international standard for parallel
programming and it is tending to replace
the other parallel protocols, such as the
PVM [6, 7].
In this paper, the MPI is used in the
parallel implementation of the WE-FDTD
algorithm. The two-dimensional
computational domain is divided into
subdomains along one direction by using
the one-dimensional topology introduced
in [4]. Numerical simulations have been
carried out using a line current at the center
and perpendicular to the domain. A line
current source is a source which radiates
equally in all directions. The test has been
performed on a network of PCs
interconnected with Ethernet.
The paper is organized as follows. In
section 2, the formulations of both the
FDTD and the WE-FDTD algorithms are
presented. In section 3, the proposed
parallelization techniques are described.
Section 4 includes the results of several
numerical tests which evaluate the
effectiveness of the proposed method.
Finally, a summary and conclusions are
included in section 5.

2. Formulation
In a linear, homogeneous, isotropic
medium, the Maxwell equations can be
written as

0 t
∂

∇ × = ε
∂
EH (1)

0 t
HE ∂

∇ × = −µ
∂

 (2)

where E and H are, respectively, the
electric and the magnetic field vectors, 0ε is
the electric permittivity, and 0µ is magnetic
permeability of the medium. In the
rectangular coordinate system, the above
coupled curl equations can be decomposed
into a system of six scalar differential
equations in terms of the Ex, Ey, Ez, Hx, Hy,
and Hz field components. For the sake of
simplicity, consider the Maxwell's
equations for the two dimensional
transverse electromagnetic (TM) problem
where only the field components Ez, Hx,
and Hy exist. In this case, (1)-(2) give the
following:

yz x

0

HE 1 H
t x y

∂ ∂ ∂
= − ∂ ε ∂ ∂ 

(3)

x z

0

H 1 E
t y

∂ ∂
= −

∂ µ ∂
 (4)

and

y z

0

H 1 E
t x

∂ ∂
=

∂ µ ∂
 (5)

By using the Yee's algorithm [1], the
above equations can be discretized in space
and time as

n 1/ 2 n 1/1
yi, j yi 1, jn 1 n t

zi, j zi, j n 1/ 2 n 1/ 2
0 xi, j xi, j 1

H H
E E

H H

+ +
−+

+ +
−

 −∆  = +
 ε ∆ − + 

(6)

()n 1/ 2 n 1/ 2 n 1 n 1t
xi, j xi, j zi, j 1 zi, j

0

H H E E+ − + +
+

∆
= − −

µ ∆
 (7)

()n 1/ 2 n 1/ 2 n 1 n 1t
yi, j yi, j zi 1, j zi, j

0

H H E E+ − + +
+

∆
= + −

µ ∆
 (8)

where t∆ is the time step size and
x y∆ = ∆ = ∆ is the space cell size in the x, and

y directions, respectively.

To reduce the computational requirements
of the conventional FDTD algorithm
described above, (3)-(5) can be combined
in a source free two-dimensional domain
[3] as

2 2 2
z z z

2 2 2 2

1 E E E
c t x y

∂ ∂ ∂
= +

∂ ∂ ∂
 (9)

where c is the speed of light defined as
0 0c 1/= ε µ . Equation (9) forms the basics of

the WE-FDTD algorithm, which can be
discretized as

n n n2 2
zi 1, j zi 1, j zi, j 1n 1 n n 1 t

zi, j zi, j zi, j 2 n n
zi, j 1 zi, j

E E EcE 2E E
E 4E

+ − ++ −

−

 + +∆  = − +
 ∆ + − 

(10)

To truncate open region problems,
Absorbing Boundary Conditions (ABCs)
are needed. In this paper, Mur's first order
ABC is used [8]. As an example, the Ez
field along the x=0 boundary can be
computed as

()n 1 n n 1 nt
z 0, j z1, j z1, j z0, j

t

cE E E E
c

+ +∆ − ∆
= + −

∆ + ∆
 (11)

3. Parallelizing the FDTD and the
WE-FDTD Algorithms
 In order to parallelize the above FDTD
and the WE-FDTD algorithms, the
computational domain is divided into
subdomains. Using the one-dimensional
topology introduced in [4], the
computational domain is divided into
subdomains along the x-direction, where
each subdomain is assigned to one
processor, as shown in Fig. 1. At the
computational domain boundaries, i.e.,
X=0, X=Xn, Y=0 and Y=Yn boundaries,
the fields are computed by using ABCs [8].
At the internal cells of the subdomains, the
fields are computed directly from (6)-(8),
in the case of the FDTD method, or from
(10), in the case of the WE-FDTD method.
However, to calculate the fields at the
subdomain boundaries, data from the
neighboring subdomains are needed. In
this paper, the MPI system is used to
exchange data between processors. A
complete detail of the usage of the MPI is
provided in [6, 7].

Fig. 1. Computational domain partitioning

Figure 2 shows the data to be exchanged
between neighboring subdomains in order
to parallelize the conventional FDTD
method. As can be seen from Fig. 2, to
calculate the Ez using (6) at the cells
located at the plane on the left boundary of
the subdomain, the values of the Hy field
from the left subdomain are needed.
Similarly, this subdomain must send the
values of Hy at cells located at the plane on
the right boundary of the subdomain to
right subdomain. In the same manner, to
calculate Hy using (8) at the cells located at
the plane on the right boundary of the
subdomain, the values of the Ez in the right
subdomain are needed. Also, this
subdomain should send the values of the Ez
at the cells located at the plane on the left
boundary of the subdomain to the left
subdomain.

Fig. 2. Communications at the boundary of
a subdomain for the one-dimensional
topology of the conventional FDTD
method

Y

X

Receive Ez Receive Hy

Send Hy Send Ez

Y=0

Y=Yn

X=Xn

X

Subspace Internal Cells
Y

Subspace Boundary Cells

P1 PN P0

X=0

Fig. 3. Communications at the boundaries
of a subdomain for the one-dimensional
topology of the WE-FDTD method

Based on Fig. 2, the parallel
implementation of the FDTD algorithm
described in (6)-(8) can be summarized as:

1. MPI initialization.
2. Reading the simulation parameters.
3. Divide the computational domain into

subdomains.
4. At each time step:
 4.1 Calculate the Hy field
component.
 4.2 Communicate the Hy field
component at the subdomain boundaries.

 4.3 Calculate the Ez field
component.
 4.4 Communicate the Ez field
component at the subdomain boundaries.
5. Apply the ABCs at the domain

boundaries.
6. MPI finalization.

Similarly, Fig. 3 shows the data to be
exchanged between neighbouring
subdomains to implement the WE-FDTD
algorithm described in (10). In order to
calculate the Ez field component at the
cells located at the left and the right planes
of the subdomain, the values of Ez from the
left and the right subdomains are needed.
Similarly, this subdomain must send the
values of the Ez at the left and the right
planes to the left and the right subdomains.
Therefore, the steps for the parallel
implementation of the WE-FDTD
algorithm described in (10) can be
summarized as:
1. MPI initialization.

2. Reading the simulation parameters.

3. Divide the computational domain into
subdomains.

4. At each time step:
4.1 Calculate the Ez field component.

 4.2 Communicate the Ez field
component at the subdomain boundaries.
 4.3 Apply the ABCs at the domain
boundaries.
5. MPI finalization.

4. Numerical Study
To demonstrate the performance of the
proposed parallel algorithms, numerical
simulations were carried out for the
Transverse Magnetic (TM) case [8]. In this
test, a line current source is used to radiate
electromagnetic waves at the center of a
two-dimensional domain, as shown in Fig.
4 [8]. The space cell size in the x and y
directions was chosen as ∆ = ∆x = ∆y =
0.015m [8]. The time step was 25ps, and
the simulation time was taken to be 500
time steps.

Fig. 4. Computational domain for the
numerical study

The excitation used was a Gaussian pulse
defined as

0 ,0

1 1 2 2
n
z 3 3

(15 sin() 6 sin()
E sin());

0 ;

α ω ω ξ − ω ω ξ
= +ω ω ξ ξ ≤ τ
 ξ ≤ τ

(12)

where 1

320
α = , 910−τ = s, ntξ = , and

m
2 m ,m 1,2,3π

ω = =
τ

. The above test was

carried out for different number of
processors and for different computational

Y

X

Receive Ez Receive Ez

Send Ez Send Ez

X

Y

Source point Boundary

domain size. The simulation was carried
out on a network of Celeron™ 333 MHz
PCs running with 64 MB of memory each.
The PCs were interconnected with a 10
Mbit/s Ethernet. Tables 1 and 2 show the
simulation time (in seconds) for the
parallel FDTD and the parallel WE-FDTD
methods obtained by using one, three, and
five PCs for three different domain sizes.

Table 1. Simulation time (in seconds) for
the parallel FDTD algorithm

Number of PCs Grid size
(cells) 1 PC 3 PCs 5 PCs
150x50 8.09 4.40 3.55
300x100 32.51 14.25 9.77
600x200 129.08 49.06 31.70

Table 2. Simulation time (in seconds) for
the parallel WE-FDTD algorithm

Number of PCs Grid size
(cells) 1 PC 3 PCs 5 PCs
150x50 3.34 2.57 3.58
300x100 13.86 7.61 5.89
600x200 55.72 22.69 16.28

To measure the performance of the parallel
algorithms, we computed the speedup,
which is defined as

S(P) T(1) / T(P) = (13)

where T(1) is the time needed to solve the
problem using one PC and T(P) is the time
needed to solve the same problem using P
PCs.

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4 5 6

Number of Processors

S
pe

ed
up

Ideal
150X50
300X100
600X200

Fig. 5. Speed-up using the parallel FDTD
algorithm

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4 5 6

Number of Processors

S
pe

ed
up

Ideal
150X50
300X100
600X200

Fig. 6. Speed-up using the parallel WE-
FDTD algorithm

Figures 5 and 6 show the speedup obtained
with three and five PCs. For comparison
purpose, the ideal speedup is also shown.
From Figs. 5 and 6, it can be observed that
as the computational domain size
increases, the efficiency of the parallel
FDTD and the WE-FDTD algorithms
increases. On the other hand, when
partitioning the computational domains
over many processors, especially for the
small domains, the efficiency of the
parallelization will reach a limitation. This
is because the computational time needed
to update the fields will be reduced to point
where it has the same order as the
communication time needed to perform the
data exchange between the processors.
This explains the abnormal efficiency
obtained with the parallel WE-FDTD
algorithm for solving the 50x150 domain
using five processors, as shown in Fig. 6.
This abnormal phenomenon is not
observed for the parallel FDTD algorithm.
This is due to the fact that the
computational time of the WE-FDTD
method is much less than that of the FDTD
algorithm as can be seen clearly from
Tables 1 and 2.

5. Conclusion
In this paper, two parallel algorithms,
based on the conventional FDTD and the
new WE-FDTD algorithms have been
implemented for solving the Maxwell's
curl equations using the MPI system. The
performance of these parallel algorithms
has been studied by using a line current
source radiating in a two-dimensional

domain. It has been observed that the
parallel implementations of these two
methods provide a significant reduction in
the simulation time as compared with the
sequential solution. On the other hand,
when partitioning the computational
domains over many processors, especially
for the small domains, the efficiency of the
parallelization will reach a limitation. This
is because of the computation time
required to update the fields will be
reduced to a point where it has the same
order as the communication time needed to
exchange the fields between the
processors. Finally, it has been observed
that for large computational domains, the
parallel WE-FDTD algorithm provides
much more saving in the computational
time compared with the parallel FDTD
algorithm. The scheme can be generalized
to two dimensional mesh of processors in
the same manner. Finally, the new parallel
algorithm can be improved by using better
boundary conditions to truncate the
computational domains, such as the
Perfectly Matched Layer (PML) [9, 10].

References:
[1] K. S. Yee, “Numerical solution of
initial boundary value problems involving
Maxwell's equations in isotropic media,’’
IEEE Transaction on Antennas and
Propagation, Vol. 14, 1966, pp. 302-307.
[2] A. Taflove, Computational
Electrodynamics: The Finite-Difference
Time-Domain Method, Artech House,
Boston, London, 1995.

[3] P. H. Aoyagi, J.-F. Lee and R. Mittra,
“A hybrid Yee algorithm/scalar-wave
quation approach,’’ IEEE Transaction
Microwave Theory and Techniques, Vol.
41, 1993, pp. 1593-1600.
[4] V. Varadarajan, and R. Mittra, “Finite-
difference time domain (FDTD), analysis
using distributed computing,” IEEE
Microwave and Guided Wave Letters, Vol.
4, No. 5, 1994, pp. 144-145.
[5] C. Guiffaut and K. Mahdjoubi, “A
parallel FDTD algorithm using the MPI
library,” IEEE Antennas and Propagation
Magazine, Vol. 43, No. 2, 2001, pp. 94-
103.
[6] W. Gropp, E. Lusk, and A. Skjellum,
Using MPI: Potable parallel Programming
with the Message-Passing Interface, MIT
Press, Cambridge, Mass., 1994.
[7] P. S. Pacheco, Parallel Programming
with MPI, Morgan Kaufmann Publishers,
San Francisco, Calif., 1997.
[8] P. A. Tirkas, C. A. Balanis and R. A.
Renaut, “Higher order absorbing boundary
conditions for the finite-difference time-
domain method,” IEEE Transaction on
Antennas and Propagation, Vol 40, 1992,
 pp. 1215-1222.
[9] J. P. Berenger, “A perfectly matched
layer for the absorption of electromagnetic
waves,” Journal of Computational Physics,
Vol. 114, 1994, pp. 185-200.
[10] O. Ramadan, and A.Y. Oztoprak, “An
efficient implementation of the PML for
truncating FDTD domains,” Microwave
and Optical Technology Letters, Vol. 36,
No. 1, 2003, pp. 55-60.

