
A Framework of Trust and Authorization for
ECommerce Service.

George S Oreku

1Department of Computer Science and Engineering
Harbin Institute of Technology, Foreign Student Building

A13 Room 601, P.O.Box 773, 92 Xi Dazhi Street,
Nangang District, Harbin 150001 China

gsoreku@yahoo.com

Jianzhong Li
Harbin Institute of Technology, Heilongjiang Province, China

lijzh@hit.edu.cn

Fredrick J. Mtenzi
Dublin Institute of Technology, Dublin 8, Ireland

fred.mtenzi@dit.ie

Abstract
Changes in consumer behavior, advances in broadband technology, the industry’s maturity and
entropy are converging to usher in a new era of eCommerce security. In particular, traditional
access control a.k.a authorization for eCommerce systems is not flexible and efficient enough to
combat these challenges i.e. more interactive user experience delivered through rich internet
applications e.g. supply chain, disaggregated service that provide only a portion of the
ecommerce experience and so on and public remains concerned about the security of online
transactions.[14]. Framework proposed provides trust transformation rules which have
associated conditions for authorizations to control access.
Our proposed framework aims to build the architecture for trust and authorization within an
eCommerce service system. The architecture will help to build a secure and privacy protection
eCommerce service system. The underlying framework will not only inform researchers of a
better design for secure eCommerce service, but also assist eCommerce systems developers in
the understanding of intricate constructions within trust and authorization. This includes
protecting the privacy of transactions records of customers in terms of information privacy and
access.

Key words: Authorization, Access control logic, eCommerce services, Intermediates
General terms: Security, Design.

1. Introduction
Trusted computing means predictability the
systems should operate as the designer or
manufacturers, software providers, and
users intended which is essentials for both
security and privacy. In a proposed
framework trust is all about access control;
you preserve trust by denying access to
operations that might violet it. Congruent
with formal security models, our
framework applies intermediate as man in
the middle analysis and seeks to deny the
snooper access to eCommerce system

operations by taking steps to achieve
Confidentiality , integrity and
authorizations .Confidentiality means
snoopers can’t observe the intended
operations or at least some critical aspects
of it. Integrity means that they can’t perhaps
even blindly, alter the intended operation
without being detected. Finally,
authorizations means snoopers can’t
successfully represent themselves as
legitimate parties to the peripheral
communication because of authorizations
checks. In this frame work, successful

attacks against trusted computing arise
because confidentiality, integrity or
authorizations fails. This is true even with
so called “social engineering” or “insider”
attacks because legitimate user can blame
an important specification or security policy
about who has authorization.
The proposed architecture for trust and
authorizations for eCommerce services
system is a practical architecture presented
figure (1) and new solution for access
control within eCommerce service systems
since presently there is no such solution that
focuses on the authorization and trust
simultaneously and sequentially for the
access control within eCommerce service
system as one of the applications in real-
world scenario. Our proposed frame work
suggests that it’s efficient to put a versatile
access control system into every
intermediate.
Our approach of Trust Access Control
intermediates for Authorization to
eCommerce service application is an idea
that has been explored in other settings
namely previously authorization frame work
based ABLP logic. Most closely related in
this regard is proof carrying authorizations
(PCA)[15,16] a framework for specifying
and enforcing webpage access policies
(though the logic used there is not ABLP,
but an application specific
variant).However that system comprise a
general framework for webpage access
control so expressible policies are
potentially more complicated than approach
we propose for eCommerce service. Other
authorizations system founded in ABLP
logic include that used in the Taos operating
system [17], essentially a direct
implementations of a subset of ABLP logic.
Also Wallah et al have formalized the
“security- passing style” of the java stack
inspections mechanism in a subset of ABLP
[18,7] which has served as a foundation for
the SAFKASI programming language-based
security architecture[19] The SDSI/SPKI
architecture [20,21] is another authorization
system for distributed communication. Their
security model is similar to ABLP, but is
based on a system of local names and
emphasizes delegation. Delegation logic

[22.] and RT [23] are more recently
proposed, logically well-founded
authorization frameworks, based on data log.
No formulations of SDSI/SPKI, delegation
logic, or RT currently comprise trust access
control intermediates for authorizations In
[24], a web services authorization system is
defined, allowing specification of security
policies in temporal logic, which are
translated into reference monitors embedded
in applications software. However, their
approach is focused on complex policies for
usage patterns similar to [25], and they
make no online/offline checking phase
distinction.
We establish a formal setting for our
eCommerce service authorization
framework in the Calculus of Access
Control [9]. Proposed architecture for
authorizations on eCommerce environment
involves six intermediates (Card holder,
Issuer, Merchants, Acquirer, Payment
gateway, Certificates Authority) as shown
in figure 1. Figure 1 takes our framework
and shows how we can implement access
control for any intermediate. The use of
access control logic for framework
specification is fundamental to our proposal,
and we argue that this approach promotes
unambiguous specification languages,
reliability, and verifiability. The
contribution of this paper is to introduce the
trust intermediates framework for
authorizations (access control) in
eCommerce service environments, and
formalize the framework conditions within
logical perspective. By characterizing the
intermediates within authorization logic, we
also propose rigorous logical foundation for
authorization in eCommerce service
environments.

2. Access Control Logic
Our proposed architecture consists of six
participants: the ways users gain their
security credentials; and how these
credentials are used to access eCommerce
data. Three types of digital certificates are
used: identity certificates for authentication;
attribute certificates for authorization; and
access-rule certificates for propagation of

access control. Once a user is identified and
authorized, subsequent access decisions are
based on trust transformations rules which
convert complicated access pattern to
simpler ones. In our implementation
approach we propose the use of digital
certificates, SSL, SET to be used in
conjunction with access control
intermediates. We place an access control
on every intermediate using simple logic
argument and we argue that if can be
successfully and securely managed can be
used to control access in eCommerce
applications.
We will model the intermediates using a
logical language ABLP [3, 11, 2]. Logic
concept allows us to reason about what is to
be true given the state of eCommerce
environment and a set of axioms. It has been
used to describe authentication and
authorization in distributed systems such as
Taos [3] and appears to be a good match for
describing access control within
eCommerce transactions. We use a subset of
the full [11] logic, which we will describe in
sections 3. Readers who want a full
description and a more formal development
of the logic should see [3, 2] or appendix.
The logic is based on a few simple concepts:
principals, conjunctions of principals,
targets, statements, quotation, and authority.

Example 1: Trust and Authorization
Procedure within eCommerce Service
System
Consider there are cardholder, Merchant,
Issuer, Acquirer, and a number of clients,
who will first register with an eCommerce
service system. Suppose the Merchant
wants to access an electronic eCommerce
record within the eCommerce service
system.
(1) Merchant will send an access request by

access request agent.
(2) The access request agent then sends the

access request token to the
administrative agent.

(3) The administrative agent then refers to
the authorization trusted intermediate of
the system and then sends the
preliminary authorization reference for
the Merchant.

(4) The Merchant will be authenticated
based on the biometric information and
the digital PIN. If authentication is
successful, the Merchant will be granted
a formal authorization reference.

(5) By the formal authorization reference,
the Merchant will be verified whether
he has the privilege of reading/writing
into the eCommerce service system.

(6) By the role-and-privilege based
authorization intermediates, if the
Merchant’s status satisfies the
requirements of the syntax principals, he
will granted to access to the targeted
client electronic eCommerce record i.e.
bank accounts

ISP2

1 5

2

BUSINESS-TO-
CONSUMER

Internet

3
Request 2

1

2
Authentication

Acknowledgement

2
3

Vendor B

5 4 1

Merchants

2 3

c
5 4 1

Vendor A

4

1

2
3

1
2

3

$

BANK

Issuers /Acquirer

2

3 4 5

3

Customer /
Card holder

3

2

1
1
2
3

4
5

⎧
⎪
⎨

 Certificate

Firewalls and
 Proxy Servers

⎧
⎪
⎨
⎪
⎩

 SET
 SSLPayment

gateway
⎩
⎪

 Certificate
Authority

 Cryptography

Merchants

Orders

BUSINESS -TO-
BUSINESS
2

Figure 1. Architecture for Trust and Authorization within
eCommerce service system

3. Syntax of Principals and

Formulae
The syntax of ABLP principals, constituting
identities in distributed communications,
and formulae, representing statements and
beliefs, is defined in equations. 1. Regarding
principles, we will mostly be concerned
with atomic principles A and principles P Q ,
pronounced “P quoting Q”. Statements P
says s generally represent that an assertion s
has originated with a principal P. The
relation P Q,⇒ pronounced “P speaks for Q”
denotes that statements uttered by P can
also be attributed to Q; this is clarified in
Section 3.2, which describes the derivation
rules for the authorizations.

A, B, C,… ∈ Atom atomic principals

P ::= A P P P P P P∧ ∨ ∨
principals

p ∈ Prop primitive propositions
 ::= s p s s s p p p says s¬ ∧ ⇒

formulae

Equations 1: ABLP Syntax

3.1 Abbreviations and Notational

Conventions
We assume that all principals can perform
digital signatures. We let K range over
public keys as principals, and always write

AK to denote the public keys of A, and
-1 AK the matching private key. The formula

K says s represents the formula s encrypted
under K. A number of useful abbreviations
are defined in Equations 2.and appendix
along with macros for standard logical
connectives, these include A as R, denoting
the principal obtained when A assumes the
role R, and A controls s, denoting that A is
directly authorized for s. for a complete
explanation of these abbreviations see [2]

1 2 1 2s s , (s s) ∨ ¬ ¬ ∧ ¬ 

1 2 1 1 2 s s s (s s)⊃ ¬ ∨ ∧

()A as R A R A controls s A says S S⊃

Equations 2: ABLP Formulae Abbreviations

3.2 Proof Theory
We write s� to denote that a formulae s is
logically derivable, on the basis of the
axioms and inference rules of the theory. A
selection of the ABLP inference rules,
connecting the calculus of principals to the
underlying propositional logic [3], is
adapted to this approach specifically those
which will be relevant to our presentation.
We note that the rule names given are of our
own devise, for easy reference in the
remaining presentation. Also for
convenience, we write s s′� iff s′ is derivable
given assumption s. Here is an example
showing how the logic can be used to model
and reason about statements signed by
digital signatures associated with particular
principals.

Example: 2. We trust that private keys
remain indeed private, so that messages
signed with JK carry the authority of J:

JK J⇒
Thus, if any statement s is ever signed with
Js private key:

JK says s
By rule Speaks for:

J J(K J) (K says s J says s)⇒ ⊃ ⊃
hence by two applications of valid argument

form

s s s

s

′ ′ ⊃� �

�
 we have:

J says s
That is, any signed message can be taken as
a statement of the owner of the signature
key.

4. Mapping Trust Authorizations

to ABLP
Authorizations refer to enforcing access
control to ensure confidentiality and
integrity. One of the key issues in e-
business is legitimate use. Legitimate use
has two components: Identifications and
authentication. Traditional access control
mechanisms make authorization decisions
based on the identity of the requester.
However, in decentralized or multi centric
environments i.e. eCommerce environment,
the resource owner and the requester often
are unknown to one another, and access
control based on identity may be ineffective.
Trust authorization proposed is an approach
to distributed access control and
authorization, in which access control
decisions are based on ABLP made by
multiple principals.

4.1 Principals
In eCommerce service authorizations
certificates are digitally signed with a
private key, and then shipped to the virtual
machine where it will run. If

Signer
K is the

public key of Signer, the public-key
infrastructure can generate a proof formula
(3) of the statement

Signer
K Signer.⇒ (1)

Signer’s digital signature on the code Code
is interpreted as

Signer
K says Code⇒

Signer
K

 (2)
Using formula (1) and (26) appendix, this
implies that Code ⇒ Signer (3)
When Code is invoked, it generates an
entity Intermediate.
The authorizations principals assumes that
the entity speaks for the code it is accessing:
Entity Code ⇒ (4)
The transitivity of⇒ (which can be derived
from formula (25) appendix) then implies
Entity Signer.⇒ (5)
We define Φ to be the set of all such
valid Entity Signer⇒ statements. We call
Φ the Entity credentials.
Note also that code can be signed by more
than one principal. In this case, the code and
its entity intermediates speak for all of the
signers. To simplify the discussion, all of
our examples will use single signers, but the
theory supports multiple signers without any
extra difficulty.

4.2 Targets
Recall that the resources we wish to protect
are called targets. For each target, we create
a dummy principal whose name is identical
to that of the target. These dummy
principals do not make any statements
themselves, but various principals may
speak for them. For each target T, the
statement Ok(T) means that access to T
should be allowed in the present context.
The axiom:

T Targets, (T Ok(T)) Ok(T)∀ ∈ ⊃says (6)
says that T can allow access to itself.

Many targets are defined in relation to
services offered by eCommerce service
underlying the Secures electronic
Transactions (SET). From the eCommerce’s
point of view, the SET is a single process
and all system calls coming from the SET
are performed under the authority of the
SET’s principal (often the user running the
SET). The SET’s responsibility, then, is to
allow authorizations only when there is
justification for issuing that system call
under the SET’s authority. Our proposal
will support this intuition by requiring the

SET to prove in ABLP logic that each
request has been authorized by a suitable
principal.

4.3 Access Control Lists
Access control lists (ACLs) are fundamental
to access control systems on eCommerce,
providing an explicit association of
principals with the privileges for which
they're authorized. Setting up a new access
controls on intermediates is also a firmware
resource itself and thus has access controls
on it. In the original presentation of ABLP
[2], ACLs are conjunctions of statements of
the form P controls s, where s is some
privilege. We adapt this approach, letting A
range over ACLs. Furthermore, we
designate a subset of Prop as the set of
privileges in eCommerce environment,
letting priv range over this set. Hence,
ACLs are conjunctions of statements P
controls priv. Our justification for
designating atomic propositions as
privileges, and our use thereof, is discussed
in Section 5 and proofs for more detail.

4.5 Authorization Contexts and
 Decisions
E-commerce services authorization is based
on requests for the service made by invokers.
Here we describe our proposed structure for
these requests, and for the authorization
decision predicated on them. A request is an
ABLP assertion s uttered by the invoker of
an eCommerce service, which the invoker
intends to be used in architecture presented
in figure 1 for authorization of its use. In
addition to the request, a web service may
possess other facts and beliefs, e.g. ACLs
and role certifications that affect the
authorization judgment; we assume that
these facts and beliefs are expressed as
ABLP formulae. The conjunction of these
components constitutes an authorization
context; authorization for an eCommerce
service is granted upon a particular
invocation if the context of the invocation
allows the privilege required for use of the
eCommerce service to be derived in the
ABLP proof theory.

Example: 3 Suppose an eCommerce service
eCS requires priv to be accessed, and a
trusted principal D makes an access request:

A D controls A ACL defined by eCS′∧priv
D priv D priv priv

 priv

s says says

s

⊃� �

�

Since priv is provable in this context,
authorization succeeds.

As mentioned in Section 3, we posit a set of
atomic formulae priv, each of which
represent the privilege required to access a
particular eCommerce service.
Authorization for priv in a context s is
effected by checking validity of s priv� .
Thus, our method is inspired by access
control mechanisms such as stack inspection
[4], which are specialized for program
procedure calls, rather than
challenge/response systems such as [5],
which are adapted to human usage (i.e. web
browsing) patterns. Our justification for this
is that eCommerce service invocation bears
a strong similarity to RPC/RMI, as observed
in [9, 12], with chains of web service
invocations resembling call stacks. Here is a
brief example illustrating the concepts of
the framework described thus far:

Example: 4 Suppose some eCommerce
service eCS requires the privilege priv to be
used, and the web service ACL A grants this
privilege to a principal D, i.e.
A A D′≡ ∧ controls priv for some A′ .
Suppose also that D invokes eCS on its own
behalf, making the request D says priv. Thus,
the authorization context is D says A∧priv .
Clearly, D says A ∧priv � Priv , since the
context implies both � D says priv
and � D controls priv, which implies � Priv

by valid argument form

s s s

s

′ ′ ⊃� �

�

Naturally, it is desirable for authorization
judgments to be decidable. Although ABLP
logic is undecidable in general, various
presentations have described non-trivial,
decidable access control mechanisms [7, 11].

Condition 1. Let s be an authorization
context; then validity of s � Priv is
decidable.

This condition requires any verifications
implementation to provide a decision
procedure for validity of authorization
judgments, and also implicitly requires the
form of authorization contexts to be well-
defined. As with all the framework
conditions, the formal statement of the
condition allows correctness of a decision
procedure to be provable, i.e.
implementations can (and should) be
accompanied with proofs of their adherence
to framework conditions.
We assert that an authorization for trusted
contexts is decidable (and efficient)
satisfying conditions 1:
Lemma 1.let’s be an extrapolated context;
then for all priv, validity of s ├ priv is
decidable
Theorem 1 (Soundness) If the decision
procedure returns true when invoked in
entity F, then there exists a proof in ABLP
logic that .FE Ok(T)⊃
Proof: By assumption, there is a path
connections 1 2 k(A, v , v , ...,v , B) in the speaks-
for graph of EF. In order for this path
connections to exist, we know that the
statements 1v ,A ⇒ +1v v i i⇒ for all i ∈

1, 1 ,k - and v k B⇒ are all members of FE .
Since ⇒ is transitive, this implies that

FE A B.⊃ ⇒ where FE is the entity
environment

Proof of Theorem 1: There are two cases
in which the decision procedure can return
true.

1. The decision procedure returns true

while it is iterating over the Class 1
statements (section 5.1). This occurs
when the decision procedure finds the
statement FOk(T) E∈ . In this case, Ok(T)
follows trivially from FE .

2. The decision procedure returns true
while it is iterating over the Class 2

statements section 5.1. In this case we know
that the decision procedure found a Class 2
statement section 5.1 of the
form

1 2
P P ... kP Ok(T).says where for all

1,i k∈ there is path connections from Pi to
T in the speaks-for of FE . It follows from
Lemma 1 that for all 1, , ii k P T.∈ ⇒ It

follows that (
F

E T T ... T Ok(T)) ⊃ says (7)
Applying formula (6) repeatedly, we can
directly derive FE Ok(T)⊃ .

4.6 Trust Transformations
A trust transformation is a function from
ABLP formulae to ABLP formulae. Any
trust transformation's domain is formulae in
extrapolated form, which take into account
all components of access control, down to
every detail verified during offline checking.
The range of any trust transformation is
formulae in trusted form, which are the
“watered down” formulae that exclude
restrictions the system takes for granted
during online checking.

Example:5.Suppose that an eCommerce
service eCS requires priv to be accessed,
and: Any access request must be
accompanied by a signed certificate
authenticating the request, ACL A defined
by eCS comprises entries PP K()∧ controls
priv, For the sake of efficiency, signed
certificates are not actively included
(suppressed) in online authorization.

P says s K says s AP∧ ∧ = P says s A∧

priv(P K) controls AB∧ ∧ =

privP controls A∧

The distinguishing characteristic of our
proposal is the separation of online and
offline checking phases, where in the online
phase certain elements of authorization are
taken for granted, or trusted to hold. This
yields a simpler authorization decision,
which can be verified more rigorously
during the offline phase. However, with
security at stake, vague accounts of the
relation between these phases does not

suffice, rather we desire a formal
relationship, so that offline verification of
online authorization is meaningful. We
embody this notion in the trust
transformation, which specifies what
elements of online authorization are to be
taken for granted, by specifying how to
transform untrusted requests into trusted
ones. Thus, we make the following
simplifications for more efficient online
checking

1. Individual are trusted to make valid

claims about role members
2. Authenticity of request is assumed for

any intermediary; for example if
request 1 2R says R says s is received, and
then we trust that 1R truly said

2" R says s" and 2R truly said “s”
In practice these assumptions are too simple,
some justifications for that claim should be
made , for example key signature on the
“top level” of the request so that instead of

1R says 2R says s the signed request
1RK says

2R says s would be communicated
Lemma 2.Suppose s is a trusted context,
s � Priv is a valid, and authorizations (s)
returns s′ ; then s′ � Priv is valid

The trust transformation mapping rigorously
defines the relation between extrapolated
and trusted forms. Since notions of trust can
vary depending on the system, we specify
the type and necessary preconditions of trust
transformations, but the definition of the
function itself is left up to a particular
service requested. For any extrapolated
formula s, we denote its trust transformation
as s . Any trust implementation must
define extrapolated and trusted
authorization forms, and the trust
transformation between them, with the
requirement that it be a total function on the
set of extrapolated statements. Also, we
specify that the authorization contexts
mentioned in Condition 1 are in trusted
form.

Example 6: Suppose access control for an
eCommerce service eCS is based on

requests made in both signed and unsigned
form, so that all requests are of the form:
B says s K says sB∧
Suppose further that in the online
component, players are trusted to
communicate messages faithfully, and
signatures are not checked. All
authorization contexts include an ACL A,
which is left unchanged by the trust
transformation. Thus, for all B and s, the
trust transformation is defined as:

B says s K says s A = B says s AB∧ ∧ ∧ . Note
that this transformation is total for the
extrapolated form of requests in this
example

5. Specifying Trust through

Authorizations
While online checking takes trust into
account, the purpose of offline checking is
to verify that this trust is warranted. As
Trust transformations injects trust into
Authorizations, Offline checking inverts the
trust transformations, to verify online trust
in the offline phase-that is, given a trust
request s, offline checking searches for an
extrapolated request of which s is the trust
transform. We call this all process
Verifications
First, as mentioned above, Authorizations
returns the extrapolated form of trusted
authorization contexts. Since the trust
transformation has been defined formally,
we can precisely characterize this condition
as follows:
Conditions 2.Let s be a trusted context; then
if Verifications (s) succeeds, verifications(s)

s′� such that s s′ =
Note that this condition allows a certain
degree of flexibility, in that authorization
must return a statement that is at least as
strong as an extrapolated form of the input,
not necessarily an extrapolated form per se.
Furthermore, we say an extrapolated form,
since it is possible that any given trust
transformation is many to-one. Significantly,
it is not even necessary that an extrapolated
form of an authorized statement be
authorized. However, since Authorizing
seeks to verify trust implicit in an online

check, we require that authorizing not only
return an extrapolated form of input
statements, but one that is also authorized
for the privilege in question; otherwise,
authorizations fails. This motivates the third
condition of our framework:
Condition 3. Let s be a trusted context and
priv be a privilege. If s � Priv holds, then so
does Verifications(s) priv� .
It is important to note that this condition
does not necessarily require theorem
proving on extrapolated forms, but rather
provability should follow by adherence to
this condition generally.

5.1 Checking Privileges
To make sure that the requested operation is
authorized. Check Privilege (T) returns true
if the statement Ok(T) can be derived
fromΦ , AeCE, and BF (the belief set of the
entity which called check Privilege). We
define eCE(F) to be the eCommerce
environment in which a given entity F is
running. Next, we can define

 ()F eCE(F) FE A B≡ Φ ∪ ∪ (8)

We call EF the environment of the entity F.
The goal of check Privilege (T) is to
determine, for the entity F invoking it,
whether .FE Ok(T)⊃
The decision procedure used by check
Privilege takes, as arguments, an
environment EF and a target T. The decision
procedure examines the statements in EF
and divides them into three classes.
• Class 1 statements have the form Ok(U),

where U is a target.
• Class 2 statements have the form

P Q,⇒ where P and Q are atomic
principals.

• Class 3 statements have the form

1 2 k
F F ... F Ok(U)says

where Fi is an atomic principal for
all 1i, k ≥ , and U is a target.

Theorem 2: (Termination) The decision
procedure always terminates.
Proof: The result follows directly from the
fact that EF has bounded cardinality. This

implies that each intermediate in the
eCommerce environment has a bounded
number of iterations; and the amount of
work done in each iteration is clearly
bounded.

5.2 Intermediate Authority
In any access control statement P controls
priv, it is not necessary for P to be atomic,
allowing a fine-grained approach to access
control. For example, if it is not desirable to
grant a role R direct access to priv, but only
on behalf of a principal D, the ACL can
specify R D controls priv , disallowing R
direct access to priv.

However, we're concerned with access
control decisions in the presence of multiple
intermediaries-that is, several intervening
nodes may transport an authorization
request from source to target. The above
scheme would require separate entries for
every possible chain of intermediaries; for
example, given statements:

1 2R says R says D says priv (9)

2 1R says R says D says priv (10)
authorization for both would require both of
the following statements to be present in the
relevant ACL:

1 2
R R D controls priv (11)

2 1
R R D controls priv (12)
Either that or it would require access
statements:

1
R D controls priv (13)

2
R D controls priv (14)

to be present, along with known relations
R R1 2⇒ and 2 1R R⇒ . The former solution
(9) is clearly cumbersome, unrealistically so
given the number of possible intermediaries
on the eCommerce architecture above in
figure 1. The later is better (10), but is
restrictive, requiring every intermediary to
adopt the same role as, or a more powerful
role than, its predecessor (although this
problem could be alleviated by adapting the
“speaks for regarding” relation proposed in

[6] as an extension to ABLP). Since the
only privilege at issue is priv, it is
intuitively sufficient for each intermediary
to have some sort of authorization for priv,
as in e.g. stack inspection [4].

However, unlike stack inspection,
eCommerce service intermediaries should
often not be granted direct access to
privileges-for example, an eCommerce
service should not be granted direct access
to withdraw cash from an individual's bank
account, but only on behalf of that
individual. To maintain this property, and to
overcome the drawbacks of the approaches
described in the previous paragraph, we
introduce the notion of an intermediator
authority. Intuitively, an intermediator
authority is the authority to carry an
authorization request for a particular
principal, but not the authority to make the
request itself. Formally:

R intermediator for priv

()RD D says ⊃ priv ()D says priv (15)
In the above example (15), access requires
the intermediator authorities’ 1R carries priv
for D and 2R carries priv for D, as well as
the direct authority D controls priv. In
general, intermediator authority allows a
fine-grained and flexible approach to
authorization in the context of eCommerce
services. We call conjunction of
intermediator authority statements
intermediator control lists (ICLs), which we
denote I in our proposal.

6. Conclusion and Future works.
On the theoretical front, we also plan to
embed our authorization framework within
a richer formalism, such as that proposed in
[10], allowing the semantics of
authorization to be expressed and verified in
a realistic threat model. In addition to stand
alone eCommerce services, authorization
for composite web services [8, 13] also
promises to be an interesting topic for future
work; access control in that setting presents
a number of unique issues for investigation.
We have used ABLP logic to establish a
formal setting for framework design, and

specified the conditions that any trust
intermediator authorizations implementation
must satisfy. The central ideas we have
presented are the separation of online and
offline authorization phases, the notion of a
trust transformation that establishes a
meaningful relation between these phases,
and a characterization for offline
verification of online checking.
However this paper presented a framework
for trust and authorization for eCommerce
services system. The proposed architecture
integrated the role-based and privilege-
based access control into the trust and
authentication services. This will better suit
to the eCommerce service system in terms
of identity management. The authors hope
that the proposed framework would help the
developing and administration of
eCommerce service systems in a secure,
efficient and flexible way. In the next step
of this research, we will design and
implement the authorization policy and the
role-and-privilege based authentication for
e-health service systems.
Our proposal has made some suggestions
which can be used for implementations in
general, including the use of role key
certifications and intermediator authority for
flexible authorization schemes in an open
eCommerce environment. We showed that
access control decision based on trust
intermediator corresponds to the
constructions of a proof in the logic and we
have presented an efficient decisions
procedure for generating these proof.

References:
[1] R.L. Rivest, A. Shamir, and L.A.

Adleman, method for obtaining digital
signatures and public-key cryptosystems.
Commun. ACM 21, 2 (Feb. 1978), 120–
126.

[2] B. Lampson, M. Abadi, M. Burrows, and
E. Wobber, Authentication in distributed
systems: Theory and practice. ACM
Transactions on Computer Systems 10, 4
(Nov. 1992), 265–310.

[3] M. Abadi, M. Burrows, B. Lampson, And
G. D. Plotkin, A calculus for access
control in distributed systems. ACM

Transactions on Programming Languages
and Systems 15, 4 (Sept. 1993), 706–734.

[4] D. S. Wallach and E. W. Felten.
Understanding java stack inspection. In
Proceedings of 1998 IEEE Symposium on
Security and Privacy, Oakland, CA, May
1998.

[5] L. Bauer, A. W. Appel, and E. W. Felten.
Mechanisms for secure modular
programming in java.Technical Report
TR-603-99, Princeton
University,Computer Science Department,
July 1999.

[6] C. Ellison, B. Frantz, B. Lampson, R.
Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. RFC 2693, Sept. 1999.

[7] D. S. Wallach, A. W. Appel, and E. W.
Felten. SAFKASI: a security mechanism
for language-based systems. ACM Trans.
Softw. Eng. Methodol.,9(4):341-378, 2000.

[8] V. Christophides, R. Hull, G.
Karvounarakis, A. Kumar, G. Tong, and
M. Xiong. Beyond discrete e-services:
Composing session-oriented services in
telecommunications. In Proceedings of
the Workshop on Technologies for E-
Services (TES), Rome, Italy,2001.

[9] A. D. Gordon and R. Pucella. Validating a
web service security abstraction by typing.
In Proceedings of the 2002 ACM
workshop on XML security, pages
18_29.ACM Press, 2002.

[10] A. Gordon, K. Bhargavan, C. Fournet,
and R. Pucella. Tulufale: A security tool
for web services. In Springer, editor,
Formal Methods for Components and
Objects, LNCS, 2003.

[11] C.Skalka and X.Sean Wang ,Tust But
Veryfy: Authorizations for Web Service:
ACM Workshop on Secure Web Services,
October 29, 2004, Fairfax VA,USA.

[12] K. Bhargavan, C. Fournet, and A. D.
Gordon. A semantics for web services
authentication. In Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on
Principles of programming languages,
pages 198-209. ACM Press, 2004.

[13] R. Hull and J. Su. Tools for design of
composite web services. In ACM
SIGMOD, pages 958-961, 2004.

[14] Security Breaches Survey Technical
Report (URN 06/803).This is available
from 25 April 2006 and can be
downloaded from www.security-
survey.gov.uk

[15] A. W. Appel and E. W. Felten. Proof-
carrying authentication. In G. Tsudik,

editor,Proceedings of the 6th Conference
on Computer and Communications
Security, Singapore, Nov. 1999. ACM
Press

[16] L. Bauer. Access Control for the Web via
Proof-carrying Authorization. PhD thesis,
Princeton University, 2003.

[17] E. Wobber, M. Abadi, M. Burrows, and B.
Lampson. Authentication in the Taos
operating system.Technical Report 117,
DEC Systems Research Center, 130
Lytton Avenue, Palo Alto, Ca 94301,
December1993.

[18] D. S. Wallach. A New Approach to
Mobile CodeSecurity. PhD thesis,
Princeton University, 1999.

[19] D. S. Wallach, A. W. Appel, and E. W.
Felten.SAFKASI: a security mechanism
for language-based systems. ACM Trans.
Softw. Eng. Methodol.9(4):341_378,
2000.

[20] C. Ellison, B. Frantz, B. Lampson, R.
Rivest, B. Thomas, and T. Ylonen. SPKI
certi_cate theory. RFC 2693, Sept. 1999

[21] R. Rivest and B. Lampson. SDSI _ a
simple distributed security infrastructure,
1996.

[22] N. Li, B. N. Grosof, and J. Feigenbaum.
Delegation Logic: A logic-based approach
to distributed authorization. ACM
Transaction on Information and System
Security (TISSEC), Feb. 2003. To appear

[23] N. Li, J. C. Mitchell, and W. H.
Winsborough. Design of a role-based trust
management framework. In Proceedings
of the 2002 IEEE Symposium on Security
and Privacy, pages 114_130. IEEE
Computer Society Press, May 2002.

[24] E. G. Sirer and K. Wang. An access
control language for web services. In
Proceedings of the seventh ACM
symposium on Access control models and
technologies, pages 23_30. ACM Press,
2002.

[25] A. W. Appel and E. W. Felten. Proof-
carrying authentication. In G. Tsudik,
editor, Proceedings of the 6th Conference
on Computer and Communications
Security, Singapore, Nov. 1999. ACM
Press.

Appendix
A. ABLP Logic
Here is a list of the subset of axioms in ABLP
logic used in this paper. We omit axioms for
delegation, roles, and exceptions because they

are not necessary to discuss trust authorizations
logic applications.

Axioms about Statements
If s is an instance of a theorem of propositional
logic then s is true in ABLP (16)
If s and s s then s .′ ′⊃ (17)
(A s A (s s)) A s .′ ′∧ ⊃ ⊃says says says (19)

Axioms about Principals
(A B) s () ()A s B s∧ ≡ ∧says says says (20)

(A B) s A B s≡says says says (21)

A = B (A s B s) ⊃ ≡says says (22)
i is associative. (23)

i distributes over∧ in both arguments. (24)
A B A = A B(() ())⇒ ≡ ∧ (25)

((A (B A)) (B A)⇒ ⊃ ⇒ says (26)
if s is an instance of a propositional-logic
tautology
then s� (27)

if s� and ()s s′⊃� then s′� (28)
If A says (s s)′⊃ ⊃ (A s A s)′⊃says says (29)

if s� then A� says s, for every A (30)

Syntax: The formulas are defined inductively,
as follows:
a countable supply of primitive propositions

0 1 2p , p , p , ... are formulas;
if s and s′ are formulas then so are

s¬ and s s′∧ ;

if A and B are principal expressions then
A B⇒ is a formula;
if A is a principal expression and s is a formula
then A says s is a formula.

We use the usual abbreviations for boolean
connectives, such as⊃ and we also treat equality
between principals (=) as an abbreviation. In
addition, A controls s stands for (A s) s⊃says .

