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Abstract 
Changes in consumer behavior, advances in broadband technology, the industry’s maturity and 
entropy are converging to usher in a new era of eCommerce security. In particular, traditional 
access control a.k.a authorization for eCommerce systems is not flexible and efficient enough to 
combat these challenges i.e. more interactive user experience delivered through rich internet 
applications e.g. supply chain, disaggregated service that provide only a portion of the 
ecommerce experience and so on  and public remains concerned about the security of online 
transactions.[14]. Framework proposed provides trust transformation rules which have 
associated conditions for authorizations to control access. 
Our proposed framework aims to build the architecture for trust and authorization within an 
eCommerce service system. The architecture will help to build a secure and privacy protection 
eCommerce service system. The underlying framework will not only inform researchers of a 
better design for secure eCommerce service, but also assist eCommerce systems developers in 
the understanding of intricate constructions within trust and authorization. This includes 
protecting the privacy of transactions records of customers in terms of information privacy and 
access.  
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1. Introduction 
Trusted computing means predictability the 
systems should operate as the designer or 
manufacturers, software providers, and 
users intended which is essentials for both 
security and privacy. In a proposed 
framework trust is all about access control; 
you preserve trust by denying access to 
operations that might violet it. Congruent 
with formal security  models, our 
framework applies intermediate as man in 
the middle analysis and seeks to deny the 
snooper access to eCommerce system 

operations by taking steps to achieve 
Confidentiality , integrity and 
authorizations .Confidentiality means 
snoopers can’t observe the intended 
operations or at least some critical aspects 
of it. Integrity means that they can’t perhaps 
even blindly, alter the intended operation 
without being detected. Finally, 
authorizations means snoopers can’t 
successfully represent themselves as 
legitimate parties to the peripheral 
communication because of authorizations 
checks. In this frame work, successful 



attacks against trusted computing arise 
because confidentiality, integrity or 
authorizations fails. This is true even with 
so called “social engineering” or “insider” 
attacks because legitimate user can blame 
an important specification or security policy 
about who has authorization. 
The proposed architecture for trust and 
authorizations for eCommerce services 
system is a practical architecture presented 
figure (1) and new solution for access 
control within eCommerce service systems 
since presently there is no such solution that 
focuses on the authorization and trust 
simultaneously and sequentially for the 
access control within eCommerce service 
system as one of the applications in real-
world scenario. Our proposed frame work 
suggests that it’s efficient to put a versatile 
access control system into every 
intermediate. 
Our approach of Trust Access Control 
intermediates for Authorization to 
eCommerce service application is an idea 
that has been explored in other settings 
namely previously authorization frame work 
based ABLP logic. Most closely related in 
this regard is proof carrying authorizations 
(PCA)[15,16] a framework for specifying 
and enforcing webpage access policies 
(though the logic used there is not ABLP, 
but an application specific 
variant ).However that system comprise a 
general framework for webpage access 
control so expressible policies are 
potentially more complicated than approach 
we propose for eCommerce service. Other 
authorizations system founded in ABLP 
logic include that used in the Taos operating 
system [17], essentially a direct 
implementations of a subset of ABLP logic. 
Also Wallah et al have formalized the 
“security- passing style” of the java stack 
inspections mechanism in a subset of ABLP 
[18,7] which has served as a foundation for 
the SAFKASI programming language-based 
security architecture[19] The SDSI/SPKI 
architecture [20,21] is another authorization 
system for distributed communication. Their 
security model is similar to ABLP, but is 
based on a system of local names and 
emphasizes delegation.  Delegation logic 

[22.] and RT [23] are more recently 
proposed, logically well-founded 
authorization frameworks, based on data log. 
No formulations of SDSI/SPKI, delegation 
logic, or RT currently comprise trust access 
control intermediates for authorizations In 
[24], a web services authorization system is 
defined, allowing specification of security 
policies in temporal logic, which are 
translated into reference monitors embedded 
in applications software. However, their 
approach is focused on complex policies for 
usage patterns similar to [25], and they 
make no online/offline checking phase 
distinction. 
We establish a formal setting for our 
eCommerce service authorization 
framework in the Calculus of Access 
Control [9]. Proposed architecture for 
authorizations on eCommerce environment 
involves six intermediates (Card holder, 
Issuer, Merchants, Acquirer, Payment 
gateway, Certificates Authority) as shown 
in figure 1. Figure 1 takes our framework 
and shows how we can implement access 
control for any intermediate.  The use of 
access control logic for framework 
specification is fundamental to our proposal, 
and we argue that this approach promotes 
unambiguous specification languages, 
reliability, and verifiability. The 
contribution of this paper is to introduce the 
trust intermediates framework for 
authorizations (access control) in 
eCommerce service environments, and 
formalize the framework conditions within 
logical perspective. By characterizing the 
intermediates within authorization logic, we 
also propose rigorous logical foundation for 
authorization in eCommerce service 
environments. 
 
 
2. Access Control Logic 
Our proposed architecture consists of six 
participants: the ways users gain their 
security credentials; and how these 
credentials are used to access eCommerce 
data. Three types of digital certificates are 
used: identity certificates for authentication; 
attribute certificates for authorization; and 
access-rule certificates for propagation of 



access control. Once a user is identified and 
authorized, subsequent access decisions are 
based on trust transformations rules which 
convert complicated access pattern to 
simpler ones. In our implementation 
approach we propose the use of digital 
certificates, SSL, SET to be used in 
conjunction with access control 
intermediates. We place an access control 
on every intermediate using simple logic 
argument and we argue that if can be 
successfully and securely managed can be 
used to control access in eCommerce 
applications. 
We will model the intermediates using a 
logical language ABLP [3, 11, 2]. Logic 
concept allows us to reason about what is to 
be true given the state of eCommerce 
environment and a set of axioms. It has been 
used to describe authentication and 
authorization in distributed systems such as 
Taos [3] and appears to be a good match for 
describing access control within 
eCommerce transactions. We use a subset of 
the full [11] logic, which we will describe in 
sections 3. Readers who want a full 
description and a more formal development 
of the logic should see [3, 2] or appendix. 
The logic is based on a few simple concepts: 
principals, conjunctions of principals, 
targets, statements, quotation, and authority. 
 
Example 1: Trust and Authorization 
Procedure within eCommerce Service 
System 
Consider there are cardholder, Merchant, 
Issuer, Acquirer, and a number of clients, 
who will first register with an eCommerce 
service system. Suppose the Merchant 
wants to access an electronic eCommerce 
record within the eCommerce service 
system. 
(1) Merchant will send an access request by 

access request agent. 
(2) The access request agent then sends the 

access request token to the 
administrative agent. 

(3) The administrative agent then refers to 
the authorization trusted intermediate of 
the system and then sends the 
preliminary authorization reference for 
the Merchant. 

(4) The Merchant will be authenticated 
based on the biometric information and 
the digital PIN. If authentication is 
successful, the Merchant will be granted 
a formal authorization reference. 

(5) By the formal authorization reference, 
the Merchant will be verified whether 
he has the privilege of reading/writing 
into the eCommerce service system. 

(6) By the role-and-privilege based 
authorization intermediates, if the 
Merchant’s status satisfies the 
requirements of the syntax principals, he 
will granted to access to the targeted 
client electronic eCommerce record i.e. 
bank accounts 
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Figure 1.  Architecture  for Trust and Authorization within  
eCommerce service system

 
 
3. Syntax of Principals and 

Formulae 
The syntax of ABLP principals, constituting 
identities in distributed communications, 
and formulae, representing statements and 
beliefs, is defined in equations. 1. Regarding 
principles, we will mostly be concerned 
with atomic principles A and principles P  Q , 
pronounced “P quoting Q”. Statements P 
says s generally represent that an assertion s 
has originated with a principal P. The 
relation P  Q,⇒ pronounced “P speaks for Q” 
denotes that statements uttered by P can 
also be attributed to Q; this is clarified in 
Section 3.2, which describes the derivation 
rules for the authorizations. 
 

A, B, C,… ∈  Atom  atomic principals 



P ::=   A  P P P   P   P  P∧ ∨ ∨     
principals 

p ∈ Prop     primitive propositions 
 ::=    s p s s s p p p says s¬ ∧ ⇒   

formulae 
 

Equations 1: ABLP Syntax 
 
3.1 Abbreviations and Notational 

Conventions 
We assume that all principals can perform 
digital signatures. We let K range over 
public keys as principals, and always write 

AK to denote the public keys of A, and 
-1  AK the matching private key. The formula 

K says s represents the formula s encrypted 
under K. A number of useful abbreviations 
are defined in Equations 2.and appendix 
along with macros for standard logical 
connectives, these include A as R, denoting 
the principal obtained when A assumes the 
role R, and A controls s, denoting that A is 
directly authorized for s. for a complete 
explanation of these abbreviations see [2] 
 

1 2 1 2s   s  ,  ( s   s )      ∨ ¬ ¬ ∧ ¬ 

1 2 1 1 2 s   s   s   (s   s )⊃ ¬ ∨ ∧  

( )A as R A R A controls s A says S S⊃  
 

Equations 2: ABLP Formulae Abbreviations 
 
3.2  Proof Theory 
We write s� to denote that a formulae s is 
logically derivable, on the basis of the 
axioms and inference rules of the theory. A 
selection of the ABLP inference rules, 
connecting the calculus of principals to the 
underlying propositional logic [3], is 
adapted to this approach specifically those 
which will be relevant to our presentation. 
We note that the rule names given are of our 
own devise, for easy reference in the 
remaining presentation. Also for 
convenience, we write  s s′� iff s′ is derivable 
given assumption s. Here is an example 
showing how the logic can be used to model 
and reason about statements signed by 
digital signatures associated with particular 
principals. 

 
Example: 2. We trust that private keys 
remain indeed private, so that messages 
signed with JK carry the authority of J: 

JK   J⇒  
Thus, if any statement s is ever signed with 
Js private key: 

JK  says s  
By rule Speaks for: 

J J(K   J)  (K  says s  J says s)⇒ ⊃ ⊃  
hence by two applications of valid argument 

form  

 

s s   s

s

′ ′ ⊃� �

�
 we have: 

J says s 
That is, any signed message can be taken as 
a statement of the owner of the signature 
key. 
 
 
4.  Mapping Trust Authorizations 

to ABLP 
Authorizations refer to enforcing access 
control to ensure confidentiality and 
integrity. One of the key issues in e-
business is legitimate use. Legitimate use 
has two components: Identifications and 
authentication. Traditional access control 
mechanisms make authorization decisions 
based on the identity of the requester. 
However, in decentralized or multi centric 
environments i.e. eCommerce environment, 
the resource owner and the requester often 
are unknown to one another, and access 
control based on identity may be ineffective. 
Trust authorization proposed is an approach 
to distributed access control and 
authorization, in which access control 
decisions are based on ABLP made by 
multiple principals. 
 
4.1 Principals 
In eCommerce service authorizations 
certificates are digitally signed with a 
private key, and then shipped to the virtual 
machine where it will run. If 

Signer
K  is the 

public key of Signer, the public-key 
infrastructure can generate a proof formula 
(3) of the statement 

Signer
K Signer.⇒          (1) 



Signer’s digital signature on the code Code 
is interpreted as

Signer
K says Code⇒   

Signer
K

           (2) 
Using formula (1) and (26) appendix, this 
implies that Code ⇒ Signer        (3) 
When Code is invoked, it generates an 
entity Intermediate.  
The authorizations principals assumes that 
the entity speaks for the code it is accessing:  
Entity Code ⇒           (4) 
The transitivity of⇒  (which can be derived 
from formula (25) appendix) then implies  
Entity  Signer.⇒           (5) 
We define Φ to be the set of all such 
valid  Entity Signer⇒  statements. We call   
Φ  the Entity credentials. 
Note also that code can be signed by more 
than one principal. In this case, the code and 
its entity intermediates speak for all of the 
signers. To simplify the discussion, all of 
our examples will use single signers, but the 
theory supports multiple signers without any 
extra difficulty. 
 
4.2  Targets 
Recall that the resources we wish to protect 
are called targets. For each target, we create 
a dummy principal whose name is identical 
to that of the target. These dummy 
principals do not make any statements 
themselves, but various principals may 
speak for them. For each target T, the 
statement Ok(T) means that access to T 
should be allowed in the present context.  
The axiom: 

T   Targets, (  T  Ok(T)) Ok(T)∀ ∈ ⊃says        (6) 
says that T can allow access to itself. 
 
Many targets are defined in relation to 
services offered by eCommerce service 
underlying the Secures electronic 
Transactions (SET). From the eCommerce’s 
point of view, the SET is a single process 
and all system calls coming from the SET 
are performed under the authority of the 
SET’s principal (often the user running the 
SET). The SET’s responsibility, then, is to 
allow authorizations only when there is 
justification for issuing that system call 
under the SET’s authority. Our proposal 
will support this intuition by requiring the 

SET to prove in ABLP logic that each 
request has been authorized by a suitable 
principal. 
 
4.3 Access Control Lists 
Access control lists (ACLs) are fundamental 
to access control systems on eCommerce, 
providing an explicit association of 
principals with the privileges for which 
they're authorized. Setting up a new access 
controls on intermediates is also a firmware 
resource itself and thus has access controls 
on it. In the original presentation of ABLP 
[2], ACLs are conjunctions of statements of 
the form P controls s, where s is some 
privilege. We adapt this approach, letting A 
range over ACLs. Furthermore, we 
designate a subset of Prop as the set of 
privileges in eCommerce environment, 
letting priv range over this set. Hence, 
ACLs are conjunctions of statements P 
controls priv. Our justification for 
designating atomic propositions as 
privileges, and our use thereof, is discussed 
in Section 5 and proofs for more detail. 
 
4.5  Authorization Contexts and  
       Decisions 
E-commerce services authorization is based 
on requests for the service made by invokers. 
Here we describe our proposed structure for 
these requests, and for the authorization 
decision predicated on them. A request is an 
ABLP assertion s uttered by the invoker of 
an eCommerce service, which the invoker 
intends to be used in architecture presented 
in figure 1 for authorization of its use. In 
addition to the request, a web service may 
possess other facts and beliefs, e.g. ACLs 
and role certifications that affect the 
authorization judgment; we assume that 
these facts and beliefs are expressed as 
ABLP formulae. The conjunction of these 
components constitutes an authorization 
context; authorization for an eCommerce 
service is granted upon a particular 
invocation if the context of the invocation 
allows the privilege required for use of the 
eCommerce service to be derived in the 
ABLP proof theory. 
 



Example: 3 Suppose an eCommerce service 
eCS requires priv to be accessed, and a 
trusted principal D makes an access request: 
 

A  D controls  A  ACL defined by eCS′∧priv  
D priv  D priv priv

 priv

s says  says   

s

⊃� �

�
 

 
Since priv is provable in this context, 
authorization succeeds. 
 
As mentioned in Section 3, we posit a set of 
atomic formulae priv, each of which 
represent the privilege required to access a 
particular eCommerce service. 
Authorization for priv in a context s is 
effected by checking validity of s priv� . 
Thus, our method is inspired by access 
control mechanisms such as stack inspection 
[4], which are specialized for program 
procedure calls, rather than 
challenge/response systems such as [5], 
which are adapted to human usage (i.e. web 
browsing) patterns. Our justification for this 
is that eCommerce service invocation bears 
a strong similarity to RPC/RMI, as observed 
in [9, 12], with chains of web service 
invocations resembling call stacks. Here is a 
brief example illustrating the concepts of 
the framework described thus far: 
 
Example: 4 Suppose some eCommerce 
service eCS requires the privilege priv to be 
used, and the web service ACL A grants this 
privilege to a principal D, i.e. 
A  A D′≡ ∧ controls priv for some A′  . 
Suppose also that D invokes eCS on its own 
behalf, making the request D says priv. Thus, 
the authorization context is D says  A∧priv . 
Clearly, D says A ∧priv � Priv , since the 
context implies both � D  says priv 
and � D  controls priv, which implies � Priv  

by valid argument form   

 

s s   s

s

′ ′ ⊃� �

�
 

Naturally, it is desirable for authorization 
judgments to be decidable. Although ABLP 
logic is undecidable in general, various 
presentations have described non-trivial, 
decidable access control mechanisms [7, 11].  

Condition 1. Let s be an authorization 
context; then validity of s � Priv  is 
decidable. 
 
This condition requires any verifications 
implementation to provide a decision 
procedure for validity of authorization 
judgments, and also implicitly requires the 
form of authorization contexts to be well-
defined. As with all the framework 
conditions, the formal statement of the 
condition allows correctness of a decision 
procedure to be provable, i.e. 
implementations can (and should) be 
accompanied with proofs of their adherence 
to framework conditions. 
We assert that an authorization for trusted 
contexts is decidable (and efficient) 
satisfying conditions 1: 
Lemma 1.let’s be an extrapolated context; 
then for all priv, validity of s ├ priv is 
decidable 
Theorem 1 (Soundness) If the decision 
procedure returns true when invoked in 
entity F, then there exists a proof in ABLP 
logic that .FE   Ok(T)⊃  
Proof: By assumption, there is a path 
connections 1 2 k(A, v , v , ...,v , B) in the speaks-
for graph of EF. In order for this path 
connections to exist, we know that the 
statements 1v ,A ⇒ +1v v  i i⇒ for all i  ∈  

1, 1 ,k - and v  k B⇒  are all members of FE . 
Since ⇒  is transitive, this implies that 

FE A B.⊃ ⇒  where FE  is the entity 
environment  
 
Proof of Theorem 1: There are two cases 
in which the decision procedure can return 
true. 
 
1. The decision procedure returns true 

while it is iterating over the Class 1 
statements (section 5.1). This occurs 
when the decision procedure finds the 
statement FOk(T) E∈ . In this case, Ok(T) 
follows trivially from FE . 

 
2. The decision procedure returns true 
while it is iterating over the Class 2 



statements section 5.1. In this case we know 
that the decision procedure found a Class 2 
statement section 5.1 of the 
form

1 2
P P ...  kP  Ok(T).says  where for all 

1,i k∈ there is path connections from Pi to 
T in the speaks-for of FE . It follows from 
Lemma 1 that for all 1, , ii k P T.∈ ⇒  It 

follows that (
F

E T T ...  T  Ok(T)) ⊃ says    (7) 
Applying formula (6) repeatedly, we can 
directly derive FE Ok(T)⊃ . 
 
4.6  Trust Transformations 
A trust transformation is a function from 
ABLP formulae to ABLP formulae. Any 
trust transformation's domain is formulae in 
extrapolated form, which take into account 
all components of access control, down to 
every detail verified during offline checking. 
The range of any trust transformation is 
formulae in trusted form, which are the 
“watered down” formulae that exclude 
restrictions the system takes for granted 
during online checking. 
 
Example:5.Suppose that an eCommerce  
service eCS requires priv to be accessed, 
and: Any access request must be 
accompanied by a signed certificate 
authenticating the request, ACL A defined 
by eCS comprises entries PP K(   )∧  controls 
priv, For the sake of efficiency, signed 
certificates are not actively included 
(suppressed) in online authorization. 
 

P says  s  K  says s  AP∧ ∧ = P says s  A∧  

priv(P  K ) controls  AB∧ ∧ = 

privP controls   A∧  
 
The distinguishing characteristic of our 
proposal is the separation of online and 
offline checking phases, where in the online 
phase certain elements of authorization are 
taken for granted, or trusted to hold. This 
yields a simpler authorization decision, 
which can be verified more rigorously 
during the offline phase. However, with 
security at stake, vague accounts of the 
relation between these phases does not 

suffice, rather we desire a formal 
relationship, so that offline verification of 
online authorization is meaningful. We 
embody this notion in the trust 
transformation, which specifies what 
elements of online authorization are to be 
taken for granted, by specifying how to 
transform untrusted requests into trusted 
ones. Thus, we make the following 
simplifications for more efficient online 
checking 
 
1. Individual are trusted to make valid 

claims about role members 
2.  Authenticity of request is assumed for 

any intermediary; for example if 
request 1 2R says R   says s is received, and 
then we trust that 1R truly said 

2"  R says s" and 2R truly said “s” 
In practice these assumptions are too simple, 
some justifications for that claim should be 
made , for example key signature on the 
“top level” of the request so that instead of 

1R says 2R says s the signed request 
1RK says 

2R says s would be communicated 
Lemma 2.Suppose s is a trusted context, 
s � Priv  is a valid, and authorizations (s) 
returns s′ ; then s′ � Priv  is valid  
 
The trust transformation mapping rigorously 
defines the relation between extrapolated 
and trusted forms. Since notions of trust can 
vary depending on the system, we specify 
the type and necessary preconditions of trust 
transformations, but the definition of the 
function itself is left up to a particular 
service requested. For any extrapolated 
formula s, we denote its trust transformation 
as s . Any trust implementation must 
define extrapolated and trusted 
authorization forms, and the trust 
transformation between them, with the 
requirement that it be a total function on the 
set of extrapolated statements. Also, we 
specify that the authorization contexts 
mentioned in Condition 1 are in trusted 
form. 
 
Example 6: Suppose access control for an 
eCommerce service eCS is based on 



requests made in both signed and unsigned 
form, so that all requests are of the form:  
B says s  K  says sB∧  
Suppose further that in the online 
component, players are trusted to 
communicate messages faithfully, and 
signatures are not checked. All 
authorization contexts include an ACL A, 
which is left unchanged by the trust 
transformation. Thus, for all B and s, the 
trust transformation is defined as: 

B says s  K  says s  A = B says s AB∧ ∧ ∧ . Note 
that this transformation is total for the 
extrapolated form of requests in this 
example 
 
 
5. Specifying Trust through 

Authorizations  
While online checking takes trust into 
account, the purpose of offline checking is 
to verify that this trust is warranted. As 
Trust transformations injects trust into 
Authorizations, Offline checking inverts the 
trust transformations, to verify online trust 
in the offline phase-that is, given a trust 
request s, offline checking searches for an 
extrapolated request of which s is the trust 
transform. We call this all process 
Verifications 
First, as mentioned above, Authorizations 
returns the extrapolated form of trusted 
authorization contexts. Since the trust 
transformation has been defined formally, 
we can precisely characterize this condition 
as follows: 
Conditions 2.Let s be a trusted context; then 
if Verifications (s) succeeds, verifications(s) 

s′� such that s s′ =  
Note that this condition allows a certain 
degree of flexibility, in that authorization 
must return a statement that is at least as 
strong as an extrapolated form of the input, 
not necessarily an extrapolated form per se. 
Furthermore, we say an extrapolated form, 
since it is possible that any given trust 
transformation is many to-one. Significantly, 
it is not even necessary that an extrapolated 
form of an authorized statement be 
authorized. However, since Authorizing 
seeks to verify trust implicit in an online 

check, we require that authorizing not only 
return an extrapolated form of input 
statements, but one that is also authorized 
for the privilege in question; otherwise, 
authorizations fails. This motivates the third 
condition of our framework: 
Condition 3. Let s be a trusted context and 
priv be a privilege. If s � Priv holds, then so 
does Verifications(s) priv� . 
It is important to note that this condition 
does not necessarily require theorem 
proving on extrapolated forms, but rather 
provability should follow by adherence to 
this condition generally. 
 
5.1 Checking Privileges 
To make sure that the requested operation is 
authorized. Check Privilege (T) returns true 
if the statement Ok(T) can be derived 
fromΦ , AeCE, and BF (the belief set of the 
entity which called check Privilege). We 
define eCE(F) to be the eCommerce 
environment in which a given entity F is 
running. Next, we can define  
 

 (    )F eCE(F) FE A B≡ Φ ∪ ∪         (8) 
 
We call EF the environment of the entity F. 
The goal of check Privilege (T) is to 
determine, for the entity F invoking it, 
whether  .FE Ok(T)⊃  
The decision procedure used by check 
Privilege takes, as arguments, an 
environment EF and a target T. The decision 
procedure examines the statements in EF 
and divides them into three classes. 
• Class 1 statements have the form Ok(U), 

where U is a target. 
• Class 2 statements have the form 

P  Q,⇒ where P and Q are atomic 
principals. 

• Class 3 statements have the form 
  

1 2 k
F   F  ...  F Ok(U)says  

where Fi is an atomic principal for 
all  1i, k ≥ , and U is a target. 
 
Theorem 2: (Termination) The decision 
procedure always terminates. 
Proof: The result follows directly from the 
fact that EF has bounded cardinality. This 



implies that each intermediate in the 
eCommerce environment has a bounded 
number of iterations; and the amount of 
work done in each iteration is clearly 
bounded. 
 
5.2  Intermediate Authority 
In any access control statement P controls 
priv, it is not necessary for P to be atomic, 
allowing a fine-grained approach to access 
control. For example, if it is not desirable to 
grant a role R direct access to priv, but only 
on behalf of a principal D, the ACL can 
specify R D controls priv , disallowing R 
direct access to priv. 
 
However, we're concerned with access 
control decisions in the presence of multiple 
intermediaries-that is, several intervening 
nodes may transport an authorization 
request from source to target. The above 
scheme would require separate entries for 
every possible chain of intermediaries; for 
example, given statements: 
 

1 2R  says R  says D says priv         (9) 

2 1R  says R  says D says priv       (10) 
authorization for both would require both of 
the following statements to be present in the 
relevant ACL: 

1 2
R R D controls priv       (11) 

2 1
R R D controls priv       (12) 
Either that or it would require access 
statements: 

1
R D controls priv        (13) 

2
R D controls priv         (14) 

 
to be present, along with known relations 
R   R1 2⇒ and 2 1R   R⇒ . The former solution 
(9) is clearly cumbersome, unrealistically so 
given the number of possible intermediaries 
on the eCommerce architecture above in 
figure 1. The later is better (10), but is 
restrictive, requiring every intermediary to 
adopt the same role as, or a more powerful 
role than, its predecessor (although this 
problem could be alleviated by adapting the 
“speaks for regarding” relation proposed in 

[6] as an extension to ABLP). Since the 
only privilege at issue is priv, it is 
intuitively sufficient for each intermediary 
to have some sort of authorization for priv, 
as in e.g. stack inspection [4]. 
 
However, unlike stack inspection, 
eCommerce service intermediaries should 
often not be granted direct access to 
privileges-for example, an eCommerce 
service should not be granted direct access 
to withdraw cash from an individual's bank 
account, but only on behalf of that 
individual. To maintain this property, and to 
overcome the drawbacks of the approaches 
described in the previous paragraph, we 
introduce the notion of an intermediator 
authority. Intuitively, an intermediator 
authority is the authority to carry an 
authorization request for a particular 
principal, but not the authority to make the 
request itself. Formally: 

R  intermediator for  priv 

( )RD D says ⊃ priv ( )D says priv       (15) 
In the above example (15), access requires 
the intermediator authorities’ 1R carries priv 
for D and 2R carries priv for D, as well as 
the direct authority D controls priv. In 
general, intermediator authority allows a 
fine-grained and flexible approach to 
authorization in the context of eCommerce 
services. We call conjunction of 
intermediator authority statements 
intermediator control lists (ICLs), which we 
denote I in our proposal. 
 
 
6.  Conclusion and Future works. 
On the theoretical front, we also plan to 
embed our authorization framework within 
a richer formalism, such as that proposed in 
[10], allowing the semantics of 
authorization to be expressed and verified in 
a realistic threat model. In addition to stand 
alone eCommerce services, authorization 
for composite web services [8, 13] also 
promises to be an interesting topic for future 
work; access control in that setting presents 
a number of unique issues for investigation. 
We have used ABLP logic to establish a 
formal setting for framework design, and 



specified the conditions that any trust 
intermediator authorizations implementation 
must satisfy. The central ideas we have 
presented are the separation of online and 
offline authorization phases, the notion of a 
trust transformation that establishes a 
meaningful relation between these phases, 
and a characterization for offline 
verification of online checking. 
However this paper presented a framework 
for trust and authorization for eCommerce 
services system. The proposed architecture 
integrated the role-based and privilege-
based access control into the trust and 
authentication services. This will better suit 
to the eCommerce service system in terms 
of identity management. The authors hope 
that the proposed framework would help the 
developing and administration of 
eCommerce service systems in a secure, 
efficient and flexible way. In the next step 
of this research, we will design and 
implement the authorization policy and the 
role-and-privilege based authentication for 
e-health service systems. 
Our proposal has made some suggestions 
which can be used for implementations in 
general, including the use of role key 
certifications and intermediator authority for 
flexible authorization schemes in an open 
eCommerce environment. We showed that 
access control decision based on trust 
intermediator corresponds to the 
constructions of a proof in the logic and we 
have presented an efficient decisions 
procedure for generating these proof.  
 
 
References: 
[1] R.L. Rivest, A. Shamir, and L.A. 

Adleman, method for obtaining digital 
signatures and public-key cryptosystems. 
Commun. ACM 21, 2 (Feb. 1978), 120–
126. 

[2] B. Lampson, M. Abadi, M. Burrows, and 
E. Wobber, Authentication in distributed 
systems: Theory and practice. ACM 
Transactions on Computer Systems 10, 4 
(Nov. 1992), 265–310. 

[3] M. Abadi, M. Burrows, B. Lampson, And 
G. D. Plotkin, A calculus for access 
control in distributed systems. ACM 

Transactions on Programming Languages 
and Systems 15, 4 (Sept. 1993), 706–734. 

[4] D. S. Wallach and E. W. Felten. 
Understanding java stack inspection. In 
Proceedings of 1998 IEEE Symposium on 
Security and Privacy, Oakland, CA, May 
1998. 

[5] L. Bauer, A. W. Appel, and E. W. Felten. 
Mechanisms for secure modular 
programming in java.Technical Report 
TR-603-99, Princeton 
University,Computer Science Department, 
July 1999. 

[6] C. Ellison, B. Frantz, B. Lampson, R. 
Rivest, B. Thomas, and T. Ylonen. SPKI 
certificate theory. RFC 2693, Sept. 1999. 

[7] D. S. Wallach, A. W. Appel, and E. W. 
Felten. SAFKASI: a security mechanism 
for language-based systems. ACM Trans. 
Softw. Eng. Methodol.,9(4):341-378, 2000. 

[8]  V. Christophides, R. Hull, G. 
Karvounarakis, A. Kumar, G. Tong, and 
M. Xiong. Beyond discrete e-services: 
Composing session-oriented services in 
telecommunications. In Proceedings of 
the Workshop on Technologies for E-
Services (TES), Rome, Italy,2001. 

[9] A. D. Gordon and R. Pucella. Validating a 
web service security abstraction by typing. 
In Proceedings of the 2002 ACM 
workshop on XML security, pages 
18_29.ACM Press, 2002. 

[10] A. Gordon, K. Bhargavan, C. Fournet, 
and R. Pucella. Tulufale: A security tool 
for web services. In Springer, editor, 
Formal Methods for Components and 
Objects, LNCS, 2003. 

[11] C.Skalka and X.Sean Wang ,Tust But 
Veryfy: Authorizations for Web Service: 
ACM Workshop on Secure Web Services, 
October 29, 2004, Fairfax VA,USA. 

[12] K. Bhargavan, C. Fournet, and A. D. 
Gordon. A semantics for web services 
authentication. In Proceedings of the 31st 
ACM SIGPLAN-SIGACT symposium on 
Principles of programming languages, 
pages 198-209. ACM Press, 2004. 

[13]  R. Hull and J. Su. Tools for design of 
composite web services. In ACM 
SIGMOD, pages 958-961, 2004. 

[14] Security Breaches Survey Technical 
Report (URN 06/803).This is available 
from 25 April 2006 and can be 
downloaded from www.security-
survey.gov.uk 

[15] A. W. Appel and E. W. Felten. Proof-
carrying authentication. In G. Tsudik, 



editor,Proceedings of the 6th Conference 
on Computer and Communications 
Security, Singapore, Nov. 1999. ACM 
Press 

[16] L. Bauer. Access Control for the Web via 
Proof-carrying Authorization. PhD thesis, 
Princeton University, 2003. 

[17] E. Wobber, M. Abadi, M. Burrows, and B. 
Lampson. Authentication in the Taos 
operating system.Technical Report 117, 
DEC Systems Research Center, 130 
Lytton Avenue, Palo Alto, Ca 94301, 
December1993. 

[18] D. S. Wallach. A New Approach to 
Mobile CodeSecurity. PhD thesis, 
Princeton University, 1999. 

[19] D. S. Wallach, A. W. Appel, and E. W. 
Felten.SAFKASI: a security mechanism 
for language-based systems. ACM Trans. 
Softw. Eng. Methodol.9(4):341_378, 
2000. 

[20] C. Ellison, B. Frantz, B. Lampson, R. 
Rivest, B. Thomas, and T. Ylonen. SPKI 
certi_cate theory. RFC 2693, Sept. 1999 

[21] R. Rivest and B. Lampson. SDSI _ a 
simple distributed security infrastructure, 
1996. 

[22] N. Li, B. N. Grosof, and J. Feigenbaum. 
Delegation Logic: A logic-based approach 
to distributed authorization. ACM 
Transaction on Information and System 
Security (TISSEC), Feb. 2003. To appear 

[23] N. Li, J. C. Mitchell, and W. H. 
Winsborough. Design of a role-based trust 
management framework. In Proceedings 
of the 2002 IEEE Symposium on Security 
and Privacy, pages 114_130. IEEE 
Computer Society Press, May 2002. 

[24] E. G. Sirer and K. Wang. An access 
control language for web services. In 
Proceedings of the seventh ACM 
symposium on Access control models and 
technologies, pages 23_30. ACM Press, 
2002. 

[25] A. W. Appel and E. W. Felten. Proof-
carrying authentication. In G. Tsudik, 
editor, Proceedings of the 6th Conference 
on Computer and Communications 
Security, Singapore, Nov. 1999. ACM 
Press. 

 
 
Appendix 
A. ABLP Logic 
Here is a list of the subset of axioms in ABLP 
logic used in this paper. We omit axioms for 
delegation, roles, and exceptions because they 

are not necessary to discuss trust authorizations 
logic applications. 
 
 
Axioms about Statements 
If s is an instance of a theorem of propositional 
logic then s is true in ABLP       (16) 
If s and s  s  then s .′ ′⊃         (17) 
(A  s  A  (s  s )) A  s .′ ′∧ ⊃ ⊃says says says       (19) 
 
Axioms about Principals 
(A  B)  s ( )  ( )A  s B  s∧ ≡ ∧says says says       (20) 

(A B)    s A  B  s≡says says says        (21) 

A = B  (A  s  B  s) ⊃ ≡says says         (22) 
i is associative.        (23) 

i distributes over∧  in both arguments.    (24) 
A B A = A  B(( )  ( ))⇒ ≡ ∧        (25) 

((A  (B A))  (B A)⇒ ⊃ ⇒ says        (26) 
if s is an instance of a propositional-logic 
tautology  
then s�          (27) 

if s�  and ( )s s′⊃�  then s′�        (28) 
If A says (s s )′⊃ ⊃ (A  s A  s )′⊃says says        (29) 

if s�  then A�  says s, for every A         (30) 
 
Syntax: The formulas are defined inductively, 
as follows: 
a countable supply of primitive propositions 

0 1 2p , p , p , ... are formulas; 
if s and s′ are formulas then so are 

s¬ and s s′∧ ; 
 
if A and B are principal expressions then 
A B⇒ is a formula; 
if A is a principal expression and s is a formula 
then A says s is a formula. 
 
We use the usual abbreviations for boolean 
connectives, such as⊃ and we also treat equality 
between principals (=) as an abbreviation. In 
addition, A controls s stands for (A  s) s⊃says . 
 


