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ABSTRACT 
 
Efficient and unconditional stable Perfectly Matched Layer (PML) formulations are presented 
for truncating finite difference time domain grids. The formulations are based on 
incorporating the Crank-Nicolson scheme into the stretched coordinate PML approach. In 
these formulations, the field components are updated in a single step per time iteration. 
Numerical example carried out in one-dimensional domain shows that the formulations are 
both accurate and unconditionally stable. 
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Difference Time Domain (FDTD). 
 
1. Introduction 
In recent years, the Finite-Difference 
Time-Domain method (FDTD) [1] has 
been shown to be one of the most widely 
used numerical time-domain techniques in 
electromagnetism, as it covers many 
applications, such as antennas, optics, 
high-speed electronic circuits, and 
semiconductors, etc. Unfortunately, the 
stability of the FDTD method is limited by 
the Courant Friedrichs Lewy (CFL) 
stability condition. Since the CFL is 
determined by the smallest cell size in the 
domain, the FDTD analysis of fine 
geometric structures requires large number 
of time iterations. Hence, the elimination 
of the CFL stability limit is one of the 
latest challenges in the FDTD research. 
Very recently, an implicit scheme, known 
as the alternating direction implicit finite 
difference time domain (ADI-FDTD) 
method [2], has been used for solving 
electromagnetic problems where very fine 
meshes with respect to the wavelength is 
needed. This method is unconditionally 
stable and removes completely the CFL 
stability condition required by the 
conventional FDTD approach. On the 
other hand, the ADI-FDTD method is 
found to be less accurate than the 

conventional FDTD scheme, especially for 
large time step due to the increase in the 
numerical dispersion error of the ADI-
FDTD formulations [3]. 
Another important issue in the FDTD 
research is the development of accurate 
Absorbing Boundary Conditions (ABCs) 
to truncate open region problems. 
Berenger's Perfectly Matched Layer 
(PML) [4, 5] has been shown to be one of 
the most effective FDTD ABCs. In recent 
years, different unconditional stable ADI 
implementations of the PML (ADI-PML) 
have been introduced [6-9]. Similar to the 
ADI-FDTD method, the accuracy of the 
ADI-PML formulations decreases with the 
increase of the time step. 
In this paper, accurate and unconditionally 
stable formulations of the PML are 
presented. The formulations are based on 
incorporating the Crank Nicolson (CN) 
scheme into the PML formulations. These 
formulations, named as CN-PML, allow 
updating the field components from the n 
to n+1 time step in a single iteration rather 
that the two subiterations needed in the 
ADI-FDTD method. One dimensional 
numerical example has been carried out to 
validate the proposed formulations. 
The paper is organized as follows. In 
section II, the formulations of CN-PML 
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scheme are presented. Section III includes 
the results of a numerical test to show the 
effectiveness of the proposed method. 
Finally, a summary and conclusions are 
included in section IV. 
 
2. Formulation 
Using the stretched coordinate PML 
formulation [5], the field equations for an 
x-directed, z-polarized transverse 
electromagnetic (TEM) wave propagating 
in one-dimensional source free 
homogenous, isotropic, and lossy medium 
can be written in the frequency domain as  
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where c is the speed of light in vacuum, rε  
is the permittivity, σ  is the conductivity of 
the medium, and xS  is the PML stretched 
coordinate variable defined [5] 
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where xσ  is the conductivity profile along 
the x-direction in the PML region. Using 
(3) and noting that j / tω → ∂ ∂ , (1) and (2) 
can be written in the time domain as  
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where zxf  and yxg  are given by 
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Using the Crank-Nicolson scheme, (4)-(7) 
can be discretized as  
 

i i i i

i 1/ 2 i 1/ 2 i 1/ 2 i 1/ 2

n 1 n n 1 n
z a z zx zx

n 1 n 1 n n
b y y y y

tE G E (f f )
2

       + G (H H H H )
+ − + −

+ +

+ +

∆
= − +

χ − + −
(8) 

 

i 1/ 2 i 1/ 2 i 1/ 2 i 1/ 2

i 1 i i 1 i

n 1 n n 1 n
y y yx yx

n 1 n 1 n n
z z z z

tH H (g g )
2

       + (E E E E )

+ + + +

+ +

+ +

+ +

∆
= − +

χ − + −
 (9) 

i i i

i i 1/ 2 i 1/ 2 i 1/ 2 i 1/ 2

n 1 n
zx 0 zx

n 1 n 1 n n
1 y y y y

f r f

c      r (H H H H )
x + − + −

+

+ +

=

+ − + −
∆

(10) 

 

i 1/ 2 i 1/ 2 i 1/ 2

i 1/ 2 i 1 i i 1 i

n 1 n
yx 0 yx

n 1 n 1 n n
1 z z z z

g r g

c         r (E E E E )
x

+ + +

+ + +

+

+ +

=

+ − + −
∆

(11) 

where x∆  is the space cell size, t∆  is the 
time step, c t / xχ = ∆ ∆ , and  
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From (8), it can be seen that n 1
zE + can not be 

updated directly as it depends on n 1
yH + . 

Therefore, by substituting (9), (10) and 
(11) into (8), and after some 
manipulations, an implicit update for n 1

zE +  
can be obtained from  
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It is clear that the left hand side of (14) 
forms a tri-diagonal matrix and the 
corresponding linear system of equations 
can be solved for n 1

zE +  easily [2]. Once n 1
zE +  

is obtained, n 1
yxg + , n 1

yH + , and n 1
zxf +  can be 

updated explicitly from (11), (9) and (10), 
respectively. It is important to note that the 
above formulations are applied in the PML 
regions at the domain boundaries. In non-
PML regions, it is only required to set the 
coefficients 0r  and 1r  defined in (12) to 
unity and zero, respectively. Finally, it 
must be mentioned that the extension of 
the above formulations to the two or the 
three dimensional problems necessitate the 
solution of a linear system of equations at 



  

each time step. To reduce the resultant 
computational time and storage 
requirements, techniques similar to those 
reported in [10, 11] can be used. 
  

 
 
Figure 1.  Reflection error for the 
proposed CN-PML and for ADI-PML 
formulations as compared with the 
conventional PML reflections as observed 
one cell from the PML/computational 
domain interface. 
  
4. Simulation Study 
To show the validity of the proposed 
formulations, a numerical example carried 
out in a one dimensional domain is 
presented. A point source, with zE  
polarization, was excited at the centre of 
100 cells isotropic, homogeneous, and 
lossy computational domain with the 
parameters of rε =2, and σ =0.1S/m. The 
computational domain extends in the x 
direction and discretized with a space cell 
size of x∆ =1.0mm. The excitation was a 
Gaussian pulse with a maximum frequency 
content of 500MHz. Both ends of the 
computational domain were terminated by 
eight additional PML layers with a 
quadratic conductivity profile and with 
0.001% theoretical reflection coefficient, 
i.e., PML[8, 2, 0.001%], as defined in [4]. 
Figure 1 shows the reflection error of the 
PML for the CN-PML and for the ADI-
PML formulations [9] as obtained with 
different CFL number (CFLN) defined as 
CFLN= t∆ / FDTD

maxt∆ , where FDTD
maxt∆  is the 

maximum stability limit of the 
conventional FDTD algorithm, in this test 
= FDTD

maxt∆ =4.7ps. The results obtained using 

the conventional PML implementation of 
(4)-(7) with CFLN=1.0 are also shown in 
Fig. 1. The reflection error was computed 
one space cell away from the 
PML/computational domain interface as  
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where T
zE (t)  is the electric field computed 

using the test domain and R
zE (t)  is the 

reference electric field computed for each 
CFLN value by using a larger domain with 
the size of 1000  and truncated by 32 PML 
layers with the parameters of PML[32, 4, 
0.001%]. As can be seen from Fig. 1, the 
reflection error of the ADI-PML 
formulations increases as the CFLN values 
increases. On the other hand, this is not 
observed for the CN-PML, where the 
reflection error maintains the same level as 
the conventional PML results. 
 
5. Conclusion 
In this paper, unconditional stable PML 
formulations, based on the CN scheme, are 
presented for truncating FDTD domains. 
The proposed formulations allow updating 
the field components only in a single 
iteration per time step. Numerical example 
carried out in a one dimensional domain 
shows that the formulations remain stable 
beyond the stability limit of the 
conventional FDTD method. Hence, the 
simulation time can be reduced by 
increasing the time step without affecting 
the level of accuracy. The formulations can 
be extended to the two and the three 
dimensions in a similar manner. In these 
cases, the solution of a linear system of 
equations at each time step is needed, 
which will result in an increase in the 
computational time and storage. 
Techniques similar to those reported in 
[10, 11] can be used to reduce the resultant 
computational time and storage 
requirements. 
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