
Location-Based Advertising Using Bluetooth

Mohamed Al-Arag and Jalal Kawash
American University of Sharjah, UAE

{b00013254|kawash}@aus.edu

ABSTRACT
Despite the huge adoption of wireless handheld devices that are Java- and Bluetooth- enabled,
this potential E-Commerce sector has not been fully exploited, with the possible exception of
gaming industry. This paper presents an E-Commerce system that implements advertising in
shopping malls using Bluetooth, the short-range wireless communication standard. The
system offers businesses a cheap yet effective alternative for electronic advertising.
Furthermore, the system is solely pull-based, giving the users a harassment-free advertising
experience. Our system makes use of a number of state-of-the-art technologies, including Java
2 Micro Edition (J2ME) and .Net.

Key Words: E-Commerce, mobile applications, Bluetooth, J2ME

1. Introduction
There is a constant increase in the adoption
of wireless handheld devices, and this is
paralleled with an increase in their
capabilities. About half a billion users
currently carry handheld phones that can
run J2ME, and there are 150 mobile
operators supporting Java [1]. Most
currently available mobile phones and
PDAs support Bluetooth. On November
14th of 2006 the number of shipped
Bluetooth-enabled devices reached one
billion [2]. However, except for the
industry of mobile games, the E-
Commerce sector is not fully exploiting
this huge device availability [1], nor is it
taking full advantage of the wide adoption
of short-range wireless communication,
such as Bluetooth.

Companies allocate substantial budgets for
advertising, whether electronic or
otherwise. Our aim is to provide a low-cost
yet user acceptable advertisement model
for shopping malls. Following the North
American model, shopping in Europe, the
Middle East, and other parts of the world is
increasingly depending on the “hyper-
shopping mall” model. Outlets in a
shopping mall can place their promotions
on a dedicated centralized server.
Bluetooth access points can be deployed

throughout the shopping mall, which gives
customers the opportunity to pull
promotions on their Bluetooth-enabled
devices while in the mall.

Since Bluetooth covers a maximum range
of 100 meters, the use of sufficient access
points is a must. Users should have two
options. The first is to select the offers that
are in the same area as the user at the time
of request; the location of the user can be
simply determined through the access
point being used. That is, the position can
be approximated without resorting to
expensive location-determination
technologies, some of which do not work
in closed areas anyway. The second is to
allow the user to retrieve existing
promotions pertaining to all the shops in
the mall.

Similar applications are rare [3,4]. We
came across extremely few such
applications which are deployed in real
life. However, our approach is
fundamentally different than the existing
ones. For instance, a representative
‘model’ application is deployed in Sultan
Mall in Kuwait [3,4]. Unlike our approach
which is pull-based, access points push
advertisements to the customer devices. If
a user rejects an offer, the user will be

mailto:@aus.edu

deprived of receiving more promotions for
one week. In addition, each user cannot
receive more than three offers per week.

Realizing the limitations of similar existing
solutions, the advantages of our approach
are as follows:

§ Users are solely in control of whether

they would like to receive any
promotions, when to receive them, and
the number of promotions they would
like to consider.

§ Users do not have to switch their
Bluetooth off to avoid receiving any
offers.

Bluetooth is a standard for wireless
personal area networks. Bluetooth
connections are secure and unlicensed.

Hence, Bluetooth communication is free of
charge. While Wi-Fi (Wireless LAN)
provides a stronger connection and wider
spatial coverage, Bluetooth has several
advantages over Wi-Fi. These include
easier service discovery, less power
consumption, and wider adoption in
wireless handheld devices. Table 1 makes
more comparisons with Wi-Fi and
InfraRed standards.

The rest of the paper is organized as
follows. In Section 2, we give the high-
level design of our 4-tier system. These are
the Bluetooth client, Bluetooth access
point, application server, and data server.
Section 3 highlights some of the
implementation details. Section 4
concludes the paper.

Property IR Bluetooth WLAN

Range 1m 10-100m 300m

Bandwidth 4Mbps 1.1 Mbps 11-54 Mbps

Power Consumption Low Low High

Device’s size Small Small Large

Circumference of transmission. 30 o Omni-Directional Omni-Directional

Device discovery - Yes -

Service discovery - Yes -

Security - Yes Yes

Adoption in mobile devices High High Low

price $1 USD $20 USD N/A

Table 1. Comparison of IrDA, Bluetooth and WLAN

Figure 1. Architecture for Location-Based Advertising with Bluetooth

2. Design
Our system is developed using 2 platforms.
J2ME is used in developing the mobile
application (the Bluetooth client) and the
.Net framework is used to implement the
access points and the main server. A high-
level view of the architecture is given in
Figure 1.

2.1 Bluetooth Client
The Bluetooth client is developed as a
J2ME client. The architecture of the client
is given in Figure 2.

Figure 2. High-level Architecture of the

J2ME Bluetooth client (adapted from [2])

J2ME: The J2ME architecture [5]
involves configurations, profiles, and
optional packages, which can be used by
developers to construct a complete Java
runtime environment that closely fits the
requirements of a particular range of

devices. The basic runtime environment is
defined as a configuration, combining a
virtual machine and a collection of core
classes.

J2ME supports two configurations the
Connected Device Configuration (CDC),
version 1.1 known as JSR 218, and the
Connection Limited Devices Configuration
(CLDC), version 1.1 known as JSR 139.
CLDC is targeted towards resource
constrained mobile devices. The virtual
machine HotSpot is used in CLDC 1.1.
Configurations are complemented by
profiles in order to provide support for
application development and execution.
Profiles provide Application Programmer
Interfaces (APIs) for devices that share
some capabilities.

In this work, the Mobile Information
Device Profile (MIDP) is used. It creates
the interface between the application and
the Application Management System
(AMS), under the CLDC configuration.
MIDP is a set of Java APIs that provide a
complete J2ME application environment
defining user interfaces and
communication methods.

CLDC: CLDC is intended for devices with
limited hardware resources (CPU and
memory). Typically, such devices run on
either a 16- or 32-bit CPU with a

maximum of 512 Kbytes of memory
available for client applications and the
Java platform itself [6]. Most mobiles and
smart phones fall into the CLDC category
[5].

Bluetooth in J2ME: For the client to
communicate with the access points using
Bluetooth, the JSR82 v1.1 is required [7].
This API is designed to operate on top of
the CLDC.

2.2 Bluetooth Access Points
The access point is implemented using
C#.NET and therefore a framework is
needed to have access to the Bluetooth
stack through the .NET framework. The
32feet open source project is used [10].

2.3 Application Server
The application server maintains the
business logic for the durability of offers.
It is backed by a MYSQL data server to
store the relevant information. The
application server communicates with the
Bluetooth access points using (wired)
TCP/IP.

3. Implementation
Figure 3 shows the steps involved in a
successful interaction between the
Bluetooth client and the remaining system
components.

Bluetooth Client: The application starts
by displaying to the user a welcome
message asking to choose whether the user
wants to receive offers in the range of the
access point(s) he/she is close to, or all the
offers that are available in the mall.

Device Management: The user interface
is backed by a command listener. Once
the user chooses an option, the command
listener in the MainClient class detects the
chosen command and acts accordingly.
Regardless of the option chosen by the
user, an object of type ServerFinder will be
created and a dedicated thread takes care
of it. The first thing that the server finder
does is to have a reference to the
MainClient Midlet (parent) so that it can

update the user with the appropriate
display.

The ServerFinder makes use of the needed
class from the Java Bluetooth specification
to manage the Bluetooth device,
represented by the Java class LocalDevice.
After getting the local device object, a
reference to a discovery agent is created
(agent=local.getDiscoveryAgent()); it
is responsible for searching for Bluetooth
devices in the client’s range. The server
finder implements the runnable interface; a
new thread searches for Bluetooth enabled
devices in the range
(agent.startInquiry(DiscoveryAgent.
GIAC, this)).

The ServerFinder class implements the
DiscoveryListner interface. Each time the
inquiry finds a device, the method
DeviceDiscovered is called. In order to
avoid being overwhelmed with other
Bluetooth devices (customer devices), the
application only reports the access point
devices and ignores other devices. Once
searching for devices is done, the
application calls the method
SearchForServices, passing to it a list of
devices found in the search inquiry and the
server UUID that are required. Finally,
shops and offers are retrieved based on the
business logic implemented in the
application server. Since Bluetooth access
points can support a maximum of seven
concurrent connections, the connection is
closed as soon as possible.

Access Point: An access point is
implemented through the use of a
Bluetooth server that communicates with
the application server using TCP/IP
connections. A Bluetooth server
publishes services to clients so that they
can look them up and use them. For a
client to have access to that service, the
Bluetooth server must register the service
in the service record and then start
listening for connections to this service.

MYSQL Data
Base

Mobile
application

BT Access
point

TCP Server

Connect

 request shops

Connect TCP

Request Shops

Sending Access point name

Request shops for Accesspoint

Sending shops retrieved from data base

Close Connection

Connect

Sending Shops names and IDS

Close Connection

Sending shops

Sending selected Shops IDs

Sending request for Offers

Sending request for Offers

Sending shops IDS

Connect

Connect

Retriving Offers

Offers

Close Connection

Sending Offers

Closing connection

Sending offers

Close Connection
with the mobileClose Stream and

display offers for
the users.

Display list
of shops

Figure 3. Sequencing Diagram for a successful attempt to retrieve promotions

Service Registration: Before a Bluetooth
client device can use service discovery on
a Bluetooth server device, the Bluetooth
server needs to register its services
internally in the Service Discovery
Database (SDDB). This process is called
service registration. To set up a Bluetooth
service to be available to clients, the
following steps are followed:

1. Creating a service record for the

service That is to be made available .

2. Adding the new service record to the
SDDB.

3. Registering the service.

4. Waiting for incoming client
connections.

Once a client connects to the access point,
a thread will be assigned to the client for
handling his/her requests. The thread
instantiates an object of type
RequestHandlerThread and passes to it the
Bluetooth client object along with the
name of the access point itself. Access
points are differentiated by assigning to
them unique IDs (such as a MAC address).
A connection to the main server is created
through an object of type
ClientToMainServer which handles
dealing with the database, and then
responding to the access point which relays
the response to client. This thread waits for
client requests, which are limited to four
kinds:

1. Request for shops in the range of that

access point.

2. Request for all shops in the mall that
have offers.

3. Request for offers from shops selected
by the customer in any of the above
steps.

4. Request to close the connection.

The access point relays the client’s
requests to the application server.

Application Server: The server is
responsible for satisfying client’s requests
through the access points. Each time an
access point connects to the server, a
thread takes care of the request, which is
an object of type RequestHandlerThread.
The server is responsible for accessing the
database and retrieving the required
information from it to reply back to the
access points, which in turn pass the
response to the Bluetooth client.

4. Conclusion
Our preliminary testing for the system
shows good performance results. The
system spends 30 seconds at most
retrieving promotions from 15 shops.
Most of this time is consumed by device
and service discovery. The simplicity of
design is crucial for the success of such
applications. We believe that Bluetooth-
based applications offer great potential for
profitable business models and this area of
E-Commerce is barely explored.

A future extension of this work is to take
advantage of the peer-to-peer (P2P)
potential [8], in order to create virtual
market places using Bluetooth. Users can
advertise the items they wish to sell to
other Bluetooth users. With current
technology, such an implementation
depends on the use of powerful servers. As
the capabilities of handheld devices
improve, such E-Commerce applications
are expected to become widely available.

References:

[1] Mobile Monday Web Site, Apr. 2006.

http://www.mobilemonday.com

[2] Bluetooth Web Site, Dec. 2006,

http://www.bluetooth.com/Bluetooth/S
IG/Billion.htm

http://www.mobilemonday.com
http://www.bluetooth.com/Bluetooth/S

[3] Two Forty Eight AM Web Site, Dec.
2006,
http://www.248am.com/mark/kuwait/bl
uetooth-advertising/

[4] Two Forty Eight AM Web Site, Dec.
2006,
http://www.248am.com/mark/interestin
g/about-bluetooth-advertising-in-
kuwait/

[5] Java 2 Platform Micro Edition.
http://java.sun.com/j2me/index.jsp.

[6] Sam’s Publishing, Dec. 2006,

http://www.samspublishing.com/article
s/article.asp?p=25082&rl=1

[7] Sun Microsystems, Dec. 2006,
http://developers.sun.com/techtopics/m
obility/midp/articles/bluetooth2/

[8] Daniel KÄappeli, "JXTA over
Bluetooth," in Information and
Communication Systems
Research Group . pp. 10, 16, 2003.

[9] Kumar, Paul J.Kline and Timothy
J.Thompson, Bluetooth application
programming with the Java APIs,
Oxford, England: Morgan Kaufmann
publishers, 2004.

[10] 32feet, http://www.32feet.net

http://www.248am.com/mark/kuwait/bl
http://www.248am.com/mark/interestin
http://java.sun.com/j2me/index.jsp
http://www.samspublishing.com/article
http://developers.sun.com/techtopics/m
http://www.32feet.net

