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ABSTRACT 
Hash functions, which are a special family of cryptographic algorithms, satisfy the 
requirements of our days for security, confidentiality and validity for several services in 
technology. Many applications incorporate hash functions and address, as time passes, to 
more and more users-clients and thus the increase of their throughput is a primal necessity. In 
this paper we propose an implementation that increases the throughput of RIPEMD-160 hash 
function. This technique involves the application of spatial and temporal pre-computation. 
Comparing to conventional pipelined implementation of RIPEMD-160 hash function, the 
proposed technique leads to an implementation with more than 35% higher throughput. 
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1. Introduction 
Nowadays many applications incorporate 
authenticating services. These applications 
pre-suppose that an authenticating module 
that includes a hash function is nested in 
the implementation of the application. 
Digital signature algorithms, used for 
authenticating services like electronic mail, 
electronic funds transfer etc, Peer-to-Peer 
file-sharing networks, security in networks 
and mobile services, and many other 
applications are based on using a critical 
cryptographic primitive like hash 
functions. 
All the mentioned before applications 
which incorporate hash functions are 
addressing to more and more users-clients 
and thus it is a primal necessity the 
increase of their throughput particularly in 
order to the cryptographic system satisfy 
immediately all requests for service from 
all users-clients. 
The latter mentioned facts were strong 
motivation to propose a novel technique 
for increasing throughput of hash 
functions. Efforts for optimization have 
been paid for both SHA-1 and SHA-256 
[1], [2] which are the most widely 
deployed hash functions. In this work we 
propose an optimization for RIPEMD-160. 
The latter is an algorithm very strong in 
cryptanalysis which is not very widely 

used in antithesis to SHA family and MD-
5 which are currently the most widely used 
hash functions. For some applications this 
can be considered as an advantage since 
not many people will try to break 
RIPEMD-160 hash function. The proposed 
implementation introduces a negligible 
area penalty, increasing the throughput and 
keeping the area small enough as required 
by most portable communication devices. 
 
 
2. Proposed Implementation 
In Fig.1, the general architecture for 
RIPEMD-160 core with pipelined structure 
is illustrated, where there are five pipeline 
stages and a single operation block for 
each round among with the rest necessary 
parts. The critical path of the illustrated 
architecture is located between the pipeline 
stages.  
Thus, the optimization of the critical path 
is solely focused on the operation block in 
order to reduce the delay and thus increase 
the operating frequency. The targeted 
design approach focuses on increasing the 
operating frequency, foperation, without 
introducing a significant area penalty. 
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Figure 1: Ripemd-160 core architecture 
with 5 pipeline stages including a single 
operation block 
 
 
3. Optimizing block's operating 
frequency 
The applied technique consists of the 
following 2 sub-techniques: 
1) Spatial Pre-computation of additions 
contributing to the critical path. 
2) Temporal Pre-computation of some 
values that are needed in following 
operations. 
Examining the expressions described in [3] 
and represented in Fig. 2, it is observed 
that some input values are assigned 
directly to some output values respectively. 
From Fig. 2, it is derived that the 
maximum delay is observed on the 
calculation of the bt, value. Obviously the 
critical path consists of three addition 
stages and a multiplexer that feeds back 
the operation block as it can be seen 
studying Fig.2.  
A notice that one can make observing the 
Fig. 2 is that some outputs are derived 
directly from some inputs values 
respectively. So we can assume that it is 
possible during one operation to pre-
calculate some intermediate values that 
will be used in the next operation. 
Therefore, while the main calculations are 
in progress, at the same time some values 
that are going to be needed in the next 
operation can also be in progress of 

calculation. Furthermore, moving the 
pipeline stage to an appropriate 
intermediate point we can store these 
intermediate calculated values, the critical 
path is divided resulting in a decrease of 
the maximum delay without paying any 
worth-mentioning area penalty. 
 

  
Figure 2: A single RipeMD- 160 operation 
block 
 
Thus, the RIPEMD-160 equations 
representing Fig.2 is transformed to 
generate the intermediate values a t-1*, bt-1*, 
ct-1*, dt-1*, et-1* and gt-1 as illustrated in 
Fig.3. In Fig.3 the pre-computation 
technique applied in RIPEMD-160 hash 
function is illustrated. Each operation 
block now consists of two units the “Pre-
Computation” unit which is responsible for 
the pre-computation of the values that are 
needed in the next operation and the 
“Final-Calculation” unit which is 
responsible for the final computations of 
each operation. 
Notice that in Fig.3 output bt enters the 
multiplexer and feeds a no-load wire bt-1 
which stores its value to the register as     
bt-1*. Also notice at the “Pre-Computation” 
unit that the inputs a t-1, ct-1, dt-1, et-1, which 
is equal with the values a t-1*, ct-1*, dt-1*, et-

1* respectively, are fed through the 
multiplexer from the intermediate register 
outputs et-1*, bt-1*, ct-1*, dt-1* respectively. 
The introduced area penalty is small, only 
a single register for each “round”, that 
stores the intermediate value gt-1. In order 
to reduce the critical path by one addition 



level, we will continue with the application 
of the second technique, which introduces 
a temporal pre-computation of the values. 
From the “Final-Calculation” stage of 
Fig.3, one can observe that in every 
operation, from the current value of dt-1, 
derives directly the value of et (at the next 
operation). Also, from the current value of 
et, derives directly the value of a t+1. 
Consequently, the value of a, is the same 
as the value of was two operations earlier.  
 
So it is valid to write the following 
equation: 
 
a t+1 = et = dt-1                                (1) 
 
Thus, we perform the temporal pre-
computation of the sum (Xt+2 + Kt+2) + a t+1 
two operations before it is used, by 
calculating the sum (Xt+2 + Kt+2) + dt-1 at 
the “Final-Calculation” unit, when the 
operation t is being executed. Then this 
sum at the “Pre-Computation” stage of the 
next operation (t+1) saved into the register 
h and represent the sum (Xt+2 + Kt+2) + et. 
At the “Final-Calculation” unit of the same 
operation, the value of W derives directly 
from the value of h. The computed sum 
now of the value W represents the sum 
(Xt+2 + Kt+2) + a t+1.  
Finally at the “Pre-Computation” unit on 
the next operation (which is the operation 
t+2) the sum Z= W + ft is calculated. The 
computed sum now represents the value 
(Xt+2 + Kt+2) + a t+1 + ft. This sum is part of 
the computations needed for the 
calculation of bt+2 value. What remains for 
the computation of the value bt+2 is the 
rotation (Rols) of the value Z and then the 
addition in this result of the value et+2, as is 
performed in the “Final-Calculation” in 
Fig.4. 
Observing Fig.4 we see that the critical 
path is not located any more in the 
computation of the bt value but in the 
computation of the value of Z. This means 
that the critical path in Fig.4 has been 
reduced, from three addition stages, a Non 
Linear Function ft and a multiplexer in 
Fig.3, to two addition stages, a Non Linear 
Function ft and multiplexer. Thus, the 

critical path is shortened by one adder 
level, which contributes approximately 
30% to the overall maximum delay. 
Moreover, we must notice that an 
initialization of the values of W and h is 
needed as it is illustrated in Fig.4. The 
introduced area penalty is only two 32-bit 
registers, which are used for storing the 
intermediate results of the values W and h 
that are required. This area penalty sure 
enough is worth paying for an increase of 
throughput at about 35%. 
 

 
Figure 3: The parallelism block of SHA-
256  
 
 

  
Figure 4: The proposed SHA-256 
operation block 
 
 
4. Experimental Results-
Conclusions 
The proposed hashing core that was 
presented was captured in VHDL and was 
fully simulated and verified with the 
ModelSim Simulator. The achieved 



operating frequency is equal to 87,6 MHz. 
From the experimental results, it was 
proved that Ripemd-160 proposed 
implementation was about 35% faster than 
the conventional implementation. 
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