
RipeMD-160 Implementation Optimized in Terms of Throughput

A.P. Kakarountas, H.E. Michail, and C.E. Goutis
University of Patras, Greece

kakarountas@ieee.org, michail@ece.upatras.gr, goutis@ece.upatras.gr

ABSTRACT
Hash functions, which are a special family of cryptographic algorithms, satisfy the
requirements of our days for security, confidentiality and validity for several services in
technology. Many applications incorporate hash functions and address, as time passes, to
more and more users-clients and thus the increase of their throughput is a primal necessity. In
this paper we propose an implementation that increases the throughput of RIPEMD-160 hash
function. This technique involves the application of spatial and temporal pre-computation.
Comparing to conventional pipelined implementation of RIPEMD-160 hash function, the
proposed technique leads to an implementation with more than 35% higher throughput.

Key-words: Message Authentication Code, CMAC, VLSI Implementation

1. Introduction
Nowadays many applications incorporate
authenticating services. These applications
pre-suppose that an authenticating module
that includes a hash function is nested in
the implementation of the application.
Digital signature algorithms, used for
authenticating services like electronic mail,
electronic funds transfer etc, Peer-to-Peer
file-sharing networks, security in networks
and mobile services, and many other
applications are based on using a critical
cryptographic primitive like hash
functions.
All the mentioned before applications
which incorporate hash functions are
addressing to more and more users-clients
and thus it is a primal necessity the
increase of their throughput particularly in
order to the cryptographic system satisfy
immediately all requests for service from
all users-clients.
The latter mentioned facts were strong
motivation to propose a novel technique
for increasing throughput of hash
functions. Efforts for optimization have
been paid for both SHA-1 and SHA-256
[1], [2] which are the most widely
deployed hash functions. In this work we
propose an optimization for RIPEMD-160.
The latter is an algorithm very strong in
cryptanalysis which is not very widely

used in antithesis to SHA family and MD-
5 which are currently the most widely used
hash functions. For some applications this
can be considered as an advantage since
not many people will try to break
RIPEMD-160 hash function. The proposed
implementation introduces a negligible
area penalty, increasing the throughput and
keeping the area small enough as required
by most portable communication devices.

2. Proposed Implementation
In Fig.1, the general architecture for
RIPEMD-160 core with pipelined structure
is illustrated, where there are five pipeline
stages and a single operation block for
each round among with the rest necessary
parts. The critical path of the illustrated
architecture is located between the pipeline
stages.
Thus, the optimization of the critical path
is solely focused on the operation block in
order to reduce the delay and thus increase
the operating frequency. The targeted
design approach focuses on increasing the
operating frequency, foperation, without
introducing a significant area penalty.

mailto:kakarountas@ieee.org
mailto:michail@ece.upatras.gr
mailto:goutis@ece.upatras.gr

Figure 1: Ripemd-160 core architecture
with 5 pipeline stages including a single
operation block

3. Optimizing block's operating
frequency
The applied technique consists of the
following 2 sub-techniques:
1) Spatial Pre-computation of additions
contributing to the critical path.
2) Temporal Pre-computation of some
values that are needed in following
operations.
Examining the expressions described in [3]
and represented in Fig. 2, it is observed
that some input values are assigned
directly to some output values respectively.
From Fig. 2, it is derived that the
maximum delay is observed on the
calculation of the bt, value. Obviously the
critical path consists of three addition
stages and a multiplexer that feeds back
the operation block as it can be seen
studying Fig.2.
A notice that one can make observing the
Fig. 2 is that some outputs are derived
directly from some inputs values
respectively. So we can assume that it is
possible during one operation to pre-
calculate some intermediate values that
will be used in the next operation.
Therefore, while the main calculations are
in progress, at the same time some values
that are going to be needed in the next
operation can also be in progress of

calculation. Furthermore, moving the
pipeline stage to an appropriate
intermediate point we can store these
intermediate calculated values, the critical
path is divided resulting in a decrease of
the maximum delay without paying any
worth-mentioning area penalty.

Figure 2: A single RipeMD- 160 operation
block

Thus, the RIPEMD-160 equations
representing Fig.2 is transformed to
generate the intermediate values a t-1*, bt-1*,
ct-1*, dt-1*, et-1* and gt-1 as illustrated in
Fig.3. In Fig.3 the pre-computation
technique applied in RIPEMD-160 hash
function is illustrated. Each operation
block now consists of two units the “Pre-
Computation” unit which is responsible for
the pre-computation of the values that are
needed in the next operation and the
“Final-Calculation” unit which is
responsible for the final computations of
each operation.
Notice that in Fig.3 output bt enters the
multiplexer and feeds a no-load wire bt-1
which stores its value to the register as
bt-1*. Also notice at the “Pre-Computation”
unit that the inputs a t-1, ct-1, dt-1, et-1, which
is equal with the values a t-1*, ct-1*, dt-1*, et-

1* respectively, are fed through the
multiplexer from the intermediate register
outputs et-1*, bt-1*, ct-1*, dt-1* respectively.
The introduced area penalty is small, only
a single register for each “round”, that
stores the intermediate value gt-1. In order
to reduce the critical path by one addition

level, we will continue with the application
of the second technique, which introduces
a temporal pre-computation of the values.
From the “Final-Calculation” stage of
Fig.3, one can observe that in every
operation, from the current value of dt-1,
derives directly the value of et (at the next
operation). Also, from the current value of
et, derives directly the value of a t+1.
Consequently, the value of a, is the same
as the value of was two operations earlier.

So it is valid to write the following
equation:

a t+1 = et = dt-1 (1)

Thus, we perform the temporal pre-
computation of the sum (Xt+2 + Kt+2) + a t+1
two operations before it is used, by
calculating the sum (Xt+2 + Kt+2) + dt-1 at
the “Final-Calculation” unit, when the
operation t is being executed. Then this
sum at the “Pre-Computation” stage of the
next operation (t+1) saved into the register
h and represent the sum (Xt+2 + Kt+2) + et.
At the “Final-Calculation” unit of the same
operation, the value of W derives directly
from the value of h. The computed sum
now of the value W represents the sum
(Xt+2 + Kt+2) + a t+1.
Finally at the “Pre-Computation” unit on
the next operation (which is the operation
t+2) the sum Z= W + ft is calculated. The
computed sum now represents the value
(Xt+2 + Kt+2) + a t+1 + ft. This sum is part of
the computations needed for the
calculation of bt+2 value. What remains for
the computation of the value bt+2 is the
rotation (Rols) of the value Z and then the
addition in this result of the value et+2, as is
performed in the “Final-Calculation” in
Fig.4.
Observing Fig.4 we see that the critical
path is not located any more in the
computation of the bt value but in the
computation of the value of Z. This means
that the critical path in Fig.4 has been
reduced, from three addition stages, a Non
Linear Function ft and a multiplexer in
Fig.3, to two addition stages, a Non Linear
Function ft and multiplexer. Thus, the

critical path is shortened by one adder
level, which contributes approximately
30% to the overall maximum delay.
Moreover, we must notice that an
initialization of the values of W and h is
needed as it is illustrated in Fig.4. The
introduced area penalty is only two 32-bit
registers, which are used for storing the
intermediate results of the values W and h
that are required. This area penalty sure
enough is worth paying for an increase of
throughput at about 35%.

Figure 3: The parallelism block of SHA-
256

Figure 4: The proposed SHA-256
operation block

4. Experimental Results-
Conclusions
The proposed hashing core that was
presented was captured in VHDL and was
fully simulated and verified with the
ModelSim Simulator. The achieved

operating frequency is equal to 87,6 MHz.
From the experimental results, it was
proved that Ripemd-160 proposed
implementation was about 35% faster than
the conventional implementation.

5. Acknowledgment
We thank European Social Fund (ESF),
Operational Program for Educational and
Vocational Training II (EPEAEK II) and
particularly the program PYTHAGORAS,
for funding the above work. This work was
also co-funded from National Funds and
from the European Commission -
European Social Fund (ESF), Program for
Supporting Research Manpower (PENED
2003).

References:
[1] I.I. Yiakoumis, M. Papadonikolakis

H.E. Michail, A.P. Kakarountas, C.E.
Goutis, “Maximizing the Hash
Function of Authentication Codes,”
IEEE Potentials, March-May 2006
pp. 2-6, 2006.

[2] H.E. Michail, A.P. Kakarountas, G.

Selimis, C.E. Goutis, “Optimizing

SHA-1 Hash Function for High
Throughput with a Partial Unrolling
Study”, in Proc. of 2005 IEEE
International Workshop on Power
And Timing Modeling, Optimization
and Simulation (PATMOS'05), pp.
591-600, Leuven, Belgium, 20-23
September, 2005.

[3] H.Dobbertin, A.Bosselaers,

B.Preneel, RIPEMD-160: A
Strengthened Version of RIPEMD,
18 April 1996.

[4] N. Sklavos, O. Koufopavlou,

“Implementation of the SHA-2 Hash
Family Standard Using FPGAs,”
Journal of Supercomputing, Kluwer
Academic Publishers, Vol. 31, No 3,
Issue: X, pp. 227-248, 2005.

[5] N. Sklavos, O. Koufopavlou, “On the

Hardware Implementations of the
SHA-2 (256, 384, 512) Hash
Functions,” proceedings of IEEE
International Symposium on Circuits
& Systems (ISCAS'03), Vol. V, pp.
153-156, Thailand, May 25-28, 2003.

