
1

The Impact of Using Formal Methods Tools in Undergraduate Computing
Courses

Toufik Taibi
College of Information Technology, United Arab Emirates University,
P.O. Box 17555, Al Ain, United Arab Emirates, toufikt@uaeu.ac.ae

Abstract
The last decade has shown an increasing interest in
integrating formal methods into the software development
lifecycle in order to strengthen software reliability. A
prerequisite to the success of such integration is the
incorporation of formal methods tools in the computing
undergraduate curriculum. This paper covers an experiment
conducted on undergraduate software engineering student,
while taking a formal methods course. The experiment
involved comparing the errors found in specifications using
the pen and pencil approach and using two tools- Z Type
Checker (ZTC) and a Z Animation system (ZANS).The
experiment results not only show that the tool-support
approach is far superior in reducing the errors found in
specifications but also that it has improved the student
learning experience and enthusiasm towards formal
methods.

Keywords: Formal methods, Z formal notation, ZTC, ZANS.

1. Introduction

Software is becoming an integral part of our lives. As
such, software reliability is becoming a paramount in
the requirements of software projects. Formal
methods are well-equipped to provide the needed
reliability. However, their widespread application is
hindered by the lack of its expertise among software
practitioners. Since most of these practitioners are the
result of a computing education system, it is important
to equip undergraduate students with theoretical as
well as practical usage of formal methods.
The success of traditional engineering disciplines was
mainly due to the high integration of theory and
practice. Computing curricula do not seem to address
the integration of theory (mathematics) with practice
through the usage of tools.
This paper covers an experiment on the impact of tool
support on the learning experience of students. This
involves solving the same problems using the pen and
pencil approach and the tool support approach. The

problems given to students were to write specification
of systems using the Z formal specification language
[10]. The tool used were the Z Type Checker (ZTC)
[5] and Z Animation System (ZANS) [6].
The experiments results have shown a reduction of the
number of errors found using tools compared with the
P&P approach. Moreover, the usage if the ZANS tool
improved tremendously the checking the semantic
correctness of operations.
The rest of the paper is organized as follows. Section 2
provides a brief overview of Z, ZTC and ZANS.
Section 3 describes the experiment conducted on
student learning experience with and without the
usage of tools and summarizes its outcomes. Section 4
covers related work, while section 5 concludes the
paper.

2. Z, ZTC and ZANS

The Z notation is a model-oriented formal
specification language developed by the Programming
Research Group at Oxford University Computing
Laboratory in the early 80s. Since then, Z has known
successful widespread usage [1], the most notable
being the specification of IBM's Customer Information
Control System (CICS) Application Programming
Interface (API) [4]. The above project has shown that
the code generated from Z specifications and designs
has 2.5 times fewer problems that the code that was
not specified in Z.
Z is a strongly typed specification language. ZTC is a
type checker for Z, which determines if there are
syntax and typing errors in Z specifications. ZTC
accepts two forms of input: LaTeX [8] and ZSL [5], an
ASCII version of Z. ZTC can perform translations
between LaTeX and ZSL. In our experiment LaTeX
input is used.
Below is an example LaTeX input file and its
corresponding Z specification.

\begin{document}

mailto:toufikt@uaeu.ac.ae

2.

\begin{zed}
[NAME, DATE]
\end{zed}
\begin{schema}{BirthdayBook}
known: \power NAME \\
birthday: NAME \pfun DATE
\where
known = \dom birthday
\end{schema}
\end{document}

[NAME, DATE]

The lexical elements of a LaTeX input can be
categorized as follows:

• LaTeX commands, which begin with a backslash

(\), such as \begin and \end.
• Keywords, such as schema, zed.
• Identifiers, such as DataDictionary and name?
• Integers, such as 0 and 65535.
• Symbols, which consists of one or more non-

alphanumeric characters, such as ::, == , and ::= .

Each specification must be enclosed in
\begin{document}…\end{document}. Anything outside
is ignored by ZTC. A Z specification consists of formal
and informal text. ZTC will type check formal text and
ignore the informal text. Formal text must be enclosed
in one of the following formal environments:

• \begin{axdef}…\end{axdef}, used to define axiom

boxes.
• \begin{gendef}…\end{gendef}, used to define

generic boxes.
• \begin{schema}…\end{schema}, used to define

schema boxes.
• \begin{syntax}…\end{syntax}, used to define free

types. A syntax environment contains a sequence
of syntax rules separated by the \also command.

• \begin{zed}…\end{zed} use to define other
paragraphs in Z. These include given sets, schema
definition (horizontal format), equivalence
definition and predicates. Short free type definitions
can also be included in the zed environment. The

paragraphs in a zed environment must be separated
by the \also command.

Informal comments or remarks inside formal
environments can be introduced as follows:
\comm{informal text} or \remark {informal text}. ZTC
ignores the arguments of these two commands.
Sometimes, it may be needed to ignore some formal text
without deleting them. To do so the environments
\begin{comment}…\end{comment} and
\begin{nocheck}…\end{nocheck} can be used.
Separators (;, \also, \\ and \linebreak) are used to
separate between declarations or predicates in the
axiom, generic and schema boxes. Omission of
separators between declarations or predicates will
cause syntax and/or typing errors.
A line continuing command is a line breaking
command followed by a TAB command, which is one
of the following \t0 (indents the least amount of space)
… \t9 (indents the most amount of space).
ZTC allows to break a long specification into several
input files and then includes them into a master file
using either of the following commands
input{filename} or \include{filename}. To invoke ZTC,
type ztc at the command prompt followed by a
filename.
ZANS is an animation tool for Z specifications. The
version of ZANS used supports type checking of Z
specifications, expansion of schema expressions,
evaluation of expressions and predicates; and
execution of operation schemas. The input to ZANS
can be written in LaTeX or ZSL. ZANS supports the Z
syntax defined in [10].
To invoke ZANS, type zans on the command line.
This will enter the interpretation cycle (zans>), which
gets. ZANS to be waiting for a command.
A ZANS command consists of three parts separated by
one or more spaces: command-name [option]
[arguments] . The option and arguments are optional
The option part must begin with a hyphen (-). Most of
the commands are single-line commands, which means
that when the return key is hit, it signals the end of the
command and ZANS starts to interpret the command.
There are also a number of multi-line commands. They
are designed to allow lengthy arguments to the
commands, such as expressions or paragraphs in a
specification. For a multi-line command a single return
key will not terminate the command, instead a
continuation prompt cont> will appear. A multi-line
command is terminated with two consecutive returns.
ZANS has two modes of operation: the initial mode
and the animation mode. The initial mode is the mode

BirthdayBook

known: Π NAME
birthday: Name ♣ DATE
known= dom birthday

3.

at the start of ZANS. The animation mode is the mode
in which specifications can be animated. The two
different modes are indicated by two different prompts
(zans> and anim>). Table 1 lists all ZANS
commands (in alphabetical order)[6]. The column
usage reflects the annotation of the commands, which
are defined as follows [6]:

• S: single-line command; M: Multi-line command.
• I: available in the initial mode; A: available in the

animation mode.
• → I: transition to the initial mode; → A:

transition to the animation mode.

Table 1, ZANS commands
Command Usage Interpretation

analyze filename <S,IA> Analyze the entire specification.
The operations generated are
saved in the file named filename.

animate <S,I→A> Start animation.
assign variable:=
expression

<M,IA> Assign the value of the
expression to the variable.

clear <S,A→I> Clear the current specification.
eval [-e]
expression

<M,IA> Evaluate the expression. -e:
eager evaluation.

execute
[-at]
schemaname

<S,A> Execute the operation schema
named schemaname. -a: try all
branches, -t: non-committal
execution.

exit <S,IA> Exit ZANS.
expand [-dn]
schemaexp

<M,IA> Expand the schema expression. –
d: convert to disjunctive normal
form, -n: normalized.

expfile [-dn]
filename

<S,IA> Expend the entire specification
and save the results in the file
named filename. Options similar
to those of command expand.

help <S,IA> List all commands of ZANS.
list <S,IA> List all the schema names in the

currently loaded specification.
load infile <S,IA> Load and type check the

specification file named infile.
para paragraph <M,IA> Enter and type check a

paragraph.
pragma
pragmaname
[args…]

<S,IA> Set pragmas.

pred predicate <M,IA> Evaluate the predicate.
script
scriptfilename

<S,IA> Set the name of the script file to
scriptfilename.

show [-ov]
schemaname

<S,IA> Show the schema named
schemanane in its original,
unexpanded form. –o: shows the
operations generated from the
schema, -v: show the current
value of the schema components.

source
scriptfilename

<S,IA> Run the script file named
scriptfilename.

stop <S,A> Stop animation
style [-tlb] <S,IA> Set the output style. –t:LaTeX

style, -l: ZSL text style, -b: ZSL
box style (default).

verbose digit <S,IA> Set verbosity level: 0-9. 0 the

least verbose, 9 the most
verbose. Initial value: 5.

3. Experiments and Results

The formal methods course is taken by 9 software
engineering students at the college of IT, UAEU.
Students were given three specifications as exercises.
The first covers a library management system, the
second an examination management system, while the
third a phone directory system.
The experiment was set in such a way that students
are asked to solve the three exercises using the P&P
approach then use the tools ZTC and ZANS to type
check and animate their specifications respectively.
Table 2 summarizes the findings of the experiments
which compared the errors found with P&P approach
with those found with the tools (labeled T). Figure 1,
plots the histogram of the total errors counts of
students using the P&P versus the tool approach.

Table 2, Errors Counts with P&P and with Tool
Exercise 1 Exercise 2 Exercise 3 Total

P&P T P&P T P&P T P&P T
1 11 9 10 8 8 5 29 22
2 10 7 8 5 7 6 25 18
3 8 6 7 4 4 3 19 13
4 11 8 9 6 7 5 27 19
5 6 3 5 4 4 3 15 10
6 7 5 6 3 5 2 18 10
7 10 8 9 7 7 5 26 20
8 12 7 10 6 8 5 30 18
9 9 5 8 5 6 2 23 12

Total Errors Counts P&P Vs. Tool

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9

Students

To
ta

l E
rr

or
s

P&P

Tool

Figure 1, Total Errors Count P&P Vs. Tool

The above results confirm indeed that the usage of
tools led to the generation of fewer errors than the
P&P approach. Overall, error count in developing Z

4.

specification dropped by 30% compared to the P&P
approach. Moreover, the overall results obtained from
this experiment suggest the following outcomes:

• Students' errors (using both P&P and Tool)

decreased from exercise to another. This is a
logical consequence since students gain more
experience in Z with more practice.

• The errors count with using the tool was always
less than the one using the P&P approach in all
exercises. The tools really helped students
strengthen their theoretical understanding of the
Z specification language.

The above findings are quantitative in nature. As for
the qualitative outcomes of the experiment they can be
summarized as follows:

• Students' interest and motivation to learning Z

has increased when the usage of tools was
introduced.

• Using the tools has increased the cooperative
learning of students.

4. Related Work

A number of research projects [7] have clearly showed
the advantages of introducing formal methods into
undergraduate curricula. Also, a number of initiatives
have been announced and implemented [3] aiming at
integrating the formal methods into the software
engineering curricula.
It is only through the inclusion of formal methods that
we can introduce rigorousness to the software
development process. However, the study done in [2]
found that there are only few formal methods course
offered. Moreover, there is a lack of appropriate
software tools that can assist students in mastering the
theory and practical usage of formal methods.
The developed formal methods tools were only targeted
for the industry and few open-source tools were
available for academia [9].

5. Conclusion

This paper presented an experiment aimed at
assessing the impact of using formal methods tools in
a formal methods undergraduate course.
Students were given three different exercises and were
asked to write Z specifications for them using both the
P&P approach and the tool support approach.

The experiment results show that overall errors found
in using the tool support approach were 30% less than
those found in using the P&P approach.
These initial findings of the experiment are very
promising to us as educators. Indeed it confirms what
we have stated in the introduction that computing
education of the mathematical based course need to be
coupled with tool support that strengthen the
theoretical knowledge learnt during the lecture.

References

[1] Craigen D., Gerhart S. and Ralson T., An
international Survey of Industrial Applications of
Formal Methods, Volume I and II, National Institute of
Stardands and Technology, GCR/93/626, March 1993.
[2] Dean C.N., Boute R.T. (Eds.). Teaching Formal
Methods, CoLogNET/FME Symposium, TFM 2004,
Ghent, Belgium, Lecture Notes in Computer Science,
Springer, 2004.
[3] Dean C.N. and Hincey M.G. (Eds.). Teaching and
Learning Formal Methods Academic Press 1996,
[4] Houston I., and King, S. “CICS Project:
Experiences and Results From the Use of Z in IBM”,
Proc. VDM’91 – Formal Software Development
Methods, LNCS No. 552, pp. 588-596, 1991.
[5] Jia X. ZTC: A Type Checker for Z Notation, User's
Guide, October 2003.
[6] Jia X. A Tutorial of ZANS- A Z Animation System,
July 1998.
[7] Sobel, A. Final Results of Incorporating an
Operational Formal Method into a Software
Engineering Curriculum. In Proceeding of the IEEE
Frontiers in Education, November 1999.
[8] Lamport L., LaTeX: A Document Preparation
System, 2nd edition, Addison-Wesley, 1994.
[9] Skevoulis S., Markov V., Integrating Formal
Methods Tools into Undergraduate Computer Science
Curriculum, 36th ASEE/IEEE Frontiers in Education
Conference, 2006.
[10] Spivey J.M., The Z Notation, A Reference Manual,
Second Edition, Prentice Hall International, 1992.

