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Abstract—This paper investigates the use of complex wavelets in gamma ray spectroscopy signals. In this paper an algorithm for 

noise elimination of the detected gamma ray spectroscopy signals is studied. This algorithm is based on the complex wavelet transform. 

Reconstruction of the original detected signal is obtained by applying the inverse complex wavelet transform to the transformed 

complex wavelet transform signal. Five different cases are studied with different five levels of the complex wavelet transform. 

Consequently, comparisons between these levels are considered in terms of maximum number of peak heights, execution time, and peak 

signal to noise ratio (PSNR). Moreover, comparison between different signal reconstruction with respect to different complex wavelet 

transform levels, size of the transformed signal in each level, and number of coefficient in each subband for certain level. One of the 

main advantages of this algorithm that discussed in the previous literature is that its filters do not have serious distributed bumps in the 

wrong side of the power spectrum and, simultaneously, they do not introduce any redundancy to the original signal. The obtained result 

confirms the high accuracy of the considered algorithm over traditional algorithms for both noise elimination and signal reconstruction. 

Keywords—Complex Wavelet Transform; Peak Signal-to-Noise 

Ratio; Linear Filters 

 

 

I. INTRODUCTION 

HE Scintillation detection experiments indicate that the 

electronic noise in InI photodetectors was the dominant 

source of resolution broadening [1]. Hence, the electronic 

noise behavior of the InI detectors was investigated to 

determine the magnitude of various noise components in the 

detectors. These existing noise models are used to analyze 

the electronic noise in InI detectors. The electronic noise is 

expected to arise from several sources in InI detectors [1]. 

These sources are the parallel thermal noise due to the 

detector leakage current (also commonly referred to as shot 

noise).  

Secondly, the series thermal noise that generated in the 

channel of the input JFET of the pre-amplifier. Finally, the 

1/f noise has been obtained from the detector pre-amplifier 

assembly. Since the PMT anode signal is very noisy and 

timing features highly depend on the signal at specific times, 

a de-noising algorithm is required.  

There exist different digital de-noising and smoothing 

methods (e. g. moving average filters) depending on the 

application [2]. A de-noising algorithms based on the 

Wavelet Transform (WT) is implemented to reduce the 

effect of noise introduced by the noisy analog channel and 

by the photomultiplier tube as in [2]. In this application, 

linear smoothing filters are not appropriate because the 

signal contains a sharp portion associated with the 

interaction in the first layer (fast component).  

Wavelet de-noising which is a non-linear filtering 

operation analyzes the signal at different time resolution 

levels and then removes the noise components by 

thresholding signal components in one or more levels. 

Depending on the application, the level and threshold should 

be modified to remove the noise while keeping the 

important high-frequency components of the signal [2].  

Complex wavelet transforms has significant advantages 

over real wavelet transform for certain signal processing 

problem [3]. Complex wavelet transforms, in which the real 
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and imaginary parts of the transform coefficients are an 

approximate Hilbert-transform pair, offer three significant 

advantages over real wavelet transforms: shift invariance, 

directionality, and explicit phase information. These 

properties enable efficient statistical models for the 

coefficients that are also geometrically meaningful [4]. 

Complex wavelets have not been used widely in signal 

processing due to the difficulty in designing complex filters 

which satisfy a perfect reconstruction property [5]. To 

overcome this Kingsbury [6] proposed a dual-tree 

implementation of the CWT (DT CWT) which uses two 

trees of real filters to generate the real and imaginary parts 

of the wavelet coefficients separately. Even though the 

outputs of each tree are downsampled by summing the 

outputs of the two trees during reconstruction, the aliased 

components of the signal is suppressed and achieved 

approximate shift invariance [5]. The complex wavelets are 

first used to perform analysis of the signals [5]. We describe 

how to extract features to characterize textured signals and 

test this characterization by resynthesizing textures with 

matching features. The term de-noising is usually referred to 

removing the white Gaussian noise or thermal noise which 

is added to the signal. In our application, this type of noise is 

mostly introduced by the noisy analog read-out system. In 

our application, a 5-level de-noising algorithm based on 

complex wavelet transform functions was used. Also, the 

rescaling in wavelet decomposition is performed using 

level-dependent estimation of the noise level. This paper is 

organized as follows: Section 2 presents the spectroscopy 

system. The more interesting characteristics of the studied 

complex wavelet transform are represented in Section 3. 

Results and discussion are summarized in Section 4 and we 

terminate our study by a briefly conclusions that we noted 

from our obtained results. 

 

II. SYSTEM CONFIGURATION 

In this system, the components of the system for 

evaluation of noise elimination using complex wavelet 

transform algorithms are described. Contains the following 

elements; 137Cs point source, scintillation detector, 

amplifier, digital system and connection to a desktop 

personal computer (PC). An 1.5 inches x 7.5 inches NaI(TI) 

scintillation detector is used to detect  the radiation signal 

from Cs137 point source. This detector is connected to 

amplifier through coaxial cable which in turn connected to 

the PC. MATLAB environment is used to perform noise 

elimination using complex wavelet transform evaluation. 

In this paper, an algorithm for noise elimination using 

complex wavelet transform is studied on digital gamma ray 

spectroscopy signals. This algorithm is proposed for 

multidimensional signal processing in [7]. Block diagram 

showing the algorithm of noise elimination evaluation using 

the complex wavelet transform is illustrated in Fig. 1.  

Moreover, different wavelet transform levels are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Block diagram model of the complex wavelet transform 

algorithm for noise elimination of gamma ray spectroscopy signal 

III. THE COMPLEX WAVELET TRANSFORM 

A. Linear Phase Filters 

One of the most important properties of the filters which 

can be applied to 3-band filter banks is linearity of the 

phase. The phase of the signals which are filtered using the 

linear phase filters is not perturbed, which means all 

frequency components of the signal are shifted equally. The 

filter h(t), which has the linear phase property, satisfies the 

following equation[7] 

  e ( 1 ),0   1ih n h N n n N                 (1) 

where N and θ is the length of the filter and an arbitrary 

variable between zero and 2π. The following four special 

kinds of the linear phase filters are used: 

1. Real filter with θ = 0, 2π and N to be odd, 

3. Complex filter with θ =π/2, 3π/2 

 

B. Filter Bank Characteristics 

Filter banks are widely used in digital signal processing, 

often integrated in a multirate scheme, to reduce the 

implementation cost and to improve algorithmic 

performance [8]. The ideal normalized power spectrum of 

the filters in the filter bank that satisfies all desirable 

characteristics, such as having the Hilbert-pairs wavelet 
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filters and introducing no bumps on the wrong side of the 

power spectrum. This filter bank introduces no redundancy 

because one of the wavelet filters is the complex conjugate 

of the other, so the resulting coefficients of one filter is the 

complex conjugate of the other filter, and we can discard 

them in further analysis [7]. 

In the ideal case, without considering this low-pass filter, 

the sampling frequency can be computed using Nyquist’s 

theorem. In the non-ideal case, an anti-aliasing filter must be 

applied before the sampling part. In this case, the sampling 

frequency can be calculated using the following equation 

[7]: 

n tr2Bf f                                                          (2) 

where fn is the Nyquist frequency and Btr is the transient 

band of the anti-aliasing filter. When using a discrete time 

low-pass filter after a continuous-to-discrete converter, we 

can compute another constraint for avoiding distortion. The 

sampling rate must be computed in such a way that the 

normalized bandwidth of the analog signal be equal to the 

pass-band of the low-pass filter. Therefore, the following 

constraint is computed [7]: 

2

n
s

low

f
f

B
                                                                   (3) 

where Blow is the normalized pass-band of the low-pass 

filter. In this case, the amount of sampling frequency 

increase with respect to the common sampling is [7]: 

2

2

n

low

n tr

f
B

R
f B




                                                      (4) 

In addition, natural signals decay very fast with frequency 

increase; therefore if we deviate a little from this sampling 

rate constraint, the amount of distortion introduces into 

signal is not very much. We will see this in the second part 

of the simulation results. 

C. Filter Bank Design Procedure 

An orthogonal filter bank for digital gamma ray 

spectroscopy which consists of one real filter h0(n)and two 

complex conjugate filters  ch n and  *

ch n  is studied. It 

is considered [7] 

      1 2

1

2
ch n h n ih n                               (5) 

then for having a complete orthogonal transform, h0(n), 

h1(n) and h2(n) must satisfy the shift orthogonal condition 

expressed in the next equation. 

In order to have a complete orthogonal transform, the 

scaling and the wavelet functions must satisfy the shift 

orthogonal condition.  

The design cost function is given by [7] 
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where α is the weighting coefficient and the stopband 

power is calculated at those frequencies ω1 and ω2 that 

maximize it. For this purpose, the stopband is sampled 

uniformly and the stopband power is evaluated at these 

sampled frequencies. A gradient descend algorithm for 

minimizing the cost function is used. At every iteration the 

weighting coefficient α should decrease such that the 

optimized filters satisfy the shift orthogonal condition. This 

iteration will terminate when the cost of the shift orthogonal 

condition expressed in the first line of Equation 6 becomes 

sufficiently small (≈ 10−6). 

IV. RESULTS AND DISCUSSION 

We apply the low-pass filter before the analysis and after 

the synthesis filter banks, therefore we deviate from the 

perfect reconstruction condition. To observe the amount of 

distortion introduced into the signal, we apply different 

levels of the filter bank with the low-pass filter to the 

acquired signal. The original detected signal is depicted in 

Fig. 2. 

The impulse response of the filters at levels one, two, 

three, four, and five at different shifts and the resulting 

absolute value of the wavelet coefficients at these levels are 

shown in Figs. 3-7, respectively. As illustrated in these 

figures, these filters are highly oriented in 00,  450, 900, 

and 1350 and the real and complex parts of the complex 

filter constitute Gabor-like filters as in [7]. As illustrated, 

the filters even at the first level are oriented. It is interesting 

to test the shift-invariance performance. It is obvious that 

the studied filter bank has an excellent shift-invariance 

property which is comparable to the dual-tree complex 

wavelet transform. For the studied filter bank with the filters 

of length 37, Ra is calculated and is shown in Table 3. As an 

illustrative example, we construct the signal of one, two, 

three, four, and five levels and the reconstructed signals are 

shown in Figs. 6-12. One can see that transformed signals 

are shift-invariant and free of aliasing.  

Comparison between the different wavelet levels are 

depicted in Table 1. From this table, the number of counted 

peaks decreases with the wavelet level. Also, the number of 

counted peaks of the original signal is equal to the number 

counts of level five complex wavelet transform. However, 

the execution time increases with the level. Also, 

comparison between different five levels is illustrated in 

terms of PSNR. From the theoretical results, the PSNR of 

the reconstructed signals are very high. Therefore, the 
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underlined filter bank is considered as a nearly perfect 

reconstruction filter bank on natural signals. Moreover, 

comparison between different signal reconstruction in terms 

of different complex wavelet transform levels, size of the 

input signal, size of the transformed signal in each level, 

number of coefficient in each subband for certain level, and 

total length of the input signal is depicted in Table 2. Also, 

the normalized amplitude of level 1 complex wavelet 

transform is depicted in Fig. 13. 
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Fig. 2 Original detected signal from the scintillation detector 
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Fig. 3 The impulse response of the filters at level one at different 

shifts and the resulting absolute value of the wavelet coefficients 
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Fig. 4 The impulse response of the filters at level two at different 

shifts and the resulting absolute value of the wavelet 

coefficients

TABLE I 

COMPARISON BETWEEN DIFFERENT COMPLEX WAVELET TRANSFORM LEVELS 

 
Number of Peaks Execution Time 

(s) 

Level 1 207 4.015 
Level 2 188 4.516 

Level 3 172 4.829 

Level 4 147 5.266 
Level 5 143 9.25 

 

 TABLE 2 
COMPARISON BETWEEN DIFFERENT LEVELS IN TERMS OF DIFFERENT STRUCTURE 

PARAMETERS 

 
Subbands Coefficient 

Number 

Total length 

Level 1 [4082 1] 17849 160641 

Level 2 [2x2 double] [17849 5115] 188827 
Level 3 [3x2 double] [17849 5115 

1782] 
199750 

Level 4 [4x2 double] [17849 5115 
1782 671] 

204007 

Level 5 [5x2 double] [17849 5115 

1782 671 297] 

206009 
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Fig. 5 The impulse response of the filters at level three at different 

shifts and the resulting absolute value of the wavelet coefficients 
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Fig. 6 The impulse response of the filters at level four at different 

shifts and the resulting absolute value of the wavelet coefficients 
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Fig. 7 The impulse response of the filters at level five at different 

shifts and the resulting absolute value of the wavelet coefficients 
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Fig. 8 Reconstructed signal using first level of the algorithm. 
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Fig. 9 Reconstructed signal using second levels of the algorithm. 
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Fig. 10 Reconstructed signal using three levels of the algorithm. 
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Fig. 11 Reconstructed signal using four levels of the algorithm. 
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Fig. 12 Reconstructed signal using five levels of the algorithm. 

0 0.5 1 1.5 2

x 10
5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

Fig. 13 Normalized amplitude of the output signal. 

CONCLUSION 

This paper focuses on noise elimination due to both 

electronic system readout and coaxial cables between 

scintillation detector and amplifier. An algorithm based on 

complex wavelet transforms is studied to do this function. 

The input signal is transformed using the complex wavelet 

transform. Then, the inverse complex wavelet transform is 

applied to the transformed signal. Comparison between 

different complex wavelet transform levels is considered. 

This comparison is based on both number of counted peaks, 

execution time and PSNR. This filter bank has linear phase 

filters. The resulting filters at different levels do not produce 

serious bumps on the wrong side of the frequency axis.  
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