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Abstract— Software Defined Networking (SDN) is a novel technology that has become a prominent topic in the last years. In any 

research is essential to have emulators and simulators in order to test new applications or protocols. In this context, we present the 

integration of OpenFlow protocol with Virtual Networks over linuX (VNX) tool, as new alternative for the emulation with SDN. 

VNX/OpenFlow approach integrates three kind of tools, an OpenFlow compliant switch (Open vSwitch), Network Operative Systems 

(POX, NOX and Beacon) and finally tools to control the performance and the network traffic. For the validation process, we present 

two VNX/OpenFlow scenarios to test the correctness of this tool. Finally, the result of this work allows the deployment of virtual 

scenarios with OpenFlow protocol. 
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I.  INTRODUCTION 

Network data traffic has grown exponentially in the last years 
due the emergence of real time applications, video streaming, 
the rise of social networking, the introduction of cloud 
computing, among others. The research community has created 
protocols in order to cover these new needs, however the 
standardization process takes a long time and the 
improvements in communication methods and information 
processing are almost nonexistent [1].  

Existing networks should have an open control and provide 
a real environment to tests with production traffic, due to these 
requirements the concept of Software Defined Networking 
arises [2]. SDN is not a new concept, rather is the result of 
many research projects such as the Active Networks and 
Ethane project [3]. SDN takes advantage of the best 
characteristics of these technologies (programmability, control 
and data plane separation), changing the way we see networks 
today. SDN allows the separation of data and control plane in 
network devices [4]. The control of the network behavior is in 
charge of an external device known as Network Operative 
System (NOS). The communication between network devices 
and the controller is established with a defined protocol, the 
most known OpenFlow [5].  

Currently, a great number of enterprises like Google have 
incorporated OpenFlow in their infrastructures and devices, 
and there are some organizations, such as Open Networking 
Foundation (ONF), which promote the development and the 
widespread of OpenFlow and SDN architecture. There are few 
projects to test with SDN such as simulators, emulators or 
testbeds. One of the first OpenFlow testbed was developed by 

Global Environment for Network Innovations (GENI) [6], 
which interconnects the principal universities of United States. 
Likewise, the project OpenFlow in Europe: Linking 
Infrastructure (OFELIA) [7] connects 8 OpenFlow islands, 
allowing experimentation with this technology.  

Other interesting tool is ns-3 simulator [8]. Although ns-3 
has support for OpenFlow, it does not work with typical 
controllers such as POX [9], NOX [10], Beacon [11], 
Floodlight [12], OpenDaylight, and so on. Instead, ns-3 has its 
own OpenFlow controller. Regarding OpenFlow emulators, the 
most known is Mininet which is used for rapidly prototyping 
large networks [13]. Mininet can run real applications with a 
great variety of topologies; however, the performance fidelity 
depends on the CPU capacity and the number of the emulated 
hosts. Additionally, there is a hybrid approach that combines 
simulation and emulation in one tool called EstiNet [14]. It has 
not problems with fidelity performance, however, it is not a 
free tool.  

There is a wide range of tools for experimentation with 
virtual networks, such as the virtualization tool called Virtual 
Networks over linuX (VNX) [15]. VNX is used in education 
and research fields, for instance in the experimentation with 
Intrusion Detection Systems (IDS), Multipath TCP (MTCP), 
among others. This paper presents the integration of this tool 
with OpenFlow protocol. For this purpose, OpenFlow-enabled 
switch and controllers are integrated. 

This work has been divided into five sections, as follows: 
The second section contains an introduction of SDN and 
OpenFlow protocol. Then, the third section presents the 
description of simulation and emulation tools. Next, the fourth 
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section shows the VNX-OpenFlow integration process and the 
validation of two test scenarios. Finally, a discussion is opened 
in the fifth section.  

II. SOFTWARE DEFINED NETWORKING 

Software Defined Networking introduces a paradigm change in 
the network communication, facilitating the innovation and the 
network programmability. SDN proposes the separation 
between the control and the data plane in networking devices. 
Consequently, the network is more flexible, programmable and 
it has automation capabilities. The own device could carry out 
advanced capacities such as firewall rules, load balancing, 
among others. 

The control of whole network is performed by a central 
point known as a controller. The network devices are 
connected with the controller through secure communication 
channel like Sockets Secure Layer (SSL). In the 
communication process is needed a standardized protocol the 
most known OpenFlow [5], which defines the communication 
rules between controller and OpenFlow compliant switches. 
OpenFlow offers new features that enable experimentation 
without expose the internal structure of switches from different 
vendors. For this purpose, OpenFlow delimits the basic 
functions of OpenFlow switches based on common 
characteristics of traditional Ethernet switch. OpenFlow defines 
three kind of tables, these are: flow, group and meter table. 
OpenFlow also introduces the flow concept, which can be 
defined as a kind of traffic such as the http requests, traffic to 
the same destination address, and so on. Moreover, OpenFlow 
establishes a pipeline in order to process the incoming packets. 
The packet is first matched against flow entries of flow table 0 
and may continue with the next tables, depends on the result of 
the match in the table. Flow entries match packets based on the 
priority field (highest priority). If a flow entry is found, the 
instructions are executed (Modify packet and update match 
fields, update action set, update metadata). If the packet does 
not match with a flow entry in any table, the outcome depends 
on the configuration of the table miss. A possible action is to 
search in the next table. Based on the SDN architecture and the 
business requirements many tools have been developed, such 
as: 

 Virtualization tools [16]. 

 Network Operating System (controllers) [9] [10]. 

 Virtual switches [17]. 

 Tools for Quality of Services and Quality of Experience 

[18]. 

 Management [19] [20]. 

 Optical Networks [21] [22]. 

 Traffic engineering and load balancing [23]. 

 Load Balancing [24]. 

 Simulation and Emulation tools [8] [13] [14]. 

All of these research fields are deployed and tested through 
some approaches; real testbeds, emulator or simulators [25]. 
OpenFlow testbeds [6] [7] allow the experimentation in real 
environments on a large scale. However, testbeds are 
not easily accessible by potential researchers. For its part, 

simulation and emulation approaches provide facilities in terms 
of scalability, portability and accessibility in the case of open 
source tools. Nevertheless, in some cases they produce 
inaccurate outcomes. We describe some familiar tools ns-3, 
Mininet and EstiNet, as well as VNX/OpenFlow. 

III. SIMULATION AND EMULATION TOOLS 

NS-3 is a simulator tool focuses on research and educational 
fields. It is an open sources simulator that provides an 
extensible network platform with several external animators, 
data analysis and visualization tools. In order to enable the 
simulation with OpenFlow protocol, Ns-3 implements its 
OpenFlow-enabled switch and its own controller, as a modules 
written in C++. The switch component is known as 
OpenFlowSwitchNetDevice. This object consists of a set of net 
devices that represent the switch ports, according to the 
OpenFlow Switch Specification v0.8.9. Even though Ns-3 can 
be used for real-time simulations, there are some issues that the 
user should take into account such as the slow learning curve to 
use the tool, the compatibility with a basic OpenFlow version 
(0.89) and specially it does not run a typical OpenFlow 
controller. Therefore, the controller applications generated with 
ns-3 controller cannot be used in real network. If a controller 
like Pox or Floodlight was required, these will need substantial 
modifications. 

For its part, Lantz et al. in [13] proposes Mininet, a 
virtualization tool for rapidly prototyping large networks in a 
single laptop. This tool includes OpenFlow support and 
combines lightweight virtualization capabilities over Linux 
operative system with an extensible CLI and API. A scenario 
built with Mininet is deployable, interactive, scalable, realistic 
and it can easily share. In fact, the Mininet topologies and the 
controller applications can be used for others researchers 
without modifications in the emulation environment as well as 
in real networks. Mininet run on virtual machine monitors like 
VMWare, XEN and VirtualBox or it can be installed in a Linux 
system. Mininet allows the deployment of hundreds of nodes, 
emulating OpenFlow-enabled switches, controllers like POX, 
virtual links and hosts. Mininet shares components like the file 
system, the user ID space, the kernel, device drivers, among 
others. Tough, Mininet is the most popular tool for SDN has 
limitations of performance fidelity related with the available 
resources, real bandwidth and the timing of the process.  

A novel hybrid approach has recently presented called 
EstiNet [14]. This combines the best characteristics of both 
simulation and emulation mode in one tool. On the one hand, it 
allows the deployment of large networks in a flexible, easy, 
scalable and repeatable way. On the other hand, EstiNet takes 
into account the timing needs for real applications in order to 
obtain the same results in both, virtual and real deployments. 
EstiNet supports 1.3.2 OpenFlow Switch Specification and it 
can run NOX, POX, Floodlight, and Ryu controllers without 
any modifications. For this purpose, EstiNet intercepts the 
packets between two real applications through tunnel network 
interfaces and redirects the packets to the EstiNet simulation 
engine. The entire process is based on a simulation clock, 
which allows accurate results. Besides, EstiNet provides a 
graphical user interface for configure the scenarios and observe 
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the outcomes from the simulations. The results of this tool 
show better scalability and performance than Mininet, however 
their main problem is that it need a payment for the tool. The 
universities can embrace the EstiNet University Program. This 
grants a license during six months with a cost of US$1500 or a 
license to 12 months for US$2500, becoming its main 
disadvantage.  

As we have seen, there are few tools or testbeds that allow 
the SDN experimentation. We present VNX a modular 
architecture based on plugins (Fig. 1), which allows the 
deployment of virtual testbeds. This tool includes the code of 
the previous tool VNUML [26].  

VNX

libvirt

Other 
Plugins

Physical 
Equpment 

Plugin

Dynamips 
Plugin

UML
Plugin

Libvirt
Plugin

...VMwareXENKVMUML Dynamips PE
Manager

VM1 VM1 VM1 VM1 VM1 VM1 VM1

Virtual Machines Physical EquipmentEXPERIMENTATION SCENARIO
 

Fig. 1. VNX Architecture [15]. 

 The plugins used by VNX are: 

 UML (User Mode Linux) can be considered a hypervisor-

based technique. 

 libvirt allows virtualization capabilities and some 

virtualization platforms, such as Xen, VMware, KVM, 

VirtualBox, etc.  

 Dynamips plugin allows the emulation the hardware of 

Cisco routers.  

 Olive allows the integration of Juniper routers. 

 Physical equipment plugin, which allows the connection 

between VNX physical islands. 

VNX is a free tool based on Linux that allows the easy 
creation and management of large virtual scenarios over a 
single server or a cluster. The scenarios can have nodes in 
some physical hosts and can use different operative systems, 
for example Linux and Windows. In turn, each physical host 
can deploy their own virtual testbed. Besides, VNX allows the 
creation of large scenarios with hundred or even thousands of 
virtual machines. This process uses the copy on write technique 
(cow), which starting the virtual machines from a single image 
file known as filesystem. In this way, the nodes can share the 
same filesystem. The filesystem is mounted in read-only mode. 
If a virtual node is modified, the differences are stored in a 
private filesystem.  

VNX is also focused on education and research. In [15] a 
large virtual network scenario was created. It is a laboratory for 
dynamic routing that involve 44 virtual devices (16 Cisco 

routers, 6 Juniper routers, 6 Linux/Quagga routers, 12 end user 
and 4 Servers). This testbed is a typical scenario deployed with 
VNX and shows its potential.  

One of the main SDN challenges is the integration of 
heterogeneous networks. VNX could provide the ideal 
environment to combine OpenFlow-enabled islands and legacy 
networks. The integration process is described in the next 
section.  

IV. INTEGRATION AND VALIDATION 

VNX should be implemented over a Linux operating system. 
The guidelines for configuration, modifications and filesystems 
are available in the official site of VNX project [27]. In order to 
testing with OpenFlow protocol, VNX needs the integration of 
some critical elements, an OpenFlow-enable switch for 
virtualization environments and a network operative system for 
network control. Additionally, it would be useful the 
integration of performance tools or data traffic analyzer. VNX 
was installed on a physical host with Ubuntu 12.04. Then, we 
choose two different filesystems. For controller device is 
desirable a graphical interface (ubuntu-12.04-gui-v024) to 
analyze the traffic. The second filesystem is a console interface 
(ubuntu-12.04-v024), which is used for simulated hosts and 
routers. The graphical filesystem was modified to make the 
controller functions, 3 of them were integrated: POX (based on 
Python) which is one of the most widely used today, NOX 
based on c++ and Python and finally Beacon which uses Java. 
The integration and configuration process are available in the 
official sites of each project. Additionally, in order to improve 
the functionalities of VNX/OpenFlow, three tools were 
installed: Wireshark, tcpdump and iperf. The wireshark tool is 
indispensable because originally it does not identify OpenFlow 
traffic. For this purpose, a dissector plugin for OpenFlow must 
be compiled and installed in the filesystem. Dissector allows to 
decode all information of specific incoming packets, in this 
case OpenFlow (version 1.0). Other important changes is the 
integration of Open vSwitch (OVS) [17]. OVS is an open 
source tool that allows the creation of switches in virtualization 
environments. OVS matches the virtual machines, providing 
better performance than the traditional bridge, such as VLANs, 
netFlow, QoS, bonding, mirroring, among others. OVS works 
transparently with VNX, for both legacy and OpenFlow 
networks. The version used in this paper is 1.4.0. After we 
create the .xml specification (Fig. 2). 

 

Fig. 2. XML Specification for Design Phase. 
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Once we have the file with .xml specification, the virtual 
scenario is deployed and matched with the controller. For the 
validation process we replicate the topology of OpenFlow 
Tutorial, as a point of reference to see the VNX operation. This 
tutorial was developed by Stanford University [28] and it 

deploys a topology (subnet 10.0.0.0/24) with 3 virtual hosts 
(h2, h3 and h4), an OpenFlow switch (s1) and one controller 
(c0). Two scenarios are presented: a basic scenario (Fig. 3a) 
that is identical to OpenFlow Tutorial and the second scenario 
incorporates more subnets and a second controller (Fig. 3b). 

H1

SWITCHES
OPENFLOW

10.0.2.1 /24
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10.0.0.2 /24 10.0.0.3 /24

HOST      
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Fig. 3. (a) Scenario 1. Basic Scenario; (b) Scenario 2. Scenario with two Controllers. 

The first scenario (Fig. 3a) has an OpenFlow-enabled 
switch and four hosts (C1, H2, H3, H4), all of them with 
Ubuntu 12.04. H2, H3 and H4 work with textual consoles and 
the controller (C1) works with a graphical console. The second 
scenario (Fig. 3b) is formed by five Ubuntu 12.04 virtual 
machines (router and hosts work with textual consoles and 
controllers with graphical console) according to the following 
structure: 

 3 switches in different subnets (Net0: 10.0.0.0/24, Net1: 

10.0.1.0/24 y Net2: 10.0.2.0/24). 

 2 controllers (C1: 10.0.0.2 and C2: 10.0.1.3).  

 2 hosts (H1:10.0.0.3 and H2:10.0.1.2) each one in different 

subnets.  

 Subnets communicate through the router (R1). 

The proofs of concept of this work were made exclusively 
with Ubuntu virtual machines, but it is possible to use another 
kind of operating system. Data traffic was analyzed with 
Wireshark. At first, Wireshark shows only typical protocols, 
such as ICMP, UDP, IP, among others, because OVS works as 
an Ethernet switch by default.  

In order to enable OpenFlow traffic, OVS must be 
connected with the controller. There are two configuration 
modes, which determine the switch behavior for a controller 
fail condition. These modes are: 

 Fail standalone: The default configuration mode. If OVS 

does not receive the inactivity probe interval three times, 

the OVS takes the control of the switch and it works like a 

normal Ethernet switch (MAC-learning switch). When the 

connection is lost, the switch handles the incoming packets 

using the OFPP_NORMAL reserved port. Moreover, the 

switch will attempt to connect with the controller. These 

mode is usually available in OpenFlow hybrid switches. 

 Fail secure: In this mode the OVS cannot take the network 

control if the controller fails. The network will be 

uncommunicated during the failure. Then, OVS will 

attempt to connect with the controller, until obtain a 

response. This mode is commonly used to avoid forwarding 

loops. 

Once the communication is established, the controller (or 
controllers) should maintain the links with all switches. There 
are three kinds of roles for the connection. The default role is 
OFPCR_ROLE_EQUAL and it allows full control over the 
network. The second role is known as 
OFPCR_ROLE_SLAVE, in which switches are configured in 
read only mode, therefore the controller has limited control. 
The third role, OFPCR_ROLE_MASTER works in the same 
way that OFPCR_ROLE_EQUAL, but there is only one 
controller with this role, other controllers are changed to slave 
role. In the second scenario all switches are connected with C1 
and C2 controllers in EQUAL role. In this way, we provide 
redundancy to the second scenario. 

Proofs were made with standalone and secure mode in both 
scenarios. We used POX controller with three applications, 
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forwarding.l2_learning, forwarding.l3_learning and 
forwarding.hub. Additionally, we wrote scripts in order to 
automate the process. These scripts contain the code for the 
deployment of the above mentioned scenarios and the 
establishment of links between switches and controller.  

In both scenarios data traffic was generated with ICMP and 
web requests between the hosts of the topologies. OFP 
(message for the establishment of network communication), 
OFP-ARP, OFP-ICMP (packet-in, packet-out) messages were 
captured with Wireshark analyzer and tcpdump tools as shown 
in Fig. 4. 

 

Fig. 4. Traffic Capture Scenario 2. 

Fig. 4 shows an ICMP proof from host h1 (10.0.0.3) to host 
h2 (10.0.1.2) performed in the second scenario, with the 
component forwarding.l2_learning of POX controller and in 
standalone mode. 

Both scenarios work properly with OpenFlow protocol, 
however in second scenario there were duplicated messages 
(from controllers C1 and C2). This is because OpenFlow does 
not define coordination mechanisms among controllers in the 
same network or in different domains [29]. At present, this 
process is done with other components. For instance, Fonseca 
et al. in [30] introduces the CPRecovery component, which 
allows keeping the consistency between the primary and 
backup controllers. This component provides seamless 
transition between the primary and secondary controller 
through two steps, the replication phase (maintain updated 
data) and the recovery phase. The replication phase acts during 
the normal network behavior and the recovery phase acts in 
case of failure. Another challenge in large topologies is the 
communication among controllers in different SDN domains. 
At the present time, Internet Engineering Task Force (IETF) is 
working in a standard called interfacing SDN Domain 
Controllers (SDNi) for exchange routing information (network 
topology views, network conditions, event reports) and 
application requirement.  

A general overview for the whole process in order to 
interact with VNX/OpenFlow scenarios is shown in figure 5. 
The first phase consist of the design and creation of VNX 
scenarios based on .xml specification. The second phase is 
related to the deployment or destruction of these scenarios 
through specific commands (vnx –f –v --create). Then, the 

controller must be connected with the switches and the user 
should configure the operation mode (standalone, secure, 
equal, slave, master). The user can create their own topologies 
and programs with the controller and finally can interact with 
the OpenFlow testbed.  

V. CONCLUSION AND DISCUSSION 

This work presents the integration process between VNX tool 
and OpenFlow protocol. The filesystems used by virtual 
machines and nodes was modified. We create a SDN 
environment through the integration of two main components: 
an OpenFlow compliant switch (Open vSwitch) and three 
network operating systems (NOX, POX and Beacon). Besides 
the controller has incorporated some performance and analyzer 
tools, these are Wireshark, tcpdump and iperf. Proofs of 
concept were carried out with POX components and two 
configuration modes (secure and standalone).  

We can verified the exchange of OpenFlow messages 
(OFP+ARP, OFP+ICMP Packet In, OFP packet Out) with 
Wireshark analyzer. Although in the validation process we 
only used Ubuntu, future proofs can use multiple operating 
systems such as Windows. Now the user can create their own 
topologies and controller programs in order to experiment with 
OpenFlow protocol and SDN technology, which was the main 
objective of this work.  

Today, VNX allows the deployment of large and complex 
OpenFlow networks in distributed environments. VNX allows 
not only the deployment of virtual scenarios in a single laptop, 
but also allows the inclusion of physical equipment (each one 
can have its own scenario with virtual machines), that is, VNX 
works in distributed scenarios. This is the main contribution of 
VNX over Mininet, since the communication between two 
scenarios in Mininet is a complex process. In this way, VNX 
enable the communication between OpenFlow networks and 
legacy networks that is one of the main challenges of SDN, the 
transition and migration process between heterogeneous 
networks. Besides, take into account that virtual scenarios may 
include Cisco and Juniper devices, therefore inside the virtual 
scenarios we could test with OpenFlow and no OpenFlow 
networks. Moreover, VNX allows the easy experimentation 
with specific services such as multimedia applications, 
deployment of servers, among others. The developer can 
customize the filesystem of the hosts and in this way, testing 
their new ideas and applications. 

VNX also allows another kinds of operating systems for the 
virtual machines, such as Debian, Windows and Fedora. This is 
another strong point compared with Mininet, which uses only a 
Linux kernel. If a user want to test a Windows application over 
an OpenFlow network, the windows filesystem may include 
the application code.  
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Fig. 5. Workflow of VNX/OpenFlow. 
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