
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Extending OpenFlow in Virtual Networks

Lorena Isabel Barona López, Ángel Leonardo Valdivieso Caraguay, Luis Javier García Villalba

Group of Analysis, Security and Systems (GASS)

Department of Software Engineering and Artificial Intelligence (DISIA)

Faculty of Information Technology and Computer Science, Office 431

Universidad Complutense de Madrid (UCM)

Calle Profesor José García Santesmases, 9

Ciudad Universitaria, 28040 Madrid, Spain

Email: {lorebaro, angevald}@ucm.es, javiergv@fdi.ucm.es

Abstract— Software Defined Networking (SDN) is a novel technology that has become a prominent topic in the last years. In any

research is essential to have emulators and simulators in order to test new applications or protocols. In this context, we present the

integration of OpenFlow protocol with Virtual Networks over linuX (VNX) tool, as new alternative for the emulation with SDN.

VNX/OpenFlow approach integrates three kind of tools, an OpenFlow compliant switch (Open vSwitch), Network Operative Systems

(POX, NOX and Beacon) and finally tools to control the performance and the network traffic. For the validation process, we present

two VNX/OpenFlow scenarios to test the correctness of this tool. Finally, the result of this work allows the deployment of virtual

scenarios with OpenFlow protocol.

Keywords— Emulation, OpenFlow, Software Defined Networking; Virtualization.

I. INTRODUCTION

Network data traffic has grown exponentially in the last years
due the emergence of real time applications, video streaming,
the rise of social networking, the introduction of cloud
computing, among others. The research community has created
protocols in order to cover these new needs, however the
standardization process takes a long time and the
improvements in communication methods and information
processing are almost nonexistent [1].

Existing networks should have an open control and provide
a real environment to tests with production traffic, due to these
requirements the concept of Software Defined Networking
arises [2]. SDN is not a new concept, rather is the result of
many research projects such as the Active Networks and
Ethane project [3]. SDN takes advantage of the best
characteristics of these technologies (programmability, control
and data plane separation), changing the way we see networks
today. SDN allows the separation of data and control plane in
network devices [4]. The control of the network behavior is in
charge of an external device known as Network Operative
System (NOS). The communication between network devices
and the controller is established with a defined protocol, the
most known OpenFlow [5].

Currently, a great number of enterprises like Google have
incorporated OpenFlow in their infrastructures and devices,
and there are some organizations, such as Open Networking
Foundation (ONF), which promote the development and the
widespread of OpenFlow and SDN architecture. There are few
projects to test with SDN such as simulators, emulators or
testbeds. One of the first OpenFlow testbed was developed by

Global Environment for Network Innovations (GENI) [6],
which interconnects the principal universities of United States.
Likewise, the project OpenFlow in Europe: Linking
Infrastructure (OFELIA) [7] connects 8 OpenFlow islands,
allowing experimentation with this technology.

Other interesting tool is ns-3 simulator [8]. Although ns-3
has support for OpenFlow, it does not work with typical
controllers such as POX [9], NOX [10], Beacon [11],
Floodlight [12], OpenDaylight, and so on. Instead, ns-3 has its
own OpenFlow controller. Regarding OpenFlow emulators, the
most known is Mininet which is used for rapidly prototyping
large networks [13]. Mininet can run real applications with a
great variety of topologies; however, the performance fidelity
depends on the CPU capacity and the number of the emulated
hosts. Additionally, there is a hybrid approach that combines
simulation and emulation in one tool called EstiNet [14]. It has
not problems with fidelity performance, however, it is not a
free tool.

There is a wide range of tools for experimentation with
virtual networks, such as the virtualization tool called Virtual
Networks over linuX (VNX) [15]. VNX is used in education
and research fields, for instance in the experimentation with
Intrusion Detection Systems (IDS), Multipath TCP (MTCP),
among others. This paper presents the integration of this tool
with OpenFlow protocol. For this purpose, OpenFlow-enabled
switch and controllers are integrated.

This work has been divided into five sections, as follows:
The second section contains an introduction of SDN and
OpenFlow protocol. Then, the third section presents the
description of simulation and emulation tools. Next, the fourth

Page | 252

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

section shows the VNX-OpenFlow integration process and the
validation of two test scenarios. Finally, a discussion is opened
in the fifth section.

II. SOFTWARE DEFINED NETWORKING

Software Defined Networking introduces a paradigm change in
the network communication, facilitating the innovation and the
network programmability. SDN proposes the separation
between the control and the data plane in networking devices.
Consequently, the network is more flexible, programmable and
it has automation capabilities. The own device could carry out
advanced capacities such as firewall rules, load balancing,
among others.

The control of whole network is performed by a central
point known as a controller. The network devices are
connected with the controller through secure communication
channel like Sockets Secure Layer (SSL). In the
communication process is needed a standardized protocol the
most known OpenFlow [5], which defines the communication
rules between controller and OpenFlow compliant switches.
OpenFlow offers new features that enable experimentation
without expose the internal structure of switches from different
vendors. For this purpose, OpenFlow delimits the basic
functions of OpenFlow switches based on common
characteristics of traditional Ethernet switch. OpenFlow defines
three kind of tables, these are: flow, group and meter table.
OpenFlow also introduces the flow concept, which can be
defined as a kind of traffic such as the http requests, traffic to
the same destination address, and so on. Moreover, OpenFlow
establishes a pipeline in order to process the incoming packets.
The packet is first matched against flow entries of flow table 0
and may continue with the next tables, depends on the result of
the match in the table. Flow entries match packets based on the
priority field (highest priority). If a flow entry is found, the
instructions are executed (Modify packet and update match
fields, update action set, update metadata). If the packet does
not match with a flow entry in any table, the outcome depends
on the configuration of the table miss. A possible action is to
search in the next table. Based on the SDN architecture and the
business requirements many tools have been developed, such
as:

 Virtualization tools [16].

 Network Operating System (controllers) [9] [10].

 Virtual switches [17].

 Tools for Quality of Services and Quality of Experience

[18].

 Management [19] [20].

 Optical Networks [21] [22].

 Traffic engineering and load balancing [23].

 Load Balancing [24].

 Simulation and Emulation tools [8] [13] [14].

All of these research fields are deployed and tested through
some approaches; real testbeds, emulator or simulators [25].
OpenFlow testbeds [6] [7] allow the experimentation in real
environments on a large scale. However, testbeds are
not easily accessible by potential researchers. For its part,

simulation and emulation approaches provide facilities in terms
of scalability, portability and accessibility in the case of open
source tools. Nevertheless, in some cases they produce
inaccurate outcomes. We describe some familiar tools ns-3,
Mininet and EstiNet, as well as VNX/OpenFlow.

III. SIMULATION AND EMULATION TOOLS

NS-3 is a simulator tool focuses on research and educational
fields. It is an open sources simulator that provides an
extensible network platform with several external animators,
data analysis and visualization tools. In order to enable the
simulation with OpenFlow protocol, Ns-3 implements its
OpenFlow-enabled switch and its own controller, as a modules
written in C++. The switch component is known as
OpenFlowSwitchNetDevice. This object consists of a set of net
devices that represent the switch ports, according to the
OpenFlow Switch Specification v0.8.9. Even though Ns-3 can
be used for real-time simulations, there are some issues that the
user should take into account such as the slow learning curve to
use the tool, the compatibility with a basic OpenFlow version
(0.89) and specially it does not run a typical OpenFlow
controller. Therefore, the controller applications generated with
ns-3 controller cannot be used in real network. If a controller
like Pox or Floodlight was required, these will need substantial
modifications.

For its part, Lantz et al. in [13] proposes Mininet, a
virtualization tool for rapidly prototyping large networks in a
single laptop. This tool includes OpenFlow support and
combines lightweight virtualization capabilities over Linux
operative system with an extensible CLI and API. A scenario
built with Mininet is deployable, interactive, scalable, realistic
and it can easily share. In fact, the Mininet topologies and the
controller applications can be used for others researchers
without modifications in the emulation environment as well as
in real networks. Mininet run on virtual machine monitors like
VMWare, XEN and VirtualBox or it can be installed in a Linux
system. Mininet allows the deployment of hundreds of nodes,
emulating OpenFlow-enabled switches, controllers like POX,
virtual links and hosts. Mininet shares components like the file
system, the user ID space, the kernel, device drivers, among
others. Tough, Mininet is the most popular tool for SDN has
limitations of performance fidelity related with the available
resources, real bandwidth and the timing of the process.

A novel hybrid approach has recently presented called
EstiNet [14]. This combines the best characteristics of both
simulation and emulation mode in one tool. On the one hand, it
allows the deployment of large networks in a flexible, easy,
scalable and repeatable way. On the other hand, EstiNet takes
into account the timing needs for real applications in order to
obtain the same results in both, virtual and real deployments.
EstiNet supports 1.3.2 OpenFlow Switch Specification and it
can run NOX, POX, Floodlight, and Ryu controllers without
any modifications. For this purpose, EstiNet intercepts the
packets between two real applications through tunnel network
interfaces and redirects the packets to the EstiNet simulation
engine. The entire process is based on a simulation clock,
which allows accurate results. Besides, EstiNet provides a
graphical user interface for configure the scenarios and observe

Page | 253

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

the outcomes from the simulations. The results of this tool
show better scalability and performance than Mininet, however
their main problem is that it need a payment for the tool. The
universities can embrace the EstiNet University Program. This
grants a license during six months with a cost of US$1500 or a
license to 12 months for US$2500, becoming its main
disadvantage.

As we have seen, there are few tools or testbeds that allow
the SDN experimentation. We present VNX a modular
architecture based on plugins (Fig. 1), which allows the
deployment of virtual testbeds. This tool includes the code of
the previous tool VNUML [26].

VNX

libvirt

Other
Plugins

Physical
Equpment

Plugin

Dynamips
Plugin

UML
Plugin

Libvirt
Plugin

...VMwareXENKVMUML Dynamips PE
Manager

VM1 VM1 VM1 VM1 VM1 VM1 VM1

Virtual Machines Physical EquipmentEXPERIMENTATION SCENARIO

Fig. 1. VNX Architecture [15].

 The plugins used by VNX are:

 UML (User Mode Linux) can be considered a hypervisor-

based technique.

 libvirt allows virtualization capabilities and some

virtualization platforms, such as Xen, VMware, KVM,

VirtualBox, etc.

 Dynamips plugin allows the emulation the hardware of

Cisco routers.

 Olive allows the integration of Juniper routers.

 Physical equipment plugin, which allows the connection

between VNX physical islands.

VNX is a free tool based on Linux that allows the easy
creation and management of large virtual scenarios over a
single server or a cluster. The scenarios can have nodes in
some physical hosts and can use different operative systems,
for example Linux and Windows. In turn, each physical host
can deploy their own virtual testbed. Besides, VNX allows the
creation of large scenarios with hundred or even thousands of
virtual machines. This process uses the copy on write technique
(cow), which starting the virtual machines from a single image
file known as filesystem. In this way, the nodes can share the
same filesystem. The filesystem is mounted in read-only mode.
If a virtual node is modified, the differences are stored in a
private filesystem.

VNX is also focused on education and research. In [15] a
large virtual network scenario was created. It is a laboratory for
dynamic routing that involve 44 virtual devices (16 Cisco

routers, 6 Juniper routers, 6 Linux/Quagga routers, 12 end user
and 4 Servers). This testbed is a typical scenario deployed with
VNX and shows its potential.

One of the main SDN challenges is the integration of
heterogeneous networks. VNX could provide the ideal
environment to combine OpenFlow-enabled islands and legacy
networks. The integration process is described in the next
section.

IV. INTEGRATION AND VALIDATION

VNX should be implemented over a Linux operating system.
The guidelines for configuration, modifications and filesystems
are available in the official site of VNX project [27]. In order to
testing with OpenFlow protocol, VNX needs the integration of
some critical elements, an OpenFlow-enable switch for
virtualization environments and a network operative system for
network control. Additionally, it would be useful the
integration of performance tools or data traffic analyzer. VNX
was installed on a physical host with Ubuntu 12.04. Then, we
choose two different filesystems. For controller device is
desirable a graphical interface (ubuntu-12.04-gui-v024) to
analyze the traffic. The second filesystem is a console interface
(ubuntu-12.04-v024), which is used for simulated hosts and
routers. The graphical filesystem was modified to make the
controller functions, 3 of them were integrated: POX (based on
Python) which is one of the most widely used today, NOX
based on c++ and Python and finally Beacon which uses Java.
The integration and configuration process are available in the
official sites of each project. Additionally, in order to improve
the functionalities of VNX/OpenFlow, three tools were
installed: Wireshark, tcpdump and iperf. The wireshark tool is
indispensable because originally it does not identify OpenFlow
traffic. For this purpose, a dissector plugin for OpenFlow must
be compiled and installed in the filesystem. Dissector allows to
decode all information of specific incoming packets, in this
case OpenFlow (version 1.0). Other important changes is the
integration of Open vSwitch (OVS) [17]. OVS is an open
source tool that allows the creation of switches in virtualization
environments. OVS matches the virtual machines, providing
better performance than the traditional bridge, such as VLANs,
netFlow, QoS, bonding, mirroring, among others. OVS works
transparently with VNX, for both legacy and OpenFlow
networks. The version used in this paper is 1.4.0. After we
create the .xml specification (Fig. 2).

Fig. 2. XML Specification for Design Phase.

Page | 254

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Once we have the file with .xml specification, the virtual
scenario is deployed and matched with the controller. For the
validation process we replicate the topology of OpenFlow
Tutorial, as a point of reference to see the VNX operation. This
tutorial was developed by Stanford University [28] and it

deploys a topology (subnet 10.0.0.0/24) with 3 virtual hosts
(h2, h3 and h4), an OpenFlow switch (s1) and one controller
(c0). Two scenarios are presented: a basic scenario (Fig. 3a)
that is identical to OpenFlow Tutorial and the second scenario
incorporates more subnets and a second controller (Fig. 3b).

H1

SWITCHES
OPENFLOW

10.0.2.1 /24

C1

10.0.0.2 /24 10.0.0.3 /24

HOST

 10.0.2.2 /24

FIRST
CONTROLLER

H2 C2

10.0.1.2 /24 10.0.1.3 /24

R1 10.0.1.1 /2410.0.0.1 /24

NET 0 NET 1

NET 2

SECOND
CONTROLLER

H2 H3

SWITCH
OPENFLOW

H4

10.0.0.5 /24C1

10.0.0.2 /24 10.0.0.3 /24

10.0.0.4 /24

HOST

10.0.0.1 /24

CONTROLLER

a b

Fig. 3. (a) Scenario 1. Basic Scenario; (b) Scenario 2. Scenario with two Controllers.

The first scenario (Fig. 3a) has an OpenFlow-enabled
switch and four hosts (C1, H2, H3, H4), all of them with
Ubuntu 12.04. H2, H3 and H4 work with textual consoles and
the controller (C1) works with a graphical console. The second
scenario (Fig. 3b) is formed by five Ubuntu 12.04 virtual
machines (router and hosts work with textual consoles and
controllers with graphical console) according to the following
structure:

 3 switches in different subnets (Net0: 10.0.0.0/24, Net1:

10.0.1.0/24 y Net2: 10.0.2.0/24).

 2 controllers (C1: 10.0.0.2 and C2: 10.0.1.3).

 2 hosts (H1:10.0.0.3 and H2:10.0.1.2) each one in different

subnets.

 Subnets communicate through the router (R1).

The proofs of concept of this work were made exclusively
with Ubuntu virtual machines, but it is possible to use another
kind of operating system. Data traffic was analyzed with
Wireshark. At first, Wireshark shows only typical protocols,
such as ICMP, UDP, IP, among others, because OVS works as
an Ethernet switch by default.

In order to enable OpenFlow traffic, OVS must be
connected with the controller. There are two configuration
modes, which determine the switch behavior for a controller
fail condition. These modes are:

 Fail standalone: The default configuration mode. If OVS

does not receive the inactivity probe interval three times,

the OVS takes the control of the switch and it works like a

normal Ethernet switch (MAC-learning switch). When the

connection is lost, the switch handles the incoming packets

using the OFPP_NORMAL reserved port. Moreover, the

switch will attempt to connect with the controller. These

mode is usually available in OpenFlow hybrid switches.

 Fail secure: In this mode the OVS cannot take the network

control if the controller fails. The network will be

uncommunicated during the failure. Then, OVS will

attempt to connect with the controller, until obtain a

response. This mode is commonly used to avoid forwarding

loops.

Once the communication is established, the controller (or
controllers) should maintain the links with all switches. There
are three kinds of roles for the connection. The default role is
OFPCR_ROLE_EQUAL and it allows full control over the
network. The second role is known as
OFPCR_ROLE_SLAVE, in which switches are configured in
read only mode, therefore the controller has limited control.
The third role, OFPCR_ROLE_MASTER works in the same
way that OFPCR_ROLE_EQUAL, but there is only one
controller with this role, other controllers are changed to slave
role. In the second scenario all switches are connected with C1
and C2 controllers in EQUAL role. In this way, we provide
redundancy to the second scenario.

Proofs were made with standalone and secure mode in both
scenarios. We used POX controller with three applications,

Page | 255

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

forwarding.l2_learning, forwarding.l3_learning and
forwarding.hub. Additionally, we wrote scripts in order to
automate the process. These scripts contain the code for the
deployment of the above mentioned scenarios and the
establishment of links between switches and controller.

In both scenarios data traffic was generated with ICMP and
web requests between the hosts of the topologies. OFP
(message for the establishment of network communication),
OFP-ARP, OFP-ICMP (packet-in, packet-out) messages were
captured with Wireshark analyzer and tcpdump tools as shown
in Fig. 4.

Fig. 4. Traffic Capture Scenario 2.

Fig. 4 shows an ICMP proof from host h1 (10.0.0.3) to host
h2 (10.0.1.2) performed in the second scenario, with the
component forwarding.l2_learning of POX controller and in
standalone mode.

Both scenarios work properly with OpenFlow protocol,
however in second scenario there were duplicated messages
(from controllers C1 and C2). This is because OpenFlow does
not define coordination mechanisms among controllers in the
same network or in different domains [29]. At present, this
process is done with other components. For instance, Fonseca
et al. in [30] introduces the CPRecovery component, which
allows keeping the consistency between the primary and
backup controllers. This component provides seamless
transition between the primary and secondary controller
through two steps, the replication phase (maintain updated
data) and the recovery phase. The replication phase acts during
the normal network behavior and the recovery phase acts in
case of failure. Another challenge in large topologies is the
communication among controllers in different SDN domains.
At the present time, Internet Engineering Task Force (IETF) is
working in a standard called interfacing SDN Domain
Controllers (SDNi) for exchange routing information (network
topology views, network conditions, event reports) and
application requirement.

A general overview for the whole process in order to
interact with VNX/OpenFlow scenarios is shown in figure 5.
The first phase consist of the design and creation of VNX
scenarios based on .xml specification. The second phase is
related to the deployment or destruction of these scenarios
through specific commands (vnx –f –v --create). Then, the

controller must be connected with the switches and the user
should configure the operation mode (standalone, secure,
equal, slave, master). The user can create their own topologies
and programs with the controller and finally can interact with
the OpenFlow testbed.

V. CONCLUSION AND DISCUSSION

This work presents the integration process between VNX tool
and OpenFlow protocol. The filesystems used by virtual
machines and nodes was modified. We create a SDN
environment through the integration of two main components:
an OpenFlow compliant switch (Open vSwitch) and three
network operating systems (NOX, POX and Beacon). Besides
the controller has incorporated some performance and analyzer
tools, these are Wireshark, tcpdump and iperf. Proofs of
concept were carried out with POX components and two
configuration modes (secure and standalone).

We can verified the exchange of OpenFlow messages
(OFP+ARP, OFP+ICMP Packet In, OFP packet Out) with
Wireshark analyzer. Although in the validation process we
only used Ubuntu, future proofs can use multiple operating
systems such as Windows. Now the user can create their own
topologies and controller programs in order to experiment with
OpenFlow protocol and SDN technology, which was the main
objective of this work.

Today, VNX allows the deployment of large and complex
OpenFlow networks in distributed environments. VNX allows
not only the deployment of virtual scenarios in a single laptop,
but also allows the inclusion of physical equipment (each one
can have its own scenario with virtual machines), that is, VNX
works in distributed scenarios. This is the main contribution of
VNX over Mininet, since the communication between two
scenarios in Mininet is a complex process. In this way, VNX
enable the communication between OpenFlow networks and
legacy networks that is one of the main challenges of SDN, the
transition and migration process between heterogeneous
networks. Besides, take into account that virtual scenarios may
include Cisco and Juniper devices, therefore inside the virtual
scenarios we could test with OpenFlow and no OpenFlow
networks. Moreover, VNX allows the easy experimentation
with specific services such as multimedia applications,
deployment of servers, among others. The developer can
customize the filesystem of the hosts and in this way, testing
their new ideas and applications.

VNX also allows another kinds of operating systems for the
virtual machines, such as Debian, Windows and Fedora. This is
another strong point compared with Mininet, which uses only a
Linux kernel. If a user want to test a Windows application over
an OpenFlow network, the windows filesystem may include
the application code.

Page | 256

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

InteractionDesign / Creation Deployment Link OpenFlow

<vnx>

...

</vnx>

H1

HOST

SW

H2 .xml File vnx -f -v --create ovs-vsctl set-controller

HOST

Fig. 5. Workflow of VNX/OpenFlow.

ACKNOWLEDGMENT

The research leading to these results has been partially funded
by the European Union’s H2020 Program under the project
SELFNET (671672). Lorena Isabel Barona López and Ángel
Leonardo Valdivieso Caraguay are supported by the Secretaría
Nacional de Educación Superior, Ciencia, Tecnología e
Innovación SENESCYT (Quito, Ecuador) under Convocatoria
Abierta 2012 and 2013 Scholarship Program. This work was
partially supported by the “Programa de Financiación de
Grupos de Investigación UCM validados de la Universidad
Complutense de Madrid – Banco Santander”.

The authors would like to thank to David Fernández
Cambronero for his comments and suggestions about VNX
tool and Ana Lucila Sandoval Orozco for her valuable
comments and suggestions to improve the quality of the paper.

REFERENCES

[1] W. Stallings, “Software Defined Networks and OpenFlow,” in The
Internet Protocol Journal, vol. 16, no. 1, March 2013, pp. 2-14.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, April 2008, pp. 69-74.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker,
“Ethane: Taking Control of the Enterprise,” in Proceedings of the ACM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, New York, USA, August 2007, pp. 1-12.

[4] A. L. Valdivieso Caraguay, L. I. Barona López, L. J. García Villalba,
“Evolution and Challenges of Software Defined Networking,” in
Proceedings of the Workshop on Software Defined Networks for Future
Networks and Services, Trento, Italy, November 2013, pp. 47-55.

[5] O. S. Consortium et al., “OpenFlow Switch Specification v.1.3.4,”
March 2014 pp. 1-171.

[6] C. Elliott, “GENI: Opening Up New Classes of Experiments in Global
Networking,” in IEEE Internet Computing, vol. 1, January 2010, pp. 39-
42.

[7] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Köpsel, D. Colle,
B. Puype, D. Simeonidou, R. Nejabati, M. Channegowda, M. Kind,
T. Dietz, A. Autenrieth, V. Kotronis, E. Salvadori, S. Salsano,
M. Körner, S. Sharma, “Design and implementation of the OFELIA FP7
facility: The European OpenFlow testbed,” in Computer Networks, vol.
61, March 2014, pp. 132-150.

[8] T. R. Henderson, M. Lacage, G. F. Riley, “Network Simulations with
the ns-3 Simulator,” in Proceedings of the ACM SIGCOMM'08, Seattle,
WA, USA, August 2008, pp.17-22.

[9] POX, https://openflow.stanford.edu/display/ONL/POX+Wiki.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
S. Shenker, “NOX: Towards an Operating System for Networks,” in
ACM SIGCOMM Computer Communication Review, vol. 38, no. 3, July
2008, pp. 105-110.

[11] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, New York, NY, USA, August 2013, pp. 13-18.

[12] Floodlight project, http://www.projectfloodlight.org/.

[13] B. Lantz, B. Heller, N. McKeown, “A Network in a Laptop: Rapid
Prototyping for. Software-Defined Networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, New York, NY,
USA, October 2010, pp. 1-6.

[14] S. Y. Wang, C. L. Chou, C. M Yang, “EstiNet OpenFlow Network
Simulator and Emulator,” in IEEE Communications Magazine, vol. 51,
no. 9, September 2013, pp. 110-117.

[15] D. Fernández, A. Cordero, J. Somavilla, J. Rodriguez, A. Corchero,
L. Tarrafeta, F. Galán, “Distributed Virtual Scenarios over multi- Host
Linux Environments,” in Proceedings of the 5th IEEE International
DMTF Academic Alliance Workshop on Systems and Virtualization
Management, Paris, France, October 2011, pp. 1-8.

[16] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, G. Parulkar, “Flowvisor: A Network Virtualization
Layer,” in Technical Report OpenFlow Switch Consortium, October
2009, pp. 1-15.

[17] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, S. Shenker,
“Extending Networking into the Virtualization Layer,” in Proceedings of
the Eight ACM Workshop on Hot Topics in Networks, HotNets-VIII,
HOTNETS '09, New York City, NY, USA, October 2009, pp. 1-6.

[18] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, P. Dely,
“Towards QoE-driven Multimedia Service Negotiation and Path
Optimization with Software Defined Networking,” in Proceedings of the
20th IEEE International Conference on Software, Telecommunications
and Computer Networks, (SoftCOM), Split, Croatia, vol. 1, September
2012, pp. 1-5.

[19] R. Bennesby, P. Fonseca, E. Mota, A. Passito, “An Inter-AS Routing
Component for Software-Defined Networks,” in Proceedings of the
IEEE Network Operations and Management Symposium, Maui, Hawaii,
USA, April 2012, pp. 138-145.

[20] F. Farias, J. Salvatti, E. Cerqueira, A. Abelem, “A Proposal
Management of the Legacy Network Environment Using Openflow
Control Plane,” in Proceedings of the IEEE Network Operations and
Management Symposium, Maui, USA, April 2012, pp. 1143-1150.

[21] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, L. Ong,
“Packet and Circuit Network Convergence with OpenFlow,” in
Proceedings of the IEEE Conference on Optical Fiber Communication
(OFC), collocated National Fiber Optic Engineers Conference
(OFC/NFOEC), San Diego, CA, USA, March 2010, pp. 1-3.

[22] M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya,
G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, “First
Demonstration of an OpenFlow based Software-Defined Optical

Page | 257

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0037 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Network Employing Packet, Fixed and Flexible DWDM Grid
Technologies on an International Multi-Domain Testbed,” in
Proceedings of the European Conference and Exhibition on Optical
Communication, Amsterdam, Netherlands, September 2012, pp. 1-3.

[23] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, R. Johari,
“Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow,” in
Proceedings of ACM SIGCOMM Demo, Barcelona, Spain, August 2009,
pp. 1-2.

[24] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou. “A Roadmap for
Traffic Engineering in SDN-OpenFlow Networks”. in Computer
Networks, vol.71, June 2014, pp. 1-30.

[25] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little,
J. Reijendam, P. Weissmann, N. McKeown, “Maturing of OpenFlow
and Software-defined Networking through Deployments,” in Computer
Networks, vol. 61, March 2014, pp. 151-175.

[26] F. Galán, D. Fernández, W. Fuertes, M. Gómez, J. E. L. de Vergara,
“Scenario-based Virtual Network Infrastructure Management in

Research and Educational Testbeds with VNUML,” in Annals of
Telecommunications-Annales des Telecommunications, vol. 64,
May 2009, pp. 305- 323.

[27] “Virtual Networks over linuX (VNX),” http://web.dit.upm.es/vnxwiki/
index.php/Main Page.

[28] OpenFlow Tutorial, http://www.openflow.org/wk/index.php/OpenFlow
Tutorial.

[29] A. L. Valdivieso Caraguay, A. Benito Peral, L. I. Barona López, L. J.
García Villalba, “SDN: Evolution and Opportunities in the Development
IoT Applications,” in International Journal of Distributed Sensor
Networks, vol. 2014, May 2014 pp. 1-10.

[30] P. Fonseca, R. Bennesby, E. Mota, A. Passito, “A Replication
Component for Resilient OpenFlow-based Networking,” in Proceedings
of the IEEE Network Operations and Management Symposium, Maui,
Hawaii, USA, April 2012, pp. 933-939.

Page | 258

	ComputerNetworks
	CR-ICIT15210
	CR-ICIT15231
	CR-ICIT15269
	CR-ICIT15290
	CR-ICIT15291
	CR-ICIT15380
	CR-ICIT15381
	CR-ICIT15493
	CR-ICIT15495
	CR-ICIT15505
	CR-ICIT15541
	CR-ICIT15577

