ICIT 2013 The 6" International Conference on Information Technology

SIMULATION BASED LOAD TESTING IN WEB SERVICES

lzzat Alsmadi and Sascha Alda
Computer Information Systems Department, Department of computer science, Bonn-Rhein-
Yarmouk University Sieg University
Irbid, Jordan, Sankt Augustine, Germany
ialsmadi@yu.edu.jo Sascha.alda@h-brs.de
Abstract

Testing in Web services and SOA environment can be far more distributed in comparison with testing
stand alone or traditional applications. This is since such systems are composed of several hybrid
components. Testing web services high level characteristics such as: security, usability, reliability,
performance, etc. is extremely environment especially as the open Internet is the work yard for those
web services. Focusing on performance related quality attributes, in this paper, we conducted several
experiments for testing services’ response based on the varying service loads. For a selected case
study of several web services, load metrics such as: response time, throughput and availability are
collected. Load variation was conducted using special tools to simulate virtual users at different
numbers. We also used third part monitor services to collect performance related metrics. Results
showed that all those tools and applications can assist in drawing a good picture of the service quality
with respect to performance or its response to different sizes of loads.

Keywords - SOA, web services, load testing, performance testing, and software testing.

1 INTRODUCTION

The recent evolution of the Internet includes continuous expansion of what is called web services.
Traditional software applications are offered to users to download or acquire from storage media such
as: CDs, DVDs, etc. On the contrary, web services are available at their server hosts and can be
called by clients or users through the network or the Internet. Users get real time access and
connection to those services. This form of distribution system is continuously expanding specially with
the continuous growth of the Internet. It is envisioned that in future most of software applications will
be delivered to customers through web services.

Service Oriented Architecture (SOA) is a relatively new software paradigm that is continuously
evolving and expanding with web services’ evolution. While in Object Oriented Architecture (OOA)
software design is built based on finding objects or entities from the problem and solution domains for
the subject software, the core in SOA is the service. A service is user visible software functionality.
This functionality is built or implemented on the server side and then called or used by users from the
client side.

Software testing activities can be classified based into several perspectives. In one perspective,
software testing activities can be divided into white and black box testing. In black-box testing, the
software is tested based into its provided services and functionalities without looking into the software
code. On the contrary, white box testing includes testing the software based on its internal structure.
We think that for a large percent in the SOA web services paradigm, traditional black box testing
methods are not going to change. Any web service should include some user level accessed inputs.
Those exist on the client side of the web services’ structure. This may make it independent of the
lower level details of the overall structure. On the other hand, for white box testing, many changes are
expected to occur in web services’ testing in comparison with testing web and desktop applications.
Web services and SOA architectures depend on several heterogeneous components and
technologies. Each one of those components can be developed by a different company using different
programming language and environment. In web services environment there are several major
components that the system framework is composed from. Each one of those components needs to
be tested alone. In addition, for each component, integration testing is important to make sure that the
communication and messaging between the subject component and the rest of the framework is
normal. Those components largely include: databases, web servers and their related components,
server side applications, communication services and client side web services. In SOA, besides
dividing testing activities into black or white box testing, or into the several components that form the

ICIT 2013 The 6" International Conference on Information Technology

architecture, testing each component separately and then testing it in integration with the others, in
addition testing framework can be divided based on the SOA major testing concerns that include:
testing services, security, governance, etc. In this composition, service testing represents the
traditional functional.

For the users, what matter is to make sure is that the service they requested is working in their scope
or environment as they expected. Unlike traditional software developments, web services are usually
designed for a large spectrum of users who may use the same service in a different context. This may
in principle be similar to designing bespoke or generic software applications (e.g. operating systems,
databases, office applications, etc.). On the other hand, unlike those, largely standalone applications,
web services have a distributed nature and service provider is in a continuous relation with service
consumers. Black box or functional testing for web services then should be ideally conducted by
users, service consumers, or third parties. In web services, public registers can be helpful in this
regard as they record history of service invocations.

One of the important characteristics to evaluate in web services is performance. In simple words,
performance measures the speed of service response for users’ requests. Several terms and metrics
are related to performance. In this paper our focus is on load testing. Load testing extends
performance measurement in trying to see not only service response for one request, but for many
users. A web service that can only handle one or two service requests simultaneously is unreliable
service in the Internet open world where each service should expect a significant number of requests
throughout the days, months, etc. Service should not degrade significantly when number of service
requests starts to increase. In relation to this, robustness or stress testing further tests the service
response upon a large volume of requests (possibly above service limit). The goal then for stress
testing is not to focus on service response, rather to observe service failures. In principle, even in
failures, services should not fail catastrophically (e.g. complete crash, data loss, etc.).

The rest of the paper is organized as the following: In section 2, several samples of related work to the
paper subject are presented, section three described methodology, experiments conducted along with
their analysis. The paper is concluded with a conclusion and possible future work.

2 RELATED WORK

A significantly large percent of papers and documents that are related to SOA and web services’
testing is of technical natures published in companies’ websites, discussion boards, etc. Testing in
web services, cloud computing and SOA environments is relatively new especially from the research
perspective where there is a somewhat gap between the academia and the industry. The industry in
this regard is witnessing a larger volume of tools, applications and technical papers discussing testing
in those areas. However, in this section, we will select some research papers that focused on
evaluating or discussing issues related to load testing in SOA and web services.

(Thakur paper 2010)[1] Surveyed tools that can be used for performance and load testing in web
services and the cloud. Of those listed, we used JMeter, a popular open source testing tools that can
be used in web services and cloud testing, particularly for load or performance testing.

(Mostefaoui and Simpson 2007)[2] Paper evaluated using response time and throughput for services
performance. The paper discussed some of the difficulties and inconsistencies in performance testing
especially as service performance may vary based on several factors such as: the date or time (e.qg.
busy or free time) and also the specific functionality that is called from the service.

Schieferdecker and Apostolidis 2005 [3] paper discussed system level testing of service based
applications. Scalability is one of the important system level quality attributes that was discussed in
this paper. Evaluating scalability is important in testing web services to make sure the performance of
services is not downgraded significantly when a large number of service users or consumers are
requesting the service at the same time. This is also related to another quality attribute: robustness,
where web services should be tested under stressed or abnormal environments to see their
behaviour.

ICIT 2013 The 6" International Conference on Information Technology

Srirama et al paper 2010 [4] focused on load testing for mobile based web services. They also
proposed a load balancer structure to improve mobile based systems scalability. Mobile load testing
can have some other dimensions to add that may cause overhead on load and performance. The two
major factors in which it is expected that mobile can have more serious load related challenges are:
wireless and security. Relative to the bandwidth and speed mobile users have less power in
comparison with users of desktops, or laptops. In addition, encryption and other security measures
that are more urgent for mobile devices, may also cause some load and performance issues in
comparison with the more stable desktop and laptop devices.

Singh paper 2012 [5] discussed and analyzed some of the enterprise applications aspects such as
performance and the usage of Jmeter, Apache and Microsoft Web Application Stress (WAS) tools for
load testing.

Gao et al. 2011 paper [6] discussed testing challenges in cloud computing environment. Authors
pointed the need for testing activities to consider the variety and differences between the different
cloud computing options (e.g. Software as a Service Saas, Platform as a Service PaasS, etc.). Based
on the cloud service option, testing activities, including load, performance and scalability may vary.
Authors also made a distinction in testing performance and scalability in traditional distributed systems
and the cloud where cloud based environment is more dynamic and scalable.

Solomon and Litoiu paper 2010 [7] evaluated performance aspects of business processes using a
case study with the usage of IBM Web Sphere components (e.g. Business modeller, Business
monitor, integration developer). For each service request, they measured queuing and service times.
They also evaluated options to improve response time such as optimizing resources’ allocation. Such
resource allocation optimization needs to be dynamic and continuously monitor possible bottlenecks.

Zheng et al 2010 [8] paper contained an experiment of performance related Quality of Service (QoS)
metrics for a large number of web services. Their experiment showed also that a significant number of
those web services were inaccessible due to several different purposes. They showed that some
response times can be large just because the process may include a large amount of data transfer.
This may tempt the need to further divide this metric into several component metrics to see the source
of some possible delays. In fact, other response time related metrics such as: round trip delay,
execution and transaction times are used for this purpose.

3 EXPERIMENT AND ANALYSIS

It should be mentioned first that in typical scenarios load testing should be conducted on the server
side and on not the client side. A certain load of users or call services is simulated and then from the
server side, and based on the server interaction with those requests, several load testing metrics can
be collected. The users can be real or virtual (i.e. simulated from one system). Some tools allow one
machine to simulate load testing through virtual users or also called emulated browsers. Figure 1
shows a typical load testing architecture. Advanced virtual emulation tools try to emulate users’ actual
behavior even their frustration with possible long response time (e.g. closing the session, opening
more than one session, etc.).

I Userl Performance

monitor

User2 +

User3

——p-| Web service

User_n

Fig. 1 A typical web service load testing architecture

ICIT 2013 The 6" International Conference on Information Technology

However, some tools and experiments can be utilized to get some server load aspects from the
client side. Users can be also real or simulated. The major difference is that performance tools can be
utilized from the client side as well to measure performance metrics such as: availability, response

time, throughput, etc.
Userl I

Performance
maonitor

—p| Webservice

Fig.2 An alternative web service load testing architecture

3.1 Load testing tools

Several tools, open source, free or commercial exist to perform load testing in web applications,
distributed systems, web services and alike. Each may have its own characteristics, strengths and
weaknesses.

In the following experiments, we used JMeter for load testing of web services. Apache JMeter is a
popular testing tool particularly for distributed systems, web applications and web services that was
first released in 2001. In this specific scope, we used it for testing some important high quality
attributes in software products in general and in web services in particular. Other examples of tools
that can be used in high level testing of web services in general specially for load testing include:
SOAPUI, LoadRunner, Rational performance studio, Silk performer, OpenSTA, Ants load, Test
complete, etc. The main reasons for our usage of JMeter in particular is that since we have Apache
server, synchronization and performance can be optimized with Apache JMeter in comparison with
other web services’ load testing tools. In addition, the ability for JMeter to simulate many or large
number of threads or users is simple and straightforward. One drawback of JMeter according to some
websites or papers is that it relatively consumes a large amount of resources which we did not confirm
as we did not evaluate and compare efficiency related metrics such as: memory, CPU, etc. usage or
consumption.

3.2 Load testing quality attributes and metrics

Those quality attributes or characteristics related to the evaluation in this experiment are:
performance, load, stress and robustness. There are some common attributes that relate or connect
those 4 characteristics together. This is since they all focus on testing response time and testing the
interaction between service provider and consumer(s) at different load levels. In performance, the
main goal is to measure the time it takes to get a service from a service provider. In its simplest form,
this can measure the time from requesting a service till receiving the proper response. Of course, in
each one of those characteristics several low level metrics can be collected to eventually make a
judgment on those high level characteristics. Examples of performance related low level metrics
include: response time, throughput, resource utilization or efficiency, availability, and workload. In this
paper we focused on: throughput, response time and availability.

Throughput: This is a load metric to measure the rate of successful handled requests or message
sizes. It can be measures per unit of time for either data or requests (e.g. KB/Kb/sec/min,
request/sec/min). (www.owasp.org, www.w3c.or.kr, www.oasis-open.org, Zheng et al 2010, Degeler et
al 2010, etc.). A high throughput value indicates a web services ability to handle many requests
together (whether in parallel or sequence). Some references focus throughput definition on the
amount of data processed per unit of time and assume request/time as another throughput related
metric.

Response time: This metric measures the end to end time from service request to receiving the
response successfully. It is measured for each service request and hence is considered as a primitive

http://www.owasp.org/
http://www.w3c.or.kr/
http://www.oasis-open.org/

ICIT 2013 The 6" International Conference on Information Technology

load based metric. Related latency metrics tried to differentiate between latency sources: client,
network or service.

Availability: Availability measure the amount or percentage of service up time as services are
expected to be available all or most of the time.

Robustness and stress testing all focus on testing the service at high level loads or abnormal
situations to evaluate the service response in those situations. While some degradation of
performance is expected at high level loads, however, that should not be significant and if service fails
to respond, that failure should be smooth and it should not fail catastrophically causing data, software
or network damage.

In the first load test, we set up JMeter with the following parameters (loop count 1, number of threads
or users 5, 10, 20, or 30, ramp up period/sec 10, loop count 100). Web services are collected from:
http://mww.webservicex.net-/WS/CATs.aspx?CATID=2&DESC=Business and Commerce. Notice that
100 loop count (i.e. number of execution times) means that each test will be repeated 100 times. This
can simulate a stress testing for the subject web services. Figure 3 shows interface setup for JMeter
load testing experiment.

; Test Plan B
o [Thresd Group : WebService(SOAP) Request
¢ W Loop Controller Name: |".".'ebSen'\ce[SOAPj Request
? /’ {Webservice(SOAF) Request o
Graph Results WSDL helper

pline Visualizer 2
iew Results Tree WSDL URL ‘ht'tp:h‘w‘w‘w.webser«icex.neUGeneri cUNSPSC.asmx?WSDL

‘_\, Gaussian Random Timer :
| workBench Web Methods |GelUNSPSCComn"IOGIUB‘jCIaSS |VH Configure ‘

Protocol [http]: [http Server Name or IP: |www.websen'icex.net

| Path: [iGenericUunsPSC asmx |soapAction |websen

WebService message
Soap/XML-RPC Data

=?xml version="1.0" encoding="ut-8"?=

=soap:Envelope
minsxsi="hitp.fwaw.w3.0rgi2001XMLSchema-instance
mins xsd="http fwww w3.orgf2001XMLSchema
mins:soap="hitp://schemas xmisoap.org/soap/envelope
=soap.Body=

=foo xmins="http:/liclients-xlmns"t=

</soap:Body=

=Isoap:Envelope=

Fig. 3 JIMeter load testing experiment

One good characteristic of JMeter is that it can easily simulate scenarios of several simultaneous

users. This is done through changing the (number of threads or users) parameter. Table 1 shows a
simple case study for evaluating several web services with changing the number of threads parameter
while fixing all other parameters. Throughput represents the amount of data that the virtual users
receive from the server at any given second. Numbers given in Table 1 represent the average of
overall throughput measures at the end of the process. An important finding from Table 1 is that while
some services may have some extreme values (e.g. FedWire service at 250 threads), however, those
can’'t be generalized from one burst of testing. Some transient events may cause such extreme case
and hence several experiments should be conducted to verify if this is a steady condition.
Results showed that comparing the 10 evaluated web services, to a large extent, all web services
behave similarly with increasing the number of threads. For each tested web service, we used the first
available method in the service with generic default parameters. In reality, changing the method to call
and the parameters can significantly impact response time (which may need a separate experiment).
In some cases, the time of testing (e.g. morning, afternoon, night) can also impact performance
related metrics.

Table 1 Throughput (requests/sec) based on number of threads, using JMeter (Excerpt)

) Number of threads
service WSDL
NO 5 10 [20 | 30 | 100 250 500 1000
1 Generic-NAICS 13 | 24 |48 | 74| 248 572 703 838
2 Generic-UNSPSC 13 | 25 [50| 71| 239 585 871 843
3 FedACH 14 | 24 | 49| 73 | 247 586 880 883
4 FedWire 13 | 26 |48 | 74| 241 | 1425 876 886
5 OFACSDN 12 | 26 [50| 72 | 242 581 746 749
Average 13 | 25 (49| 72| 242 647 818 821

http://www.webservicex.net/GenericNAICS.asmx?WSDL
http://www.webservicex.net/GenericUNSPSC.asmx?WSDL
http://www.webservicex.net/FedACH.asmx?WSDL

ICIT 2013 The 6" International Conference on Information Technology

Building a web service requires a web server. There are many performance related metrics that can
be tested based on the web server. This is since this server performance can highly impact the service
performance as well. Figure 4 shows a sample screen of related metrics to performance testing.
Those include the memory related attributes: Free, total, and maximum, maximum threads, max
processing time: processing time, request count, error count, bytes received, and bytes sent. Those
are dependent on the service, as well as the machine and its related hardware or components.

Free memory: 10.32 MB Total memory: 15.56 MB Max memory: 247.50 MB

http-8080

Max threads: 200 Current thread count: & Current thread busy: 2
Max processing time: 290 ms Processing time: 1.237 s Request count: 229 Error count: !

Stage Time B Sent B Recv
] 10 ms 0 KB 0KB
R ?

R ? ? ?
R ? ? 7
K 680 ms ? ?
R ? ? 7

P: Parse and prepare reguest S: Service F: Finishing R: Ready K: Keepalive

Fig. 4 A server response example

Table 2 shows web services response metrics for single user call. As mentioned earlier, this may vary
based on the time of usage or the specific called function, or its parameters. The relation between
throughput and response time is that throughput measures for the subject web service, the number of
requests it was able to handle in a unit of time (e.g. seconds or minutes), where as response time
measures the time it took for sending the request to the web service till receiving it. It can then be
clearly noticed that if response time is short throughput will be large as then the web service can
handle more number of users.

Table 2 Web services average response (single user from ManageEngine tool) (Excerpt)

Milliseconds
NO. Service Min. Max. | Av.
1 Generic-NAICS 151 158 | 154
2 Generic-UNSPSC 152 250 | 163
3 FedACH 151 158 | 154
FedWire 150 156 | 153
5 OFACSDN 150 194 | 156

We also evaluated using third party monitoring tools to monitor the web services under study. Figure 5
shows their response time over two hours collected from ManageEngine monitoring tool
(http://mww.manageengine.com). Results showed the fluctuation and the increase of response time in
some cases.

http://www.webservicex.net/FedACH.asmx?WSDL
http://www.manageengine.com/

ICIT 2013 The 6" International Conference on Information Technology

Response Time

ms

—Feda

Fig. 5 Response time over two hours period

240
180 -
160 -
140 -
Time
CH ==FedWire = RealTimeMarketData =— QFACSDN
GenericlNSPEC

Using JMeter, Table 3 summarized the impact of increasing the number of users on response time for

the 9 evaluated web services.

Table 3 Response time Vs NO. of threads, using JMeter (Excerpt)

Response time (millisecond) per Number of threads

NO 5 10 20 30 | 100 | 250 | 500 1000
1 3 3 2 2 2 3 5 14
2 2 2 2 2 2 2 4 15
3 2 2 2 2 2 2 3 11
4 2 2 2 2 2 2 9 11
5 2 2 2 2 2 4 65 54
AV (21| 21 2 2 2 | 32| 165 22

Figure 6 shows a simple diagram of average for throughput and response time versus number of
requests or threads. This load test diagram shows web services’ response with the increase number
of users. Gaussian random timer is used to ensure random and no synchronization between virtual
threads or users. Thorough study is needed to see if there is a cutting edge for number of users where
throughput starts to increase rapidly which is not clearly indicated in Figure 6 as line values are not
equally distributed. It is noticed in the graph that the median value for response time varies or is far-off
from the average when the number of threads or virtual users is large (e.g. 250, 500, and 1000).
Several papers tried to study the edge (i.e. of number of users) where response time has its sharp
increase. For many services, our experiments showed that it is somewhere between 250-500 users.
This is based on the default parameters for evaluated methods. Real requests may require more

transferred data.

ICIT 2013 The 6" International Conference on Information Technology

200
700 /

600
500 / = Throughput (req/sec)

400 / Response Time (msec)
300

200 /

100 /

o +—
5 10 20 30 100 250 500 1000

Fig.6 Performance vs. load evaluation

NO. of Threads

Availability is another important performance related quality metrics especially for web services.
Services are expected to be continuously available 24/7. In the following Tables and Figures, we will
show some of the metrics and assessment that can be used to evaluate web services in terms of
availability. Table 4 shows a sample of the availability evaluation for the web services under study
(collected from ManageEngine tool).

Table 4 Web services availability metrics (Excerpt)

Service MTTR | MTBF Up-time %
Mortgage-Index 10:09:3 54:31 8.21
Generic-UNSPSC 5:0 22:3:3 99.6

FedACH 5:0 22:3:3 99.6

FedWire 2:41 | 22:5:21 990.8

3.3 An architecture for load based testing

Experiments showed that performance and possible delay may not come only from the service itself.
The end to end time for a service request-response is dependent on: the client software and
hardware, the network between client and service, and the service provider software and hardware
components. One metric may not successfully capture all those elements or may not be able to tell the
source of delay. As such, a composition of several related metrics in which each one can measure
one or more aspects of this complete structure should be implemented or collected. One metric may
only draw one aspect of performance or delay and may even mislead judgments if it was taken in
isolation. We assume a socket-like architecture to describe all possible factors that may impact one or
more of the load based metrics for web services (Figure7). Different tools can be used to measure the
different elements.

ICIT 2013 The 6" International Conference on Information Technology

CPU, Memory, CPU, Memory,

Speed, Bandwidth,
Traffic, Congestion, etc.

Web server, Web server,

database, etc. database, etc.

ETN

Serialization- Deserialization times

L —

Network Time (TN)

y

Server
program

Client
program

Server Time (TS) Client Time (TC)

Fig. 7 A socket-like architecture for load based metrics

Logging mechanisms can be utilized to track service requests from end to end with time stamps.
Those logs can be then analyzed to look for sources of possible delays. However, logging should be
implemented carefully so that, logging itself will not be an overhead and a source or delay or latency.
Experiments showed also that most load and performance related metrics focus on response without
distinguishing whether the request was successfully serviced or not. For example, in Figure 7, we
divided message time into three parts” Client Time (TC), Network Time (TN) and Server Time (TS).
Each one of those can have its own efficiency factors and own load metrics. In addition, ignoring the
fact that all those time related metrics may depend on some of the input and output parameters of the
message or the service can be misleading. This is why some tools have options to generate random
options for those parameters to minimize any possible bias in results. Experience from network
sniffers (e.g. Snort) can be utilized and possibly classify rules to take actions in case of problems (e.g.
log, alert, etc.). Serialization and de-serialization activities occur when data is travelling from or to the
network. Messages may have some overhead in processing and time due to such activities.

4 CONCLUSION

Software testing is a high level generic activity that is required for any type of software regardless of its
nature, development methodology, target, etc. In this paper, several experiments are conducted to
collect metrics related to load and performance in web services. A small dataset of several open web
services is selected. JMeter and other tools are used to collect those metrics. Analysis showed that
quality attributes in general, and performance in particular are important characteristics to judge a web
service in addition to its services or functionalities.

5 ACKNOWLEDGEMENT

This paper is conducted part of postdoc scholarship for AVEMPACE (Erasmus Mundus, Action 2
Strand 2 Lot 5 AVEMPACE) in 2012.

6 REFERENCES

[1] Neha Thakur, Performance Testing in Cloud:A pragmatic approach, White Paper Submitted for
STC 2010, 2010.

[2] G. Koaudri Mostefaoui and A. C. Simpson. Practical experiences of testing web services. In
Proceedings of the Fifth International Workshop on SOA and Web Services Best Practices at
OOPSLA 2007, pages 43--58, Montreal, QC, Canada, 2007.

(3]

[4]

(5]

(6]

[7]

(8]

9]

ICIT 2013 The 6" International Conference on Information Technology

Schieferdecker, G. Din, and D. Apostolidis, "Distributed functional and load tests for Web
services," International Journal on Software Tools for Technology Transfer, vol. 7, pp. 351-360,
2005.

Srirama,Satish, Eero Vainikko, Vladimir Sor, and Matthias Jarke, Scalable Mobile Web Services
Mediation Framework, The Fifth International Conference on Internet and Web Applications and
Services, ICIW 2010, 9 - 15, 2010 - Barcelona, Spain.

Singh, Tejinder, Structural, Technically and Performance Aspects in Enterprise Applications or
Projects, International Journal of Scientific and Research Publications, Volume 2, Issue 4, April
2012.

Gao, Jerry, Xiaoying Bai, and Wei-Tek Tsai, Cloud Testing- Issues, Challenges, Needs and
Practice, Software Engineering : An International Journal (SEIJ), Vol. 1, No. 1, Sep. 2011.

Solomon, Andrei, and Marin Litoiu, Using Simulation Models to Evolve Business Processes,
Proceedings of the fourth workshop on a research agenda for maintenance and evaluation of
service oriented systems (MESOA 2010).

Zheng, Zibin, Yilei Zhang, and Michael R. Lyu, Distributed QoS Evaluation for Real-World Web
Services, 2010 IEEE International Conference on Web Services.

Degeler, Viktoriya, lice Georgievski, Alexander Lazovik, Marco Aiello: Concept mapping for faster
QoS-aware web service composition. SOCA 2010: 1-4.

