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Abstract 
Genetic Algorithms are search algorithm. They use a metaphor where an optimization problem 

takes the place of an environment and feasible solutions are considered as individuals living in that 
environment.  

This paper focuses on using GAs to cryptanalyse a transposition cipher. A certain method is used 
to find the possible key length. It is shown that such algorithm could be used to discover the key for 
transposition cipher.  The focus is to be on a bi- and Tri-gram frequency of letters. 

The frequency analysis is used as an essential factor  in the objective function.  The length of text 
was 3000 letters. The population size are 10, 20, 30, 40, and 50. The key size is 10 letters.  

Two equations are used to find optimal soulution. The first one depends on the letter frequency of 
bigram, and the second one depends on score table. The result clarifies that the second equation 
gave the optimal solution for the population size 30, and 40, where the number of correct letters was 
10 out of 10 letters.   

A lot of papers are published to cryptanalyse a transposition cipher using GA, but they used score 
table. This paper presents two equations to see which one has a best solution. Different population 
size, key size is 10 letters, crossover and mutation rates are 0.2 are used. 

  
Keywords: Genetic Algorithms, Transposition, Cryptanalyse, Key Search. 
 

1. INTRODUCTION 
Cryptology can be subdivided into two disciplines. Cryptography concerns itself with the design of 

cryptosystems, while cryptanalysis studies the breaking of cryptosystems. These two aspects are 
closely related; when setting up a cryptosystem, the analysis of its security plays an important 
role[1,2,3]. Cryptography is classified into two types Symmetric and Asymmetric[4].  

The focus will be on transposition cipher as bi and Tri- gram letters.  
There is a lot of papers that have been published about the using of genetic algorithms to 

cryptanalyse transposition cipher. 
In 1993 Matthwes [5] for the first time presented a genetic algorithm approach for the cryptanalysis 

of transposition cipher, using the fitness scoring as in equation (1).  
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In 1994 Clark [6] presented a genetic algorithm approach for the cryptanalysis of transposition 
cipher using genetic algorithm, using fitness weight in equation (1). 

 
In 2003 Grundlingh and Vuuren [7] presented a genetic algorithm approach for the cryptanalysis of 

transposition cipher using genetic algorithm. He used fitness weight as in equation(2). 
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In 2007 Toemeh and Arumugam [8] presented a genetic algorithm approach for the 
cryptanalysis of transposition cipher using genetic algorithm.  They used fitness weight in equation (1). 

This paper is organized as follows: A brief description of cryptanalysis, description of attacks on 
transposition and algorithmic description of the attack on a simple  transposition cipher using a genetic 
algorithm. The fitness weight as is shown in equation (3 and 4). The results of the genetic algorithm 
attack are given finally. 

 
2. TRANSPOSITION CIPHER 

A transposition is not a permutation of alphabet characters, but a permutation of places[9]. 
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Transposition or Permutation cipher works by breaking a message into fixed size blocks, and 
then permuting the characters within each block according to a fixed permutation, say P. The key to 
the transposition cipher is simply the permutation P. So, the transposition cipher has the property that 
the encrypted message i.e. the cipher text contains all the characters that were in the plain text 
message. In the other word, the unigram statistics for the message are unchanged by the encryption 
process[2,9,10]. 

In this method, the message is written in a rectangle, row by row. Reading the message off, 
row by row, but permuting the order of the columns. The order of the columns then become 

the key to the algorithm. For example[10,11]: 
The plain text is:   breaking transposition cipher. Key     :    P ={4 1 3 5 7 6 2} 

In this case, the message is broken into block of seven characters, and after encryption the 
fourth character in the block will be moved to position 1, the first is moved to position 2, the third 
remains in position 3, the fifth to position 4, the seventh to position five, the sixth remains in position 6, 
the two is moved to position 7 [10].   

Figure 1.a shows the plaintext and Fig. 1.b shows the encryption process of the previously 
described transposition cipher. 

It can be noticed that the random string "X" was appended to the end of message to enforce a 
massege length, which is a multiple of the block size[10,12].  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Example of the transposition cipher encryption process 

The cipher text is:  bekniragrnpsttoiinoshcpexri 
 

3. GENETIC ALGORITHMS 
The genetic algorithm is based upon Darwinian evolution theory. In 1975 Holand was first to 

suggest the genetic algorithms for the problem solving[13]. 
In genetic algorithms, individuals are binary digits or of some other set of symbols drawn from a 

finite set. As computer memory is made up of array of bits, anything can be stored in a computer and 
can also be encoded by a bit string of sufficient length. Each of the encoded individual in the 
population can be viewed as a representation, according to an appropriate encoding of a particular 
solution to the problem. For Genetic Algorithms to find a best optimum solution, it is necessary to 
perform certain operations over these individuals[14,15]. 

A genetic algorithm contains three operators: Selection , Crossover and Mutation. To explain 
each operator as following[14 - 19,20]: 
 

3.1 Selection 
Selection is the process of choosing parents from the population for mating.  
Selection is a method that randomly picks chromosomes out of the population according to 

their evaluation function. The higher the fitness function, the more chance an individual has to be 
selected. The selection pressure is defined as the degree to which the better individuals are favored. 
The higher the selection pressured, the more the better individuals are favored. This selection 
pressure drives the GA to improve the population fitness over the successive generations[14,21,22]. 

 
3.2 Crossover 

Is the process of taking two parent solutions and producing from them two childs. After the 
selection process, the population is enriched with better individuals[14,21,23].  
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3.3 Mutation 
Mutation is used for randomly altering a apart of an individual to produce a new 

individual[14,24,20].  
Fig. 2 shows the cycle of genetic algorithms. Each cycle in Genetic Algorithms produces a new 

generation of possible solutions for a given problem[12,15]. 
Fig. 3 shows the flowchart for the proposed algorithm of transposition cipher by using GAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3: Flowchart Of Transposition Cipher By Using GAs 
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4. FITNESS MEASURE 

4.1  First Equation  
The technique used to compare candidate keys is to compare di-gram statistics of the decrypted 

message with those of the language (which is assumed known).  
Table (1) shows the expected number of digram letters occurrences in English language text of 

length 10000 characters[7]. 
The following equation is a general formula used to determine the suitability of a proposed key (k)  

)3(]||||[1
, ,,

,,,,,,  
 


Aji Akji

t

kji

t

kji

b

ji

b

jikey DkDkF   

Where Fkey is fitness value to find optimal solution,  
b

jiK ,
and 

t

kjiK ,,
 are the known language bi-gram 

and tri-gram statistics as shown in table 1, and 
b

jiD ,
and 

t

kjiD ,,
are the bigram and trigram statistics of 

the message decrypted with key K. The weights   , and   can be varied to allow more or less 
emphasis on particular statistics. 
 

 
 

 

 

 

 

 

 

 

 

 
 

            Fig. 2: Cycle of genetic algorithms 

 

4.2 Second equation:  Fitness Scoring  
F is fitness value, Pi is the percentage frequency of that bi- or tri-gram in the text, Si is the fitness 

score to the i
th
 bi- or tri-gram tested for, and the summation is over the Q bi- and tri-grams checked[6]. 
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Table 2: The fitness scoring 

Bigram score Bi/trigram score 

TH +2 ED +1 

HE +1 THE +5 

IN +1 ING +5 

ER +1 AND +5 

AN +1 EEE -5 
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Table (2) shows the expected number of digram and Tri-gram letters. 

It is clear that the most score (+2) for bi-gram is TH letters, and (+5) for the tro giram are THE, 
ING, and AND. the most bi or tri gram could be TH(the, that, then,their, this, these, those,  etc) , THE 
(the, there, these, them, their, etc), ING(and word with ing for example: teacing, finding, reading, etc,), 
and AND. 

When the score +1 for HE, IN, ER, AN, ED. it could be guess the pair of letters HE (he, she, 
here, the,etc), ER (are, there, here, ..etc), AN (and, an, another, ..etc), and ED (any word in past 
simple and past participle)  

5. USING GENETIC ALGORITHMS TO ATTACK TRANSPOSITION CIPHER  
The attack is implemented by generating an initial candidate key pool p(0) of even cardinality, 

consisting of permutations of the set [1 to key size]. The first generation is generated randomly using a 
simple uniform random generator. Thereafter, the cipher text is decrypted using each permutation as a 
key, enabling us to assign a measure of fitness by using equation (2) to each candidate key. Pairs of 
candidate key are then selected for producing offspring after applying a method of crossover to each 
pairs. 

The Roulette wheel  selection is used in this paper.  It is most common selection method used in 
genetic algorithms for selecting potentially useful individuals (solutions) for crossover and mutation. 

In Roulette wheel selection, each member of the population is allocated a section of an 
imaginary roulette wheel. Unlike a real roulette wheel the sections are different sizes, proportional to 
the individual's fitness, such that the fittest candidate has the biggest slice of the wheel and the 
weakest candidate has the smallest. The wheel is then spun and the individual associated with the 
winning section is selected [7,14,21,22]. 

. Single point Crossover has been used in this method. The first part of first child is the first part of 
the first parent and second part of first child is the remaining digits as the order of second parent. The 
first part of second child is the first part of second parent and second part is the remaining digits as the 
order of first parent as shown in fig. 4.  

After crossover, some keys are subjected to mutation. Mutation prevents the algorithm to be 
trapped in a local minimum. The mutation operation used in this cipher randomly selects two elements 
in the child  and swapa those elements as shows in Fig. 5. 

 

 

 
 
 
 
 
 
 
 

Fig. 4: Applying Crossover    Fig. 5: Applying Mutation 

6. RESULTS 
The attack to transposition cipher was implemented for different numbers of populations, different 

numbers of generations and two equations (3 and 4).  
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In this method different population sizes and different lengths of key have been used for 
mutation 0.2 and two different equations were used to calculate the fitness value.  
First: Using equation  3 

Figure 6 shows the relation between the population size (10, 20,30 40 and 50) and number of 
generations for a key size of 10 letters. It is clear that the best number of correct letters is reached 
after 300 generation. Table 3 shows the number of correct letters for population size (10, 20, 30, 40 

Generate random number from 1 to key size for 

each pair and swap as: 

 

Parent 1: 1  6   5   7  10  3 2  4  8  9 

Parent 2: 7  4  10  9   6  1 2  5  8  3 

 

Child1: 1  6   5   7  10  3 4  9  2  8 

Child 2: 7  4  10  9   6  1 5  3  2  8 
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and 50). The number of correct letters is 7 for population size 30 and 40 which represents the best 
solution after 300 generations. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 6 : Different population size, correct letters and different number of generation 
 
Bold lettering is used in table 6 for those letters in the population that appeared to be correct. 
The true key is:  
               9   7   8   2   4   3   5   1   10   6 
Figure 7 shows the relation between the population size and fitness values for 300 generations.  

It is clear that the best fitness value was 43.3767 for the number of population 20. Table 4 shows the 
fitness values for population size (10, 20, 30, 40 and 50). 

 
                              

Table 3: number of correct letters 

population  

sizes 
key 

No. of 

correct 

letters 

10 1     7     8     2     4     5     9     6    10      3 5 

20 8     7    10    2     4     3     5     6     9      1 5 

30 9     7    10    2     4     3     5     1     6      8 7 

40 9     7     6     2     4     3     5     1     8    10 7 

50 9      7    4     2     8     3     5     6    10    1 6 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

      Fig. 7:  fitness values for different population size after  300 generation. 

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

population sizes

fi
tn

e
s
s
 v

a
lu

e
%

 

No. of 

population 

Fitness value 

% 

10 32.1367 

20 43.3767 
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Table 4: Fitness values for different number  
of population, after 300 generation   
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Figure 8 shows the time required (elapsed) to finish the algorithm for different number of 
generations and for different number of populations. It is clear that the time required is increased as 
the number of populations is increased. 
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Fig. 8: Elapsed time for different number of population  

 
Second: By using equation 4   

In the previous method, the best solution was 7 letters from 10. It has depended on table 1 of 
bi-gram frequency letters of 10000 letters in the English language but this solution is not enough. 
Another equation is used (equation 3) to calculate the fitness value, where it depends on the 
frequency of the more frequency bigram and trigram which were shown in table 2.  The single 
frequency letters have been ignored because they have no effect on the solution. Fig. 9 shows the 
relation between the number of generations and the number of correct letters for population size 10 
and 20. It's clear that after 250 and 300 generation the number of letters has reached to 10 correct 
letters for population size 10. When the population size has increased to 20, the number of correct 
letters are 10 after 300 generations. Table 8 shows the number of correct letters. For different number 
of generations. Table 6 shows the number of correct letters for the number of population 10 and 20. 

Table 6 shows the fitness values for the number of population 10 and 20. 
The second equation gave better solution than the first one. 
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Fig. 9: Correct letters for population size 10 and 20 and different number of generation 

 
 
 
 
 
 
 
 
 
 
 
 
 

Number of generation 

No. of correct 
letters 

pop10 pop20 

50 0 1 

100 2 2 

150 3 7 

200 5 8 

250 8 10 

300 10 10 

 

Number of 
generation 

Fitness value 

pop10 pop20 

50 165 318 

100 166 519 

150 215 347 

200 626 472 

250 406 872 

300 872 872 

 

Table 5: Number of correct letters for the 
number  of population 20 and 40, after 

300 generations 
 

 

Table 6: Fitness values for the number  
population 20 and 40, after 300 generations 
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Figure 10 shows the time required (elapsed) to finish the algorithm for different number of 
population. The time required is increased as the number of population is increased.   

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 10: Elapsed time for different number of generation  
 
To find the key size, the fitness value was measured for all possible key sizes ranging between 

4 and 15. For example the possible key size for 3000 text letters are (5, 6, 8, 10, 12 and 15). 
Table 7 shows fitness values for the possible key size of 3000 text letters. it is clear that the 

highest fitness value is obtained when the key size was 10. 

 
7. CONCLUSIONS 
1. Two different equations were used to calculate the fitness function to see which one gives best 

solution.  
2. The first equation depends on the letter frequency of bigram 
3. The algorithm was run for population size of 10, 20, 30, 40 and 50, and for a key size of 10 letters. 

The best number of correct letters was 7 from 10 letters after 300 generation for population size 
30 and 40 which represent the best solution. 

4. Another equation was used which depends on score table. In this equation, bi-grams and trigrams 
were used to represent the most ten bi-grams and trigrams letters. 

5. The second equation to calculate the fitness value gives better results than the previous one. In this 
equation, 10 correct letters out of 10 was obtained. Then the algorithm was also run for different 
numbers of population, different size keys, different numbers of generations, and the text length of 
3000 letters. 

6. In both equations, the single letters frequency has been ignored because in this method, the 
number of each letter in the cipher text is the same as it is in the plain text. So it is not necessary 
to calculate single letters frequency. 

7. The second equation gave the optimal solution, so different key sizes have been used to test which 
length is correct. For the  3000 letters, the key sizes are (5, 6, 8, 10, 12 and 15) and the high 
fitness has key size 10. 

8. The elapsed time for 2
nd

 equation was less than for the 1
st
 equation.  

9. The algorithms were run in MATLAB 2008 for pentuime 4, the processor 1.7GHz and RAM 512MB. 

It is apparent that genetic algorithm attack on simple cryptographic ciphers called 
transposition were implemented successfully.  
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