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Abstract 

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price 
a wide range of options contracts for which there are no known analytical solutions. American options 
are the most famous of that kind of options. Besides numerical methods, American options can be 
valued with the approximation formulas. The authors of the most famous approximation formulas are 
Bjerksund and Stensland ([3] and [4]). 

Comparative analysis of numerical methods for American option pricing and Bjerksund and Stensland 
formulas for approximation values of American options is carried out in this paper.  

When the value of American option is approximated by Bjerksund-Stensland analytical formulas, the 
computer time spent to carry out that calculation is very short (it can be considered as instantaneous). 
The computer time spent using numerical methods can vary from less than one second to several 
minutes or even hours. It is clear that more often increasing the time of computer calculation greater 
precision is obtained. However to be able to conduct a comparative analysis of numerical methods 
(binomial trees, trinomial trees) and Bjerksund and Stensland  formulas for approximation values of 
American options, we will limit computer calculation time of numerical method to less than one 
second, which nearly corresponds to the calculation time of the Bjerksund and Stensland 
approximation. Therefore, we ask the question: Which method will be most accurate at nearly the 
same computer calculation time? 

Keywords – option pricing, binomial and trinomial trees, Bjerksund and Stensland formulas 

1 INTRODUCTION 

The American option can be exercised at any time up to its expiration date. This added freedom 
complicates the valuation of American options relative to their European counterparts. With a few 
exceptions, it is not possible to find an exact formula for the value of American options. Several 
researchers have, however, come up with excellent closed-form approximations (Barone-Adesi, G. 
and R. E. Whaley [1], Bjerksund, P. and G. Stensland [3],[4]. These approximations have become 
especially popular because they execute more quickly on computers than the numerical techniques.   

Numerical methods that can be used for evaluation of American options are binomial and trinomial 
trees and finite difference methods. These methods are more flexible then analytical solutions and can 
be used to price a wide range of options contracts for which there are no known analytical solutions 
including the American options. 

The binomial method was first published by Cox, Ross and Rubinstein [6] and Rendleman and Bartter 
[9]. Trinomial trees were introduced in option pricing by Boyle [5] and are similar to binomial trees. The 
main objection to these methods is that the computing time required for their algorithms is longer than 
for the analytical expressions. But with the development of computer technology computers become 
faster and the computation time is reduced significantly. The question arises of whether the price of 
American options obtained by numerical methods in a short time (less than one second) is closer to 
the correct value of the option than the price obtained by an approximation formula. This paper will try 
to give answers to this question by evaluating 280 American options by binomial and trinomial trees 
and Bjerksund and Stensland formulas for approximation values of American options. 

The paper is organized as follows: following this introduction, in Section 2, we describe the binomial 
and trinomial model for valuing options. In Section 3 we describe Bjerksund and Stensland formulas 
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for approximation values of American options. In Section 4 we conduct a comparative analysis of 
specified numerical methods and approximation formulas. Section 5 summarizes the paper and 
indicates the possible directions for further research.  

2 BINOMIAL AND TRINOMIAL MODEL FOR VALUING OPTIONS 

2.1 Binomial model  

The procedure followed by binomial model is to assume that the stock price follows a discrete time 
process. The life of the option T – t is decomposed into n equal time steps of length (∆t = (T – t)/n). At 
each time interval (tj = j∙∆t,     j = 0, 1, ..., n), it is assumed that the underlying instrument will move up 

or down by a specific factor ( u or d  where, by definition 1u  , and 0 1d  ) per step of the tree with 

probability p, 1-p respectively . So, if S  is the current price, then in the next period the price will either 

be upS S u  or downS S d  .  The binomial tree of stock’s price is best illustrated in a Fig. 1.  
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Fig. 1. Binomial tree 

The up and down jump factors and corresponding probabilities are chosen to match the first two 
moments of the stock price distribution (mean and variance). There are, however, more unknowns 
than there are equations in this set of restrictions, implying that there are many ways of choosing the 
parameters and still satisfy the moment restrictions. Cox, Ross and Rubinstein [6] set the up and down 
parameters to  

 
tu e  , 

td e   , (1) 

where   is volatility of the relative price change of the underlying stock price. The probability of the 

stock price increasing at the next time step is:  

 

r te d
p

u d

 



, (2) 

where r  is risk-free interest rate. 

At each final node of the tree i.e. at expiration of the option the option value is simply its intrinsic, or 
exercise, value 

Max [ ( nS K ), 0 ], for a call option  

Max [ ( nK S ), 0 ], for a put option,  

where K is the strike price and nS is the spot price of the underlying asset at the 
thn period. 

Once the above step is complete, the option value is then found for each node, starting at the 
penultimate time step, and working back to the first node of the tree (the valuation date) where the 
calculated result is the value of the option. 

Under the risk neutrality assumption, today's fair price of a derivative is equal to the expected value of 
its future payoff discounted by the risk free rate. Therefore, expected value is calculated using the 
option values from the later two nodes (Option up and Option down) weighted by their respective 
probabilities (probability p of an up move in the underlying, and probability 1-p of a down move). The 
expected value is then discounted at r, the risk free rate corresponding to the life of the option. 

http://en.wikipedia.org/wiki/Underlying_instrument
http://en.wikipedia.org/wiki/Option_time_value
http://en.wikipedia.org/wiki/Extreme_value
http://en.wikipedia.org/wiki/Call_option
http://en.wikipedia.org/wiki/Put_option
http://en.wikipedia.org/wiki/Strike_price
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http://en.wikipedia.org/wiki/Derivative_(finance)
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The following formula to compute the expectation value is applied at each node:  

  , , 1 ,(1 )r t
t t i t i t iC e pC p C 
     (3) 

where  

,t iC is the option's value for the 
thi node at time t.  

This result is the “Binomial Value”. It represents the fair price of the derivative at a particular point in 
time (i.e. at each node), given the evolution in the price of the underlying asset to that point. It is the 
value of the option if it were to be held—as opposed to exercised at that point. 

For an American option, since the option may either be held or exercised prior to expiry, the value at 
each node is: Max (Binomial Value, Exercise Value). The value of the initial node presents the 
required fair price of the option. 

2.2 Trinomial model  

Under the trinomial model, in each period, the prices can go up, down or remain unchanged. The term 
"lattice" implies two or more branches protruding from the node of a tree. In the case of a binomial 
lattice there are two branches, three in the case of a trinomial, and so on. Where there are more than 
two branches, the lattice can be called a multinomial lattice. 

A trinomial lattice works on the same principles as the binomial lattice, but assumes that the prices 
may also remain constant. So in the first step, the prices may go up, down or remain unchanged. For 
each of the three outcomes, there will be three outcomes each in the second time step, but the second 
outcome of the first node in the second step will be the same as the first outcome of the second node 
in the second step and so on. 

The expected results are attained much faster, as the branches become intractable at a much earlier 
period of time. Trinomial trees can be used as an alternative to binomial trees, where there are 
numerous time steps. It is to be noted that the trinomial tree computation procedure is exactly the 
same as for the binomial model. 

As the name suggests, trinomial model uses a similar approach to be binomial one. But the hedging 
and replication arguments do not take place in constructing trinomial trees. For a non - dividend 
paying stock, parameter values that match the mean and standard deviation of price changes are 
given below: 

 3 , 1/tu e d u   ,  (4) 
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 1m u dp p p   ,  (7) 

where u, d and r  have the same meaning as in binomial model,   is stock volatility, while ,u dp p and 

mp  denote probabilities of the price going up, down or remaining unchanged, respectively. 

Once the tree of prices has been calculated, the option price is found at each node largely as for the 
binomial model, by working backwards from the final nodes to today. The difference being that the 
option value at each non-final node is determined based on the three (as opposed to two) later nodes 
and their corresponding probabilities. 

3 THE BJERKSUND AND STENSLAND (1993) AND (2002) APPROXIMATION 

The Bjerksund and Stensland [3] approximation can be used to price American options on stocks, 
futures and currencies. Bjerksund and Stensland's approximation is based on an exercise strategy 
corresponding to a flat boundary I (trigger price).  

http://en.wikipedia.org/wiki/Expectation_value
http://en.wikipedia.org/wiki/American_option
http://en.wikipedia.org/wiki/Binomial_options_pricing_model#Methodology
http://en.wikipedia.org/wiki/Binomial_options_pricing_model#Methodology
http://en.wikipedia.org/wiki/Binomial_options_pricing_model#Methodology
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Given this feasible but non-optimal strategy, the American call boils down to: (i) a European up-and-
out call with knock-out barrier I, strike K, and maturity date T; and (ii) a rebate I-K that is received at 
the knock-out date if the option is knocked out prior to the maturity date. 

Their American call approximation is 

 
     
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where  
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The function  , , , ,S T H I   is given by: 
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And the trigger price I is defined as 
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If S>I, it is optimal to exercise the option immediately and the value must be equal to the intrinsic value 

of S-X. On the other hand, if b r , it will never be optimal to exercise the American call option before 

expiration, and the value can be found using Black-Scholes formula [2]. The value of the American put 
is given by Bjerksund and Stensland put-call transformation: 

    , , , , , , , , , ,p S K T r b c S K T r b b    . (12) 

The Bjerksund and Stensland [4] approximation divides the time to maturity into two parts, each with a 
separate flat exercise boundary. They extend the flat boundary approximation above by allowing for 

one flat boundary 1I  that is valid from date 0 to date t, and another flat boundary 2I  that is valid from 

date t to date T, where 0 .t T   Their American call approximation is: 

  

     

     

     

   

2 2 1 2 2 1 2 2 1 1 2

1 2 2 1 1 2 1 1 1 2

1 1 2 1 1 1 2 1 1 2 1 1

1 2 1 1 2 1 1

, , , , , ,1, , , ,1, ,

, ,0, , , ,0, , , , , ,

, , , , , , , ,1, , , , , ,1, , , ,

, ,0, , , , , ,0, , , , ,

c S S t I I S t I I S t I I

K S t I I K S t I I S t I I

S T I I I t S T I I I t S T K I I t

K S T I I I t S T K I I t

     

    

 

    

   

    

  

 (13) 
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 The function  , , , ,S T H I   is given by: 
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The trigger price I is defined as: 
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4 COMPARISON OF NUMERICAL METHODS AND BJERKSUND AND 
STENSLAND APPROXIMATIONS 

Comparative analysis of observed models will be carried out by their application to pricing American 
put options on nondividend-paying stocks. We will compare the Bjerksund and Stensland (1993) and 
(2002) approximation with binomial model and trinomial model. We will limit computer calculation time 
of numerical method to less than one second, which nearly corresponds to the calculation time of the 
Bjerksund and Stensland approximation. 

Since there is no formula that can calculate the exact value of American options offer, for the 
calculation of reference value, we will use trinomial model with a very large number of steps (5000 
steps) that achieves high precision and the resulting value can be considered accurate. The 
calculation of the reference value using trinomial model in this analysis required over 100 hours of 
computer processing. The values obtained by the observed models are compared with the reference 
values. Errors of each particular model will be represented by the absolute value of the difference 
between the values obtained by the observed model and the reference value. 

The survey is conducted by evaluating 280 American options with the exercise price of 150, and the 
volatility of 25%, with a risk-free interest rate of 6%. Time to maturity takes values of the interval 

 0.05,1 , and the current price of the option values are taken from the interval  50,180 .  

The option values obtained by the analysis are given in Tables 1-5. In applying the binomial and 
trinominal model the biggest number (rounded to the tens) was taken for the number of periods, for 
which computer computation is less than one second. 

The main aim is to find out whether the errors in the observed methods differ significantly.  

For this purpose, we will apply the Friedman non-parametric test.   

This test is used for more than two dependent variable samples measured using the sequence scale. 
The following hypotheses are set: 

0H - there is no difference in the rank of model errors, 

1H - there is a difference in the rank of model errors. 

Figure 2 indicates the results of the conducted Friedman test. Friedman test was used to test the 
differences in the error ranks for all four models based on the results obtained for the option offer 
(picture 5.3). The obtained results show that in both cases there is a difference in ranks of error for the 

observed models, i.e. the initial hypothesis 0H  is rejected. 

The binomial model has shown to be the best, followed by the trinomial, and Bjerksund Stenslandov-
model (2002), with the Bjerksund Stenslandov-model (1993) taking the last position.  

Table 1. Evaluating the American options from the sample using the trinominal model (n=5000) 

50 60 70 80 90 100 110 120 130 140 150 160 170 180

0,05 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,19847 3,15076 0,47987 0,03346 0,00110

0,1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,73557 4,34832 1,25706 0,25606 0,03739

0,15 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00815 11,26361 5,22684 1,95552 0,58906 0,14462

0,2 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,07938 11,74576 5,94098 2,57269 0,95582 0,30776

0,25 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,19474 12,18433 6,55056 3,12455 1,32659 0,50549

0,3 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,33329 12,58522 7,08619 3,62410 1,68963 0,72317

0,35 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,48377 12,95450 7,56603 4,08074 2,04012 0,95110

0,4 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,63969 13,29662 8,00188 4,50215 2,37668 1,18346

0,45 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,79738 13,61572 8,40195 4,89336 2,69902 1,41655

0,5 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,95455 13,91454 8,77218 5,25892 3,00771 1,64802

0,55 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00252 21,10980 14,19563 9,11706 5,60216 3,30326 1,87626

0,6 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,01404 21,26219 14,46096 9,44008 5,92563 3,58663 2,10051

0,65 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,03380 21,41166 14,71236 9,74400 6,23132 3,85824 2,32038

0,7 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,05967 21,55743 14,95144 10,03107 6,52212 4,11939 2,53533

0,75 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,09046 21,69955 15,17871 10,30311 6,79823 4,37049 2,74496

0,8 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,12525 21,83806 15,39616 10,56167 7,06211 4,61209 2,94982

0,85 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,16341 21,97301 15,60362 10,80805 7,31371 4,84520 3,14959

0,9 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,20373 22,10444 15,80301 11,04336 7,55549 5,07012 3,34429

0,95 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,24636 22,23236 15,99396 11,26855 7,78698 5,28714 3,53410

1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,29034 22,35679 16,17769 11,48444 8,00939 5,49662 3,71918
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Table 2. Evaluating the American options from the sample using the Bjerksund-Stendslandov (1993) 
model 

50 60 70 80 90 100 110 120 130 140 150 160 170 180

0,05 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,17537 3,13141 0,47725 0,03334 0,00110

0,1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,68140 4,30999 1,24605 0,25417 0,03717

0,15 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00110 11,18646 5,17112 1,93365 0,58305 0,14337

0,2 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,04965 11,65041 5,86954 2,53929 0,94409 0,30431

0,25 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,14402 12,07379 6,46493 3,07945 1,30789 0,49888

0,3 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,26491 12,46203 6,98779 3,56752 1,66314 0,71235

0,35 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,40066 12,82041 7,45614 4,01341 2,00560 0,93546

0,4 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,54434 13,15332 7,88169 4,42440 2,33399 1,16250

0,45 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,69174 13,46431 8,27250 4,80604 2,64827 1,38990

0,5 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,84025 13,75623 8,63444 5,16257 2,94899 1,61546

0,55 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,98821 14,03140 8,97191 5,49736 3,23691 1,83781

0,6 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00276 21,13457 14,29174 9,28830 5,81309 3,51284 2,05612

0,65 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,01390 21,27867 14,53882 9,58632 6,11196 3,77760 2,26989

0,7 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,03210 21,42009 14,77398 9,86813 6,39579 4,03198 2,47887

0,75 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,05606 21,55859 14,99835 10,13552 6,66610 4,27668 2,68295

0,8 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,08470 21,69403 15,21289 10,38996 6,92418 4,51238 2,88210

0,85 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,11716 21,82635 15,41844 10,63273 7,17113 4,73967 3,07639

0,9 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,15273 21,95554 15,61573 10,86486 7,40789 4,95910 3,26589

0,95 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,19080 22,08162 15,80538 11,08730 7,63529 5,17117 3,45073

1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,23091 22,20465 15,98797 11,30081 7,85406 5,37634 3,63104
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Table 3. Evaluating the American options from the sample using the Bjerksund-Stenslandov (2002) 
model 

50 60 70 80 90 100 110 120 130 140 150 160 170 180

0,05 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,18504 3,13842 0,47776 0,03335 0,00110

0,1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,70275 4,32352 1,24882 0,25446 0,03719

0,15 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00192 11,21543 5,19049 1,93969 0,58423 0,14353

0,2 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,05988 11,68517 5,89411 2,54901 0,94675 0,30488

0,25 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,16173 12,11320 6,49413 3,09293 1,31248 0,50015

0,3 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,28857 12,50527 7,02110 3,58470 1,66997 0,71462

0,35 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,42911 12,86686 7,49311 4,03413 2,01486 0,93899

0,4 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,57670 13,20248 7,92190 4,44849 2,34576 1,16748

0,45 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,72732 13,51576 8,31560 4,83327 2,66257 1,39649

0,5 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,87850 13,80963 8,68009 5,19272 2,96580 1,62377

0,55 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 21,02868 14,08646 9,01982 5,53021 3,25616 1,84790

0,6 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00535 21,17689 14,34819 9,33821 5,84842 3,53445 2,06803

0,65 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,01939 21,32254 14,59644 9,63798 6,14958 3,80147 2,28363

0,7 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,04016 21,46525 14,83258 9,92134 6,43550 4,05800 2,49442

0,75 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,06638 21,60482 15,05775 10,19008 6,70771 4,30474 2,70028

0,8 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,09703 21,74114 15,27295 10,44570 6,96752 4,54235 2,90117

0,85 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,13127 21,87418 15,47901 10,68948 7,21604 4,77144 3,09714

0,9 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,16841 22,00394 15,67670 10,92249 7,45421 4,99255 3,28826

0,95 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,20787 22,13047 15,86664 11,14566 7,68289 5,20618 3,47466

1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,24920 22,25384 16,04942 11,35980 7,90280 5,41280 3,65646
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Table 4. Evaluating the American options from the sample using the binominal model (n=350) 

50 60 70 80 90 100 110 120 130 140 150 160 170 180

0,05 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,19905 3,14915 0,47988 0,03310 0,00108

0,1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,73589 4,34628 1,25886 0,25574 0,03726

0,15 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00773 11,26556 5,22452 1,95659 0,58774 0,14459

0,2 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,07851 11,74720 5,93846 2,57603 0,95751 0,30741

0,25 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,19513 12,18542 6,54787 3,12583 1,32843 0,50610

0,3 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,33354 12,58790 7,08335 3,62837 1,69249 0,72422

0,35 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,48266 12,95861 7,56305 4,07923 2,03889 0,95270

0,4 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,64152 13,29634 7,99880 4,50425 2,38003 1,18397

0,45 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,79536 13,61625 8,39877 4,89911 2,69582 1,41589

0,5 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,95667 13,91870 8,76892 5,26463 3,01202 1,65048

0,55 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 21,11104 14,20110 9,11371 5,60535 3,30652 1,87639

0,6 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,01409 21,26105 14,46596 9,43666 5,92498 3,58333 2,10171

0,65 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,03241 21,41378 14,71539 9,74051 6,22770 3,86069 2,32419

0,7 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,05792 21,56030 14,95113 10,02750 6,52274 4,12527 2,53458

0,75 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,09084 21,70058 15,17562 10,29946 6,80229 4,37606 2,74487

0,8 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,12435 21,83530 15,39544 10,55796 7,06798 4,61475 2,95430

0,85 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,16074 21,97351 15,60558 10,80426 7,32124 4,84284 3,15380

0,9 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,20302 22,10717 15,80654 11,03948 7,56311 5,06833 3,34467

0,95 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,24708 22,23600 15,99896 11,26460 7,79462 5,29013 3,52932

1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,29083 22,36017 16,18358 11,48044 8,01666 5,50280 3,72087
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Table 5. Evaluating the American options from the sample using the trinominal model (n=100) 

50 60 70 80 90 100 110 120 130 140 150 160 170 180

0,05 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,19825 3,14746 0,47911 0,03304 0,00103

0,1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00000 10,73506 4,34383 1,25827 0,25513 0,03699

0,15 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,00346 11,25985 5,22140 1,95855 0,58726 0,14413

0,2 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,07530 11,74857 5,93480 2,56940 0,95335 0,30810

0,25 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,19105 12,18049 6,54370 3,13005 1,32292 0,50548

0,3 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,33235 12,58898 7,07865 3,62876 1,69367 0,72438

0,35 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,47753 12,95696 7,55781 4,07649 2,03364 0,95214

0,4 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,63658 13,29196 7,99310 4,50051 2,38195 1,18100

0,45 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,78916 13,60944 8,39265 4,89876 2,70119 1,41891

0,5 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 20,95150 13,91357 8,76237 5,26711 2,99895 1,64913

0,55 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 21,10956 14,19801 9,10670 5,61026 3,30600 1,87051

0,6 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,00000 21,25993 14,46479 9,42915 5,93174 3,59367 2,10467

0,65 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,01188 21,40273 14,71600 9,73249 6,23434 3,86434 2,32448

0,7 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,04478 21,55168 14,95357 10,01905 6,52075 4,12035 2,53260

0,75 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,08104 21,69705 15,17882 10,29062 6,79247 4,36384 2,73814

0,8 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,11786 21,83681 15,39303 10,54880 7,05161 4,60438 2,95212

0,85 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,15865 21,97092 15,59722 10,79485 7,30321 4,84506 3,15566

0,9 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,20119 22,09973 15,79234 11,02985 7,54903 5,07466 3,34992

0,95 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,24326 22,22363 15,97915 11,25474 7,78412 5,29440 3,53604

1 100,00000 90,00000 80,00000 70,00000 60,00000 50,00000 40,00000 30,28451 22,34286 16,16452 11,47026 8,00937 5,50504 3,71516
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Fig. 2. Results of the Friedman test for the error sample obtained by the Bjerksund-Stensland (1993) 
model, Bjerksund-Stensland (2002) model, binominal and trinominal model in evaluating American 

options 

5 CONCLUSION 

Taking into account the development of computer technology, i.e. architecture improvements and the 
increased speed of the new computer models, it is clear that the calculation accuracy of numerical 
methods in the same time period will be significantly higher on the modern computers than it was at 
the time when Bjerksund-Stensland models were published. The results of this study confirmed our 
assumptions and proved that the numerical methods provide a greater precision of calculations when 
compared to the Bjerksund-Stensland model if the computation time is limited to one second. Out of 
the set of numerical methods presented for the evaluation of plain vanilla American options, it was the 
binomial model that proved to be the most precise, followed by the trinomial model. 
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