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Abstract—Computer software plays an important role in 
business, government, societies, and the sciences. To solve real-
world problems, it is important to improve the quality and 
reliability of computer software. Software Engineering is the 
computing field concern with designing, developing, 
implementing, maintaining, and modifying software. Software 
Engineering data consists of sequences, graphs, and text.. In this 
paper, we study how data mining techniques can be applied in 
solving Software Engineering problems. These techniques are 
applied to detect problems such as bugs, to aid in pattern 
discovery, and to help developers deal with the complexity of 
existing software, in order to create more failure-free software. 
At the end of this paper, we suggest specific data mining 
techniques for each type of Software Engineering data. 
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I. INTRODUCTION 

he economies of all developed countries are dependent on 
software, because software controls systems that affect our 

daily needs. Thus, Software Engineering (SE) has become 
more and more important. SE concerns computer-based 
system development; this includes system specification, 
architectural design, integration, and deployment. With the 
increasing importance of SE, the difficulty of maintaining, 
creating and developing software has also risen.  Challenges 
in SE include requirement gathering, systems integration and 
evolution, maintainability, pattern discovery, fault detection, 
reliability, and complexity of software development [1, 2]. SE 
data can be categorized into three types: sequences, graphs, 
and text [3].  
 

Data mining is a process that employs various analytic tools 
to extract patterns and information from large datasets. Today, 
large numbers of datasets are collected and stored. Human are 
much better at storing data than extracting knowledge from it, 
especially the accurate and valuable information needed to 
create good software. Large datasets are hard to understand, 
and traditional techniques are infeasible for finding 
information from those raw data. Data mining helps scientists 
in hypothesis formation in biology, physics, chemistry, 
medicine, and engineering. The data mining process is shown 
in Fig. 1 below. 

 

 There are seven steps in the process: data integration, data 
cleaning, data selection, data transformation, data mining, 
pattern evaluation and knowledge presentation. Data mining 
techniques that can be applied in improving SE include 
generalization, characterization, classification, clustering, 
associative tree, decision tree or rule induction, frequent 
pattern mining, and etc. [5].  

  

 
Figure 1.  Data Mining Process [4] 

 
      

The purpose of this study is to explore how data mining 
techniques can be applied to improve SE. Objectives of this 
study are: 
 

• To review the concept of SE and data mining 
• To determine the problems in SE 
• To identify data mining techniques that can be applied 

to solve SE problems. 
 

 
 In this paper, we focus on the issues particular to each type 
of SE data, and the specific data mining techniques that can 
solve those problems. We suggest the best data mining 
technique(s) for each SE data type, which are sequences, 
graphs, and text. 

II. BACKGROUND STUDY 

SE has become increasingly important these days, and 
research on its problems has proposed various methods for 
improving SE. The study of SE problems has followed several 
approaches. Early research of Thayer et al. [6] was concerned 
with SE project management. They introduced planning 
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problems, organizing problems, staffing problems, and 
controlling problems as major challenges in this area. 
Ramamoorthy et al. [7] stated that as more complex software 
applications are required, programmers will fall further behind 
the demand. This causes the development of poor quality 
software and higher maintenance costs. The problems stated 
by Thayer are more closely tied to the processes of SE project 
management, while those introduced by Ramamoorthy are 
more closely tied to the limitations of human beings. Later 
work by Clarke [8] identified challenges in SE associated with 
the complexity of the software development process. Similar 
to our study, he stated that the complexity of software 
development causes the software to become harder to 
maintain.  This leads to other problems such as software 
integrity and difficulty in detecting application bugs or flaws.   
A bug is a flaw in a computer program that can ultimately 
cause glitches, program failure or software destruction. 

 
With the increasing importance of SE, data mining has 

become an important tool for solving SE problems. Data 
perturbation techniques for preserving privacy in data mining 
were proposed by Islam and Brankovic [9]. Aouf proposed the 
clustering technique to identify patterns in the underlying data 
[10]. Later work by Ma and Chan [11] suggested iterative 
mining for mining overlapping patterns in noisy data. The 
three data mining approaches discussed above are all 
clustering techniques. The data perturbation technique 
described by Islam and Brankovic [9] involves adding noisy 
data into some part of the dataset in order to preserve privacy, 
while Ma and Chan [11] were concerned with the elimination 
of noisy data to enable extracting valuable information. 

 
Different types of data require different data mining 

techniques. In this paper, we present specific problems that 
exist in SE and apply a specific data mining technique to solve 
each of them.  

III. RESEARCH METHODOLOGY 

In this research, we decided to use a descriptive approach as 
our research methodology. The descriptive approach is 
primarily used for gathering data, with attempting to generate 
rich descriptions and explanations of the object of study. The 
project may also include gathering opinions about the 
desirability of the present state of things. It relies on both 
qualitative and quantitative data. The research methodology of 
our study is shown in Fig. 2 below. 

 
First, we collect data from past literature: journals, 

magazine, written documents, sources from the internet, books 
and published papers. After identifying the problem in SE 
(reliability of software and complexity of development 
processes), we analyze the data we collected about the various 
data mining techniques, and make a decision as to which 
technique is best suited to solve our problem. Finally, we 
propose the best data mining technique to solve SE problem. 

 

 
     Figure 2. Research Methodology Phase 

IV. ANALYSIS AND FINDINGS 

SE data can be categorized into three categories as follows 
[3]: 
 

• Sequences, such as execution traces collected at run-
time, and static traces extracted from source code 

• Graphs, such as dynamic call graphs extracted from 
source code 

• Text, such as code comments, documentation, and bug 
reports. 
 

When problems such as bugs or flaws arise in systems or 
software, it is difficult for developers or programmers to 
determine the cause(s).  Data mining is a valuable tool for 
solving SE problems. Data mining techniques can be applied 
to solve problems in all three categories of SE data. The 
following sub-topics review and describe data mining 
techniques that can solve problems in each type of SE data. 

A. Sequence Data Mining 
Examples of SE sequence data include method-call data 

that is dynamically collected during program execution, or 
statically extracted from source code. The challenge inherent 
in SE sequence data is the difficulty of extracting sequential 
patterns and information from the source code [3] or program 
during program execution [12] for software bug or flaw 
detection. Data mining techniques that can be applied to solve 
these problems are frequent itemset mining (FIM) and 
frequent sequence mining (FSM). FIM and FSM are types of 
frequent pattern mining that use alternative support counting 
technique [3]. 

 
Fig. 3 shows the process of frequent pattern mining on 

program source code. A program source code is composed of 
elements written in a particular programming language. To 
mine sequential data from source code, we need to divide it 
into different units, such as tags, blocks, function, and classes, 
for further mining. The information extracted from different 
units of source code can be used to remove the wrong source 
code [13]. In this case, FIM can be used to characterize the 
importance of program elements. FIM is used to mine the 
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frequency of program elements, and to extract the procedural 
rules of fault and bug detection. FIM is only suitable for 
mining static traces or paths extracted from source code as it 
does not reflect the sequential order of information in the 
mined pattern [3, 14]. FIM uses a bottom-up approach and 
follows the principle wherein an itemset X of variables can 
only be frequent if all its subsets are also frequent [14]. Thus, 
it is not suitable for application to run-time data [13]. 

 

    
 

Figure 3.  The Procedure of Frequent Pattern Mining on Source Code [13] 
 
 
Run-time paths capture the ordered sequence of 

components or events that take place in an application [14]. 
The information can be used to analyze the overall software 
design. However, a run-time path can be very long, and 
numerous different run-time paths may exist in a system [14]. 
FSM can identify the frequent sequences that occur across 
different run-time paths [14]. FSM can be applied to the run-
time paths [14] during program execution to identify the 
repeating sequences, patterns, and design flaws that lead to 
poor system performance. The common problem in systems, 
especially enterprise systems, is performance degradation 
when systems retrieve data from databases. Run-time paths 
contain performance information of the application, 
corresponding to users' actions. In solving performance issues 
of an application, it is more accurate to identify resource 
intensive method sequences than frequent sequences [14]. 
Applying FSM to mine the run-time paths not only can 
identify the resource intensive methods, but also give the 
sequences in which they occurred. The sequential information 
extracted by FSM allows developers to quickly locate and 
correct the flaws in an application. 

 
      FIM helps developers determine the important elements of 
a particular source code. This enables them in future to create 
and develop more effective and failure-free software that has 
similar requirements. Besides this, the detection of bugs and 

flaws in the source code of an application helps in system 
maintenance, and produces more reliable software. FSM saves 
developers time in searching for and fixing software bugs or 
faults during program execution. This improves software 
reliability and maintenance. Besides this, system performance 
can be enhanced as systems require less time for retrieving 
data from databases. 

B. Graph Data Mining 
Most SE data can be represented as graphs. Dynamic call 

graphs generated during execution of a program and static call 
graphs generated from program source code are instances of 
SE data represented in graphs [3]. A graph is an expressive 
representation for SE data and is useful for modeling 
complicated structures and their relationships [15]. Mining 
graph data has great potential to help in software 
development. Thus, graph data mining is often an active 
research area in SE. 
 

As graph data are usually large and complex, it is hard for 
the human eye to uncover patterns in them and classify the 
patterns to ease program bug analysis [16]. Application of 
graph classification can solve this problem, since the 
technique automates the identification of subgraph patterns 
from graph data and constructs a graph classification model 
for automating the classification process. 

 
     Software is unlikely to ever be failure-free. The more 
failures and bugs encountered in the software, the more 
unreliable the software is. By detecting bugs and failures and 
pinpointing their origin software programmers or developers 
can fix them and thus increase the software reliability. There 
are two types of software bugs: crashing and non-crashing 
[16]. Crashing bugs are those that cause program execution to 
halt under non-ordinary conditions. Examples of crashing 
bugs include inputting characters into a field of integer data 
type, or referring to a null pointer.  Non-crashing bugs do not 
terminate the program [16] but may result in errors in 
execution or output.  An example of a non-crashing bug 
would be logical errors such as the final result generated by 
the program is not the result that it should be. Non-crashing 
bugs are more difficult to be detected as they have no crashing 
point -- that is, the program continues running past the point 
of error [16]. 

 
In order to disclose traces of non-crashing bugs, graph 

classification technique is used. Software behavior graphs 
from program execution comprise the data to be mined.  Fig. 4 
shows an example of behavior graphs. These graphs represent 
one correct run and one incorrect run of a program. The node 
of the graph represents the function of the program while the 
edge represents the function calls. However, the number of 
frequent subgraphs mined from behavior graphs is often large 
which may result in low performance of graph mining and 
classification [16] due to the difficulties and time consuming 
nature of mining huge numbers of frequent subgraphs. Closed 
frequent subgraphs are a legitimate substitute for frequent 
graphs for classification purposes, as the number of closed 
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frequent subgraphs generated is lower. The mined closed 
frequent subgraphs are used for classifier construction [15]. A 
classifier is built at each checkpoint for every function in a 
program to detect the location of the bug [16]. 

    
             Figure 4. Example of behavior graphs [16] 

 
Bug detection is achieved by monitoring for classification 

accuracy boost. The classification accuracy of each classifier 
will remain low before the bug is triggered [3], because the 
classifier lacks information about the behavior of the bug.  
When the bug is triggered, the classification accuracy of the 
classifier at that checkpoint increases, and therefore the 
location of that classifier is probably the location of the bug 
[16]. This eases the process of debugging for non-crashing 
bugs, since programmers thus can deal with the bugs directly 
without going through the difficulty and time to search for the 
bugs on their own. 

C. Text Data Mining 
Currently, approximately 80% of information is stored in 

computers as text [17]. Example of SE text data includes bug 
reports, project reports, e-mails and code comments [3]. The 
majority of software used every day generates bug reports 
(BR). BRs are compiled from various sources such as the 
research and development sector and also from end user 
feedback. When a bug report is sent in, it is labeled as either a 
security bug report (SBR) or non-security bug report (NSBR). 
SBRs have a higher priority than NSBR. Gegick et al [17] 
stated that correctly labeling SBRs and NSBRs is critical to 
good security practice since a delay in identifying and fixing 
security bugs has the potential to cause serious damage to 
software-system stakeholders. 
 
     In reality, during bug report classification SBRs are often 
mislabeled as NSBRs. This is partially caused by the lack of 
human knowledge of security domain issues. Such errors can 
cause serious damage to the software system due to delays in 
ascertaining authenticity and in rectifying the bugs. Though 
people on the security team are able to manually inspect 
NSBR submitted to identify potentially mislabeled SBR, this 

exercise is time consuming and often either not feasible or not 
regular practice [17]. 
 
     To solve this problem, we can apply a technique known as 
text mining on natural-language description. Text data mining 
refers to the discovery of unknown information and 
potentially useful knowledge from a collection of texts, by 
automatically extracting and analyzing information [18]. A 
key factor is to extract the appropriate information and link it 
together to form new facts to be explored further. The Natural 
Language Description Technique combines linguistics and 
computer science to enhance the interactions between 
computers and natural languages [19].  

 

                  
 
          Figure 5.  Bug Reports Classification using Text Data Mining [17] 

 
Fig. 5 shows the process of bug report classification using 

text data mining's Natural Language Description Technique. 
The initial step is to obtain a set of labeled BR data that 
contains textual descriptions of bugs correctly labeled to 
indicate whether they should be classified SBR or NSBR. 
Labeling of the BR data set is required for creating and 
evaluating a Natural Language Predictive Model. 
 
      The next step is to create three configuration files used in 
text mining: start list, stop list, and synonym list. A stop list 
contains terms such as articles, prepositions, and conjunctions 
that are not relevant in text mining. If a term in the document 
is found in the stop list it is not entered into matrix. Terms in 
the start list, on the other hand, are highly relevant to SBRs, 
therefore their appearance in a BR increases the probability 
that the BR is an SBR [17].  The synonym list contains terms 
with the same meanings (e.g., “buffer overrun” and “buffer 
overflow” have the same meaning). Terms in a synonym list 
are treated equally in text mining. Thus, for example, a less 
frequently used term that is associated with SBRs may be 
assigned more weight in the prediction model than a more-
frequent term that is not associated with SBRs, or a term that 
is not itself frequently associated with SBRs may receive more 
priority in the prediction model if it is a synonym with a term 
that is frequently used in SBRs. The third step is to train, 
validate, and test the predictive model that estimates the 
probability that a BR is an SBR. [17]. 
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Text mining on natural-language descriptions can be 
applied to BRs to determine whether those reports are SBR or 
NSBR. Software engineers can use this technique to automate 
the classification process of BRs from huge bug databases to 
save time and reduce dependency on human efforts, as well as 
to improve the priority ranking of each SBR and ensure that 
the described security bug receives the appropriate effort and 
a timel fix, thereby improving the software. 

D. Discussion of the Three Data Mining Techniques 
In sections A, B, and C above, we discussed the data 

mining techniques that can be used to solve problems in each 
type of SE data (sequences, graphs, and text) Hence, we have 
shown that the different nature of data demands different data 
mining techniques in solving SE problems. Data mining 
techniques that can be applied to solve certain SE data 
problems might not be able to solve other SE data problems. 
The data mining techniques appropriate for solving sequence 
data problems are frequent itemset mining (FIM) and frequent 
sequence mining (FSM), while the data mining technique best 
suited for solving SE graph data problems is classification, 
and text mining on natural language technique is the most 
useful tool for solving text data problems. 

V. CONCLUSION 
 In this paper, we have discussed the application of data 

mining for solving of a number of Software Engineering 
problems. A number of problems encountered in the SE field, 
such as bug occurrence, high cost of software maintenance; 
unclear requirements and so on can reduce software quality 
and productivity. We outlined the data mining techniques that 
can be applied to various types of SE data in order to solve the 
challenges posed by SE tasks such as programming, bug 
detection, debugging, and maintenance. Our studies show that 
data mining techniques have proven to be effective for 
improving SE by increasing software reliability and quality. 

 
As to future direction, new mining techniques or algorithms 

are needed in order to solve unclear software requirements in 
mining SE data.  Another challenge is the ability to mine 
combination types of SE data (e.g., text and graphs together) 
for more informative patterns. Further research needs to be 
done to explore the potential of mining combination data to 
solve numerous real-world problems in SE.  
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