

Application of Data Mining Techniques for
Improving Software Engineering

Wahidah Husain1, Pey Ven Low2, Lee Koon Ng3, Zhen Li Ong4,
School of Computer Sciences, Universiti Sains Malaysia

11800 USM, Penang
wahidah@cs.usm.my1, {lpv100142, nlk10013, ozl10014}@student.usm.my

Abstract—Computer software plays an important role in
business, government, societies, and the sciences. To solve real-
world problems, it is important to improve the quality and
reliability of computer software. Software Engineering is the
computing field concern with designing, developing,
implementing, maintaining, and modifying software. Software
Engineering data consists of sequences, graphs, and text.. In this
paper, we study how data mining techniques can be applied in
solving Software Engineering problems. These techniques are
applied to detect problems such as bugs, to aid in pattern
discovery, and to help developers deal with the complexity of
existing software, in order to create more failure-free software.
At the end of this paper, we suggest specific data mining
techniques for each type of Software Engineering data.

Keywords—Software Engineering, Data Mining, Text Mining,
Sequence Mining, Graph Mining

I. INTRODUCTION

he economies of all developed countries are dependent on
software, because software controls systems that affect our

daily needs. Thus, Software Engineering (SE) has become
more and more important. SE concerns computer-based
system development; this includes system specification,
architectural design, integration, and deployment. With the
increasing importance of SE, the difficulty of maintaining,
creating and developing software has also risen. Challenges
in SE include requirement gathering, systems integration and
evolution, maintainability, pattern discovery, fault detection,
reliability, and complexity of software development [1, 2]. SE
data can be categorized into three types: sequences, graphs,
and text [3].

Data mining is a process that employs various analytic tools
to extract patterns and information from large datasets. Today,
large numbers of datasets are collected and stored. Human are
much better at storing data than extracting knowledge from it,
especially the accurate and valuable information needed to
create good software. Large datasets are hard to understand,
and traditional techniques are infeasible for finding
information from those raw data. Data mining helps scientists
in hypothesis formation in biology, physics, chemistry,
medicine, and engineering. The data mining process is shown
in Fig. 1 below.

 There are seven steps in the process: data integration, data
cleaning, data selection, data transformation, data mining,
pattern evaluation and knowledge presentation. Data mining
techniques that can be applied in improving SE include
generalization, characterization, classification, clustering,
associative tree, decision tree or rule induction, frequent
pattern mining, and etc. [5].

Figure 1. Data Mining Process [4]

The purpose of this study is to explore how data mining
techniques can be applied to improve SE. Objectives of this
study are:

• To review the concept of SE and data mining
• To determine the problems in SE
• To identify data mining techniques that can be applied

to solve SE problems.

 In this paper, we focus on the issues particular to each type
of SE data, and the specific data mining techniques that can
solve those problems. We suggest the best data mining
technique(s) for each SE data type, which are sequences,
graphs, and text.

II. BACKGROUND STUDY

SE has become increasingly important these days, and
research on its problems has proposed various methods for
improving SE. The study of SE problems has followed several
approaches. Early research of Thayer et al. [6] was concerned
with SE project management. They introduced planning

T

 1

ICIT 2011 The 5th International Conference on Information Technology

problems, organizing problems, staffing problems, and
controlling problems as major challenges in this area.
Ramamoorthy et al. [7] stated that as more complex software
applications are required, programmers will fall further behind
the demand. This causes the development of poor quality
software and higher maintenance costs. The problems stated
by Thayer are more closely tied to the processes of SE project
management, while those introduced by Ramamoorthy are
more closely tied to the limitations of human beings. Later
work by Clarke [8] identified challenges in SE associated with
the complexity of the software development process. Similar
to our study, he stated that the complexity of software
development causes the software to become harder to
maintain. This leads to other problems such as software
integrity and difficulty in detecting application bugs or flaws.
A bug is a flaw in a computer program that can ultimately
cause glitches, program failure or software destruction.

With the increasing importance of SE, data mining has

become an important tool for solving SE problems. Data
perturbation techniques for preserving privacy in data mining
were proposed by Islam and Brankovic [9]. Aouf proposed the
clustering technique to identify patterns in the underlying data
[10]. Later work by Ma and Chan [11] suggested iterative
mining for mining overlapping patterns in noisy data. The
three data mining approaches discussed above are all
clustering techniques. The data perturbation technique
described by Islam and Brankovic [9] involves adding noisy
data into some part of the dataset in order to preserve privacy,
while Ma and Chan [11] were concerned with the elimination
of noisy data to enable extracting valuable information.

Different types of data require different data mining

techniques. In this paper, we present specific problems that
exist in SE and apply a specific data mining technique to solve
each of them.

III. RESEARCH METHODOLOGY

In this research, we decided to use a descriptive approach as
our research methodology. The descriptive approach is
primarily used for gathering data, with attempting to generate
rich descriptions and explanations of the object of study. The
project may also include gathering opinions about the
desirability of the present state of things. It relies on both
qualitative and quantitative data. The research methodology of
our study is shown in Fig. 2 below.

First, we collect data from past literature: journals,

magazine, written documents, sources from the internet, books
and published papers. After identifying the problem in SE
(reliability of software and complexity of development
processes), we analyze the data we collected about the various
data mining techniques, and make a decision as to which
technique is best suited to solve our problem. Finally, we
propose the best data mining technique to solve SE problem.

 Figure 2. Research Methodology Phase

IV. ANALYSIS AND FINDINGS

SE data can be categorized into three categories as follows
[3]:

• Sequences, such as execution traces collected at run-
time, and static traces extracted from source code

• Graphs, such as dynamic call graphs extracted from
source code

• Text, such as code comments, documentation, and bug
reports.

When problems such as bugs or flaws arise in systems or
software, it is difficult for developers or programmers to
determine the cause(s). Data mining is a valuable tool for
solving SE problems. Data mining techniques can be applied
to solve problems in all three categories of SE data. The
following sub-topics review and describe data mining
techniques that can solve problems in each type of SE data.

A. Sequence Data Mining
Examples of SE sequence data include method-call data

that is dynamically collected during program execution, or
statically extracted from source code. The challenge inherent
in SE sequence data is the difficulty of extracting sequential
patterns and information from the source code [3] or program
during program execution [12] for software bug or flaw
detection. Data mining techniques that can be applied to solve
these problems are frequent itemset mining (FIM) and
frequent sequence mining (FSM). FIM and FSM are types of
frequent pattern mining that use alternative support counting
technique [3].

Fig. 3 shows the process of frequent pattern mining on

program source code. A program source code is composed of
elements written in a particular programming language. To
mine sequential data from source code, we need to divide it
into different units, such as tags, blocks, function, and classes,
for further mining. The information extracted from different
units of source code can be used to remove the wrong source
code [13]. In this case, FIM can be used to characterize the
importance of program elements. FIM is used to mine the

 2

ICIT 2011 The 5th International Conference on Information Technology

frequency of program elements, and to extract the procedural
rules of fault and bug detection. FIM is only suitable for
mining static traces or paths extracted from source code as it
does not reflect the sequential order of information in the
mined pattern [3, 14]. FIM uses a bottom-up approach and
follows the principle wherein an itemset X of variables can
only be frequent if all its subsets are also frequent [14]. Thus,
it is not suitable for application to run-time data [13].

Figure 3. The Procedure of Frequent Pattern Mining on Source Code [13]

Run-time paths capture the ordered sequence of

components or events that take place in an application [14].
The information can be used to analyze the overall software
design. However, a run-time path can be very long, and
numerous different run-time paths may exist in a system [14].
FSM can identify the frequent sequences that occur across
different run-time paths [14]. FSM can be applied to the run-
time paths [14] during program execution to identify the
repeating sequences, patterns, and design flaws that lead to
poor system performance. The common problem in systems,
especially enterprise systems, is performance degradation
when systems retrieve data from databases. Run-time paths
contain performance information of the application,
corresponding to users' actions. In solving performance issues
of an application, it is more accurate to identify resource
intensive method sequences than frequent sequences [14].
Applying FSM to mine the run-time paths not only can
identify the resource intensive methods, but also give the
sequences in which they occurred. The sequential information
extracted by FSM allows developers to quickly locate and
correct the flaws in an application.

 FIM helps developers determine the important elements of
a particular source code. This enables them in future to create
and develop more effective and failure-free software that has
similar requirements. Besides this, the detection of bugs and

flaws in the source code of an application helps in system
maintenance, and produces more reliable software. FSM saves
developers time in searching for and fixing software bugs or
faults during program execution. This improves software
reliability and maintenance. Besides this, system performance
can be enhanced as systems require less time for retrieving
data from databases.

B. Graph Data Mining
Most SE data can be represented as graphs. Dynamic call

graphs generated during execution of a program and static call
graphs generated from program source code are instances of
SE data represented in graphs [3]. A graph is an expressive
representation for SE data and is useful for modeling
complicated structures and their relationships [15]. Mining
graph data has great potential to help in software
development. Thus, graph data mining is often an active
research area in SE.

As graph data are usually large and complex, it is hard for
the human eye to uncover patterns in them and classify the
patterns to ease program bug analysis [16]. Application of
graph classification can solve this problem, since the
technique automates the identification of subgraph patterns
from graph data and constructs a graph classification model
for automating the classification process.

 Software is unlikely to ever be failure-free. The more
failures and bugs encountered in the software, the more
unreliable the software is. By detecting bugs and failures and
pinpointing their origin software programmers or developers
can fix them and thus increase the software reliability. There
are two types of software bugs: crashing and non-crashing
[16]. Crashing bugs are those that cause program execution to
halt under non-ordinary conditions. Examples of crashing
bugs include inputting characters into a field of integer data
type, or referring to a null pointer. Non-crashing bugs do not
terminate the program [16] but may result in errors in
execution or output. An example of a non-crashing bug
would be logical errors such as the final result generated by
the program is not the result that it should be. Non-crashing
bugs are more difficult to be detected as they have no crashing
point -- that is, the program continues running past the point
of error [16].

In order to disclose traces of non-crashing bugs, graph

classification technique is used. Software behavior graphs
from program execution comprise the data to be mined. Fig. 4
shows an example of behavior graphs. These graphs represent
one correct run and one incorrect run of a program. The node
of the graph represents the function of the program while the
edge represents the function calls. However, the number of
frequent subgraphs mined from behavior graphs is often large
which may result in low performance of graph mining and
classification [16] due to the difficulties and time consuming
nature of mining huge numbers of frequent subgraphs. Closed
frequent subgraphs are a legitimate substitute for frequent
graphs for classification purposes, as the number of closed

 3

ICIT 2011 The 5th International Conference on Information Technology

frequent subgraphs generated is lower. The mined closed
frequent subgraphs are used for classifier construction [15]. A
classifier is built at each checkpoint for every function in a
program to detect the location of the bug [16].

 Figure 4. Example of behavior graphs [16]

Bug detection is achieved by monitoring for classification

accuracy boost. The classification accuracy of each classifier
will remain low before the bug is triggered [3], because the
classifier lacks information about the behavior of the bug.
When the bug is triggered, the classification accuracy of the
classifier at that checkpoint increases, and therefore the
location of that classifier is probably the location of the bug
[16]. This eases the process of debugging for non-crashing
bugs, since programmers thus can deal with the bugs directly
without going through the difficulty and time to search for the
bugs on their own.

C. Text Data Mining
Currently, approximately 80% of information is stored in

computers as text [17]. Example of SE text data includes bug
reports, project reports, e-mails and code comments [3]. The
majority of software used every day generates bug reports
(BR). BRs are compiled from various sources such as the
research and development sector and also from end user
feedback. When a bug report is sent in, it is labeled as either a
security bug report (SBR) or non-security bug report (NSBR).
SBRs have a higher priority than NSBR. Gegick et al [17]
stated that correctly labeling SBRs and NSBRs is critical to
good security practice since a delay in identifying and fixing
security bugs has the potential to cause serious damage to
software-system stakeholders.

 In reality, during bug report classification SBRs are often
mislabeled as NSBRs. This is partially caused by the lack of
human knowledge of security domain issues. Such errors can
cause serious damage to the software system due to delays in
ascertaining authenticity and in rectifying the bugs. Though
people on the security team are able to manually inspect
NSBR submitted to identify potentially mislabeled SBR, this

exercise is time consuming and often either not feasible or not
regular practice [17].

 To solve this problem, we can apply a technique known as
text mining on natural-language description. Text data mining
refers to the discovery of unknown information and
potentially useful knowledge from a collection of texts, by
automatically extracting and analyzing information [18]. A
key factor is to extract the appropriate information and link it
together to form new facts to be explored further. The Natural
Language Description Technique combines linguistics and
computer science to enhance the interactions between
computers and natural languages [19].

 Figure 5. Bug Reports Classification using Text Data Mining [17]

Fig. 5 shows the process of bug report classification using

text data mining's Natural Language Description Technique.
The initial step is to obtain a set of labeled BR data that
contains textual descriptions of bugs correctly labeled to
indicate whether they should be classified SBR or NSBR.
Labeling of the BR data set is required for creating and
evaluating a Natural Language Predictive Model.

 The next step is to create three configuration files used in
text mining: start list, stop list, and synonym list. A stop list
contains terms such as articles, prepositions, and conjunctions
that are not relevant in text mining. If a term in the document
is found in the stop list it is not entered into matrix. Terms in
the start list, on the other hand, are highly relevant to SBRs,
therefore their appearance in a BR increases the probability
that the BR is an SBR [17]. The synonym list contains terms
with the same meanings (e.g., “buffer overrun” and “buffer
overflow” have the same meaning). Terms in a synonym list
are treated equally in text mining. Thus, for example, a less
frequently used term that is associated with SBRs may be
assigned more weight in the prediction model than a more-
frequent term that is not associated with SBRs, or a term that
is not itself frequently associated with SBRs may receive more
priority in the prediction model if it is a synonym with a term
that is frequently used in SBRs. The third step is to train,
validate, and test the predictive model that estimates the
probability that a BR is an SBR. [17].

 4

ICIT 2011 The 5th International Conference on Information Technology

Text mining on natural-language descriptions can be
applied to BRs to determine whether those reports are SBR or
NSBR. Software engineers can use this technique to automate
the classification process of BRs from huge bug databases to
save time and reduce dependency on human efforts, as well as
to improve the priority ranking of each SBR and ensure that
the described security bug receives the appropriate effort and
a timel fix, thereby improving the software.

D. Discussion of the Three Data Mining Techniques
In sections A, B, and C above, we discussed the data

mining techniques that can be used to solve problems in each
type of SE data (sequences, graphs, and text) Hence, we have
shown that the different nature of data demands different data
mining techniques in solving SE problems. Data mining
techniques that can be applied to solve certain SE data
problems might not be able to solve other SE data problems.
The data mining techniques appropriate for solving sequence
data problems are frequent itemset mining (FIM) and frequent
sequence mining (FSM), while the data mining technique best
suited for solving SE graph data problems is classification,
and text mining on natural language technique is the most
useful tool for solving text data problems.

V. CONCLUSION
 In this paper, we have discussed the application of data

mining for solving of a number of Software Engineering
problems. A number of problems encountered in the SE field,
such as bug occurrence, high cost of software maintenance;
unclear requirements and so on can reduce software quality
and productivity. We outlined the data mining techniques that
can be applied to various types of SE data in order to solve the
challenges posed by SE tasks such as programming, bug
detection, debugging, and maintenance. Our studies show that
data mining techniques have proven to be effective for
improving SE by increasing software reliability and quality.

As to future direction, new mining techniques or algorithms

are needed in order to solve unclear software requirements in
mining SE data. Another challenge is the ability to mine
combination types of SE data (e.g., text and graphs together)
for more informative patterns. Further research needs to be
done to explore the potential of mining combination data to
solve numerous real-world problems in SE.

ACKNOWLEDGMENT
The authors wish to thank Universiti Sains Malaysia (USM)

for supporting this research.

REFERENCES
[1] J. Clarke, “Refomulating software as s search problem,” IEEE Proc.:

Software Vol. 150, No.3, pp. 161-175, June 2003.
[2] X. L. Fern, C. Komireddy, V. Gregoreanu, and M. Burnett, “Mining

problem-solving strategies from HCL data,” ACM Trans. Computer-
Human Interaction, Vol. 17, No. 1, Article 3 pp. 1-22, March 2010.

[3] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software
engineering,” IEEE Computer Society August 2009, pp. 55-62, 2009.

[4] Y. Chen, X. H. Shen, P. Du, and B. Ge, “Research on software defect
prediction based on data mining,” 2nd International Conference on

Computer and Automation Engineering (ICCAE) 2010, Vol. 1, pp. 563-
567, Apr. 2010.

[5] R. W. DePree, “Pattern recognition in software engineering,” IEEE
Computer 1983, pp. 48-53, 1983.

[6] R. H. Thayer, A. Pyster, and R. C. Wood, “Validating solutions to major
problems in software engineering project management,” IEEE Computer
Society, pp. 65-77, 1982.

[7] C. V. Ramamoorthy, A. Prakash, W. T. Tsai, and Y. Usuda, “Software
engineering: problems and perspectives,” IEEE Computer Society, pp.
191-209, Oct 1984.

[8] J. Clarke et al., “Refomulating software engineer as a search problem,”
IEEE Proceeding Software., Vol. 150, No. 3, pp. 161-175, June 2003.

[9] M. Z. Islam and L. Brankovic, “Detective: a decision tree based
categorical value clustering and perturbation technique for preserving
privacy in data mining,” Third IEEE Conference on Industrial
Informatics (INDIN), pp. 701-708, 2005.

[10] M. Aouf, L. Lyanage, and S. Hansen, “Critical review of data mining
techniques for gene expression analysis,” International Conference on
Information and Automation for Sustainability (ICIAFS) 2008 , pp. 367-
371, 2008.

[11] P. C. H. Ma and K. C. C. Chan, “An iterative data mining approach for
mining overlapping coexpression patterns in noisy gene expression
data,” IEEE Trans. NanoBioscience, Vol. 8 No. 3, pp. 252-258, Sept
2009.

[12] B. Bhasker, “An algorithm for mining large sequence in databases,”
Communications of the IBIMA, Vol. 6, pp. 149-153, 2008.

[13] C. M. Zong and Z. L. Li, “Applying data mining techniques in software
development,” 2nd IEEE Int. Conf., pp. 535-538. Apr. 2010.

[14] T. Parsons, J. Murphy, and P. O Sullivan, “Applying frequent sequence
mining to identify design flaws in enterprise software systems,” Machine
Learning and Data Mining in Pattern Recognition, 5th Int. Conf., pp.
261-275, MLDM 2007.

[15] J. Han, and M. Kamber, Data mining concepts and techniques, 2nd
Edition, The Morgon Kaufman Series in Data Management Systems,
2005.

[16] C. Liu et al., “Mining behavior graphs for “backtrace” of noncrashing
bugs,” Proc. of 2005 SIAM Int. Conf. on Data Mining (SDM'05), pp.
286-287, 2005.

[17] M. Gegick, P. Rotella and T. Xie, “Identifying security bug reports via
text mining: an industrial case study,” 7th IEEE Working Conf. Mining
Software Repositories (MSR), Cape Town, 2010.

[18] G. Vishal and S. L Gurpreet, “A survey of text mining techniques and
applications,” Journal of Emerging Technologies in Web Intelligence,
Vol. 1, No. 1, August 2009.

[19] X.Y. Wang, Z. Lu, T. Xie, A. John and S. Jiasu, “An approach to
detecting duplicate bug reports using natural language and execution
information,” ACM/IEEE 30th Int. Conf. on Software Engineering, ICSE
08, 2008

 5

ICIT 2011 The 5th International Conference on Information Technology

	I. INTRODUCTION
	II. BACKGROUND STUDY
	III. RESEARCH METHODOLOGY
	IV. ANALYSIS AND FINDINGS
	A. Sequence Data Mining
	B. Graph Data Mining
	C. Text Data Mining
	D. Discussion of the Three Data Mining Techniques

	V. CONCLUSION

