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Abstract—This paper deals with the problem of estimating the 

three-dimensional (3-D) frequency using Matrix Pencil (MP) 

technique. A signal modeled by the sum of 3-D complex 

exponentials is considered and then a MP method is applied 

directly to this signal on a snapshot-by-snapshot basis and hence 

is computationally quite efficient to estimate the 3-D frequency 

with high resolution. #on-stationary in the data then has a little 

effect for this method, as no assumption is made about the 

statistics of the environment. It is applied directly to the single 3-

D data snapshot  without forming a covariance matrix and 

operates in two mainly steps; first, three proposed matrices are 

constructed from the single 3-D data snapshot, and then apply 

the MP approach for each matrix to extract out the 3-D 

frequency efficiently. Furthermore, the proposed technique is still 

operational when there exist identical frequencies in one or more 

dimensions. Limited numerical examples are presented to 

illustrate the performance and accuracy of the proposed 

technique. 

Keywords-Three-dimensional; Matrix Pencil; Eigenvectors; 

Eigenvalues. 

I. INTRODUCTION 

Multidimensional frequency estimation plays an important 

role in our proposed interference mitigation framework. In a 

variety of multidimensional statistical signal processing 

applications such as spectral estimation, texture image 

modeling, and classification, it is often desired to estimate 

multidimensional frequencies. The existing 1 and 2-D 

frequency estimation methods can be divided into two classes: 

namely scanning methods and analytical ones. The scanning 

methods consist in scanning the frequency space with a 

discrete finite lag frequency and estimate the harmonics 

frequency using the peak picking technique in an appropriate 

pseudo spectrum [1]. The analytical methods, called also high 

resolution (HR) techniques or subspace approaches, are based 

on the decomposition of the space spanned by the eigenvectors 

of the data (or autocorrelation) matrix into two orthogonal 

subspaces namely noise and signal subspaces. This class 

contains the Pisarenko method, root-MUSIC, SEPRIT [2-4], 

and MP method [5-7]. A modified MP technique for 2-D 

complex exponential estimation is presented in [8]. In this 

technique, easy different steps from that given in [9] to 

estimate the 3-D frequency are proposed. From the 

computational point of view, the HR methods are 

computationally efficient since they do not require searching 

over the entire 2-D frequency space to locate the harmonic 

peaks as the scanning method does. The HR methods have 

been extended to 3-D spectral estimation [10-14]. 

In this paper, a MP method based on the technique 

described in [11] to accurately estimate the 3-D frequency 

efficiently is proposed. This technique is applied directly to 

the data on a snapshot-by-snapshot basis and hence is 

computationally quite efficient. Non-stationary in the data then 

has a little effect for this method, as no assumption is made 

about the statistics of the environment. 
This paper is organized as follows: Section II presents the 

sum of the 3-D complex exponential model. In section III, the 
procedures of the proposed technique to estimate the 3-D 
frequency are presented. In section VI, numerical examples are 
presented to compute the performance and accuracy of the 
proposed technique and finally the conclusions are introduced 
in section V. 

II. PROBLEM FORMULATION 

A set of 3-D data { ),,( tnmy }, Mm ≤≤1 , 2n ≤≤1 , 

Tt ≤≤1 , represent by a T2M ××  cube, where  ),,( tnmy  is 

a scalar one modeled as a sum of K, 3-D complex exponential, 

signals corrupted by noise as 

                   

 ),,(),,(),,( tnmwtnmxtnmy += ,  (1) 

where the noiseless data are modeled as 

     ( )[ ]∑
=

+++=
K

k

kkkkk jtfnfmfjatnmx

1

3212exp),,( ϕπ  

      (2) 

The triplets ( )kkk fff 321 ,,  are the 3-D normalized frequencies, 

the parameters ka  and kϕ  are respectively the amplitude and 

phase of the k
th
 signal. The process ),,( tnmx  is stationary. 

The additive noise ),,( tnmw  is assumed to be a 3-D white 

Gaussian process uncorrelated with the ),,( tnmx . The basic 

problem here is to estimate the normalized frequencies 

( )kkk fff 321 ,,  from the noisy observed cubic data ),,( tnmy . 
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III. PROPOSED METHOD PROCEDURES 

The following is a step by step description of what needs to 

be done to obtain the normalized frequencies ( )kkk fff 321 ,, , 

Kk ≤≤1 , from the noisy observed cubic data ),,( tnmy : 

A. Three matrices construction 

First three proposed different matrices to solve the problem 

stated in section II are arranged as follows 
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B. Estimating the number of signals 

Second, the number of signals K  is estimated by obtaining 

the eigenvalues of the matrix )]][[ ( HYY  where matrix ][Y is 

any one of the three matrices and the superscript H  denotes 

the conjugate transpose of a matrix. If we consider that the 

data ),,( tnmy  are not contaminated by any noise only the first 

K eigenvalues are non zero. In the presence of noise, the 

parameter K is estimated by observing the ratio of the various 

singular values to the largest one. Consider the singular value 

cλ  such that 

                          

bc −≈10
maxλ
λ

  (6) 

where b is the number of significant decimal digits in the data 

),,( tnmy . The singular values for which the ratio in (6) is 

bellow b−10  are essentially noise singular values, and they 

should not be used. 

C. Estimating 3-D frequency ( )kkk fff 321 ,,  

To estimate the first component of the 3-D frequencies   

( )kf1 ; 

i-  The matrix ][U  whose columns are the eigenvectors of 

)]][[ ( 11
HYY  is obtained. 

ii-  Next, construct the following sub matrix based on the 

K  dominant eigenvalues: 

           ≡][ sU  the K (corresponding to the dominate   

                        eigenvalues) columns of ][U . 

iii- Next, construct the following matrices: 

           ][][ 1 sUU =  with the last row deleted. 

           ][][ 2 sUU =  with the first row deleted. 

iv- Finally, form the matrix pencil 

0][][ 12 =− UU σ       (7) 

           and the kf1  components can be estimated by obtaining    

          the angle of the eigenvalues of the matrix  

           ][][ 21 UU Ψ , i.e.    

 ( )[ ]kkf σ
π

lnIm
2

1
1 = ;     Kk ≤≤1        (8)                            

            The superscript Ψ  is the Moore-Penrose pseudo- 
            inverse of a matrix and is defined by 

          

{ } HH
UUUU ][ ][][ ][ 1

1

111

−Ψ =   (9) 

To estimate the other 3-D frequencies kf2  and kf3 , The 

steps from i to iv are repeated using the matrices ][ 2Y and ][ 3Y , 

respectively. 

IV. NUMERICAL SIMULATIONS 

In this section we present numerical examples to 

demonstrate the validity of the proposed method. For 

simplicity a 2×2×2 noiseless data set according to the model in 
(2) is generated. The signal parameters are given in Table I. 

The number of signals K is estimated by obtaining the 

eigenvalues of )]][[ ( HYY  
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Eigenvalues of 
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TABLE I.  THE SIGNAL PARAMETERS. 

Signal 

number 

Signal 

amplitude 

Signal 

phase  
kf1  kf2  kf3  

k = 1 1 V/m 0.5 

radian 

0.10 

Hz 

0.15 

Hz 

0.20 

Hz 

 

It is noticed that the first eigenvalue is non-zero which means 

that only one signal is considered and the actual and estimated 

3-D frequencies of this signal after applying the proposed 

technique are equal, because the noiseless data case is 

considered here, which means that the proposed method yields 

the exact 3-D frequencies estimation. 

Now the case of data embedded with Gaussian noise is 

considered. The accepted estimated 3-D frequency to 

investigate the effect of the noise at Signal-to-Noise Ratio 

(SNR) equal to 15dB and 20dB using the proposed technique 

are given in Table II and III, respectively. For each value of 

the SNR, ten trials are used. 

 

TABLE II.  3-D FREQUENCY ESTIMATED. 

S#R 
11f̂  21f̂  31f̂  

15dB 0.071 Hz 0.131 Hz 0.189 Hz 

 

 

TABLE III.  3-D FREQUENCY ESTIMATED. 

S#R 
11f̂  21f̂  31f̂  

20dB 0.096 Hz 0.146 Hz 0.198 Hz 

 

To estimate the 3-D frequency for two signals a 3×3×3 
data set embedded with Gaussian noise with SNR = 15dB is 

considered with the parameters given in Table IV. 

 

TABLE IV.  THE SIGNAL PARAMETERS. 

Signal 

number 

Signal 

amplitude 

Signal 

phase  
kf1  kf2  kf3  

k = 1 1 V/m 0.5 

radian 

0.10 

Hz 

0.15 

Hz 

0.20 

Hz 

k = 2 1.5 V/m 0.25 
radian 

0.30 
Hz 

0.35 
Hz 

0.40 
Hz 

 

 

Again the number of signals K is estimated by obtaining the 

eigenvalues of )]][[ ( HYY  

 

 Eigenvalues of 


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
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0.197

19.855

59.025

 )]][[ ( 
H

YY  

It is obvious that the first and second eigenvalues are the 

signal eigenvalues while the third one is the noise eigenvalue 

and is excluded which means that there are two signals. The 

accepted estimated 3-D frequency using the proposed 

technique is given in Table V. The average of ten trials is 

used. 

TABLE V.  3-D FREQUENCY ESTIMATED. 

k S#R 
kf1
ˆ  kf2

ˆ  kf3
ˆ  

1 15dB 0.105 Hz 0.153 Hz 0.203 Hz 

2 15dB 0.301 Hz 0.351 Hz 0.399 Hz 

 
The previous examples illustrate that as the dimension size is 
increased the error between the actual and the estimated 
frequencies is decreased and to estimate the 3-D frequency of K 
signals, the size of each dimension must equal to K + 1, i.e.  

                                   

1+=== KT2M   (10) 

Finally, to demonstrate the performance measured by Root 

Mean Square Error (RMSE) versus SNR of the proposed 

technique for 3-D identical frequency estimation of two 

signals a 3×3×3 data set embedded with Gaussian noise with 
SNR varied from 0 dB to 55 dB is considered with the 

parameters given in Table VI. 

 

TABLE VI.  THE SIGNAL PARAMETERS. 

Signal 

number 

Signal 

amplitude 

Signal 

phase  
kf1  kf2  kf3  

k = 1 1 V/m 0.0 
radian 

0.10 
Hz 

0.15 
Hz 

0.10 
Hz 

k = 2 1 V/m 0.0 
radian 

0.30 
Hz 

0.35 
Hz 

0.30 
Hz 

 

 

Notice that there are identical frequencies in two dimensions, 
which is a case that some other algorithms fail to deal with. 
Fig. 1 depicts the RMSE versus SNR. The RMSE results are 
averaged over all frequencies and obtained through 1000 
realizations. 

V. CONCLUSIONS 

A MP method to estimate 3-D frequencies of signals 

embedded in white Gaussian noise is proposed in this paper. 

This method is applied directly to the data on a snapshot-by-

snapshot basis and hence its computational is quite efficient. 

Non-stationary in the data then has little effect for this method, 

as no assumption is made about the statistics of the 

environment. To estimate 3-D frequencies of more signals we 

must increase the number of the 3-D data. It is shown that this 

technique remains operational when there exist identical 

frequencies in one or more dimensions. Accepted and accurate 

results are observed through simulated numerical examples. 
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Fig. 1 RMSE of the proposed technique versus SNR. 
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