
Automatic Test Case Generation for UML Class Diagram using Data
Flow Approach

1. M. Prasanna
PSG College of Technology, Coimbatore, India

 Email: mp_psg@rediffmail.com

2. K.R. Chandran
PSG College of Technology, Coimbatore, India

 Email: chandran_k_r@yahoo.com

3. Devi Bhakta Suberi
PSG College of Technology, Coimbatore, India

 Email: dev241282@gmail.com

ABSTRACT
To reduce the high cost of manual software testing and at the same time to increase the reliability of the

testing processes, a novel method has been tried to automate the testing process. This paper presents general criteria
for generating test cases from UML Class diagram using Data flow testing. The approach of deriving test cases from
UML diagrams provides the software tester with a model to generate effective test cases and to commence the testing
process early in the software development cycle. The Class diagram of a real time application created using Rational
Rose Tool has been taken for generating test cases automatically. The effectiveness of the test cases are evaluated by
using a fault injection technique called Mutation Analysis.

 Key Words: Software testing, Unified Modeling Language, Use-Pair, Test Cases, State chart
 Diagram, Class Diagram

1. Introduction
Software testing includes executing a

program on a set of test cases and comparing the
actual results with the expected results. Testing and
test design, as parts of quality assurance, should also
focus on fault prevention. Software organizations
spend considerable portion of their budget in testing
related activities. A well tested software system will
be validated by the customer before acceptance. A test
case is a general software artifact that includes test
case input values, expected for the test cases, and any
inputs that are necessary to put the software system
into a state that is appropriate for the test input values.
Test cases are usually derived from software artifacts
such as specifications, design or the implementation.
To test a system, the implementation must be
understood first which can be done by creating a
suitable model of the system.

A common source for tests is the program
code. Every time the program is executed, the
program is tested by the user. So we have to execute
the program with the specific intent of fixing and
removing the errors. In order to find the highest

possible number of errors, tests must be conducted
systematically and test cases must be designed using
disciplined techniques. The basic unit of testing an
object-oriented application is a class, and class testing
work has mostly centered on functional testing. A
state transition diagram can model the dynamic
behavior of a single class object if the object has
significant event-order behavior. After executing a
sequence of methods, the final state that has been
achieved by the object can be verified and thus object-
oriented classes are well suited to state-based testing.
State-based testing mainly examines state change and
behavior rather than internal logic, and thus data faults
may be missed. Furthermore, data members that do
not define an objects state are generally ignored when
the classes are validated using state-based testing.
Those unexamined data members need to be examined
by another technique in order to ensure the quality of
the implemented classes. Data flow testing uses the
data flow relations in a program to guide the selection
of test cases and has been employed to generate data
flow test cases for testing object-oriented classes.

Section 2 presents survey work on automated
test case generation. Section 3 explains proposed

mailto:mp_psg@rediffmail.com
mailto:chandran_k_r@yahoo.com
mailto:dev241282@gmail.com

methodology in the form of flowchart. Section 4 deals
with Data Flow approach for Driver Less Train
application. Effectiveness of proposed methodology is
illustrated in Section 5 and comparison is highlighted
in Section 6. Finally Section 7 deals with conclusion
and discussion for further research in this area.

2. Related works
Several approaches have been proposed for

test case generation. Mainly random, path-oriented,
goal-oriented and intelligent approaches. Many
researchers have been working in generating optimal
test cases based on the specifications. Novada Haji
Ali et al [10] have proposed a design of an assessment
system for UML diagrams. They developed a tool
called UCDA and it generates list of comments on a
diagram. Automatic test case generation from UML
design diagrams was proposed by Monalisa et al[9].
They transformed UML use case diagram into a graph
called Use case diagram graph and sequence diagram
into a graph called sequence diagram graph. Based on
two coverage criterions, test cases were generated.
Emanuela et al[4] have proposed a model for
generating test cases from UML sequence diagrams
using Labelled Transistion system. Since UML
(Unified Modeling Language) is the most widely used
language, many researchers are using UML diagrams
such as state-chart diagrams, use-case diagrams,
sequence diagrams, etc to generate test cases and this
has led to Model based test case generation. Optimal
test cases can be generated automatically using the
proposed algorithm.

3. Proposed methodology
Our proposed methodology involves the

following steps:

1. Analyzing the real system which is to be
tested and accepted by the user

2. Construct class diagram using rational rose
software and store it with “.mdl” as
extension.

3. Extract all Data Variables and member
functions

4. Select first method to be executed
5. Apply Use-pair method for data variables

until Use-pair is not null
6. Finally test sequences are generated

 The above steps are illustrated in the form of
flowchart as shown in fig 3.1.

4. Case study
 In this section, the DriverLessTrain class is used
to demonstrate the difficulty of test case generation,
infeasible test messages being generated and
necessary test messages being missed.

The data-flow criteria are employed to
generate the intra-class data flow test cases. To
overcome these weaknesses of generating intra-class
data flow test cases, the test cases can be selected
from sequences of specification messages. Before the
selection, it is necessary to detect if any data flow
anomalies occur within the sequences. How to detect
intra-class data flow anomalies within the class, to
remove the detected anomalies, and to produce
feasible intra-class data flow test messages for the
DriverLessTrain class are shown in the example.

4.1 Problem statement

The driverless train is an automated train
which covers the destination spots without the
intervention of humans. Initially the train is in a
station where the journey is to be started. At station,
Doors are open which allows the entry/exit for
passengers. After the passengers get into/out of the
train, the doors are closed. The door close event is
known by issuing a sound buzzer. A transition called
lock doors occurs from door open to door close state.
After the doors are closed the train starts with a
transition called initiate acceleration. The train is in
underway entry, where the traffic control is informed

Figure 3.1 Flowchart of proposed Methodology

Select First Method to be Executed in the
system

Start

Record All Data Variables

Record All Member Function

Select Use-Pair Method for Data
Variables Defined in Previously

Selected Method.

If Use Pair
Not Null

Generated Test
Sequence

Y

End

to monitoring system which constantly monitors the
automated train. When the train is in under way entry
it maintains a constant speed of 60 kmph. From the
underway state the train can take three transitions.
From underway if it reaches the stop marker it moves
to stop train state which is the final state. From
underway if train enters into a station it is considered
to be in emergency state.

From the underway station the train may
slow down for next station in the process of its
journey. For slowing down to a station a transition
called pass break marker/apply brake occurs. This is
to ensure that the train slows down for station from its
constant speed of (60 kmph). After slowing down for
a station, the train may reach the stop marker and can
enter into the final state. If the journey is not
complete, the train then maintains a constant speed of
5 kmph for a specified amount of time and then
releases the applied brakes.

On the process, train enters into a station pass
slowly through the station where entry is indicated by
a sound buzzer and maintains a constant speed of 5
kmph and then reaches the stop marker of that station
and slows down and whole process continues until it
reaches the final state. When the train has entered into
the emergency state, the emergency is cleared or
deleted and it reaches the final state.

Figure 4.1: State Chart Diagram for Driverless
Train

Table 4.1: Transition and their respective edges

Transitions of state chart
diagram

Nodes of the graph

Doors close / lock doors a
Train starts / Initiate
acceleration

b

Apply brakes / Pass brake
marker.

c

Enter station. d, e
Reach Stop Marker / Stop train f, g, h
Reaches station speed (5) /
Release brake

I

Emergency cleared / deleted. J

4.2. Def-use paths of the case study

Data flow testing techniques require directed
flow graph that contain the definitions and uses of
data variables. These show the data occurrences
within programs, and facilitate the computation of
define-use pairs. These also help testers to select test
cases and to detect whether anomalies exist in the
program under test.

To seek the global definitions/uses of data
members, only the data occurrences within the public
member functions of the class are analyzed. To
simplify the define-use presentation of each member
function, each code statement is a unit in which the
definition and/or use of data members can occur. In
Fig 6.2 we see that is_door_close data member of
initiate_acc() is concerned as to whether it has been
properly defined in the preceding functions, i.e
lock_door(). Take for example the second data
member is_train_start which has been defined in
initiate_acc() and used in apply_break(), in which
case we understand that only when the train is started,
the break can be applied to stop the train. Thus we
find here that a data member or a variable defined in
one function and used in another function provides us
with the combination pair of define-use data flow.
This data flow provides us with the information to
generate the possible test cases. Similar case is
applicable for the following remaining portion of the
system.
class DriverLessTrain{
 boolean is_door_close;
 //A
 boolean is_train_start;
 //B
 boolean pass_break_marker;
 //C
 boolean is_enter_station_1;
 //D
 boolean is_enter_station_2;
 //E
 boolean reach_stop_marker_1;
 //F
 boolean reach_stop_marker_2;
 //G

 boolean reach_stop_marker_3;
 //H
 boolean reach_station;
 //I
 boolean emergency_is_cleared;
 //J

 DriverLessT(){ Reset();}

 void Reset(){ is_door_close=false;
 is_train_start=false;
pass_break_marker=false;
 is_enter_station_1=false;
 is_enter_station_2=false;
 reach_stop_marker_1=false;
 reach_stop_marker_2=false;reach_stop_mark
er_3=false;reach_station=false;
 emergency_is_cleared=false;
 }
 void lock_door(){
 if(!reach_stop_marker_3)
 is_door_close=true;
 }
 void initiate_acc(){
 if(is_door_close){
is_train_start=true;}
 }
 void apply_break(){
if(is_train_start){pass_break_marker=true;}
 }
 void enter_station(){
 if(is_train_start)
 is_enter_station_1=true;
 if(pass_break_marker)
is_enter_station_2=true;
 if(reach_station)
 is_enter_station_2=true;
 }
 void stop_train(){

 if(pass_break_marker){reach_stop_marker_2
=true;}
 if(reach_station){
 reach_stop_marker_2=true;}
 if(is_train_start){
 reach_stop_marker_1=true;}

 if(is_enter_station_2){reach_stop_marker_3=
true;}
 }
 void release_break(){

 if(pass_break_marker){reach_station=true;}
 }
 void delete_entry(){
 if(reach_stop_marker_1){
 emergency_is_cleared=true;}
 if(reach_stop_marker_2){
 emergency_is_cleared=true;}

 if(is_enter_station_1){emergency_is_cleared
=true;}
 }
}

Figure 4.2: Source code of class DriverLessTrain

4.3 Generating data flow test cases
The test cases generated to cover associations

between the definitions and uses of each data member
can be yielded from the define-use path. The
definitions and uses of data members among the
functions of the DriverLessTrain class are shown in
Table 4.2.

Table 4.2: The definitions and uses of the data

members in the member functions of the
DriverLessTrain class

The data flow test cases for the given class
DriverlessTrain can be generated as
lock_door()èinitiate_acc(),initiate_acc()èapply_bre
ak(), initiate_acc()èenter_station() and so on.
Following are the test cases that are generated from
Table 4.2 by accounting the define use path.

1. a è b è c è d è j
2. a è b è c è e è f è j
3. a è b è c è e è g è j
4. a è b è c è e è h è a

Defined in
State a b c d e

Data
Members

is_door_
close

is_train_
start

pass_bre
ak_mark

er

is_enter
_station

_1

is_enter
_station

_2

Defined in
lock_doo

r()
initiate_a

cc()
apply_br

eak()
enter_st
ation()

enter_st
ation()

Used in
initiate_

acc()

apply_b
reak()

enter_st
ation()

stop_tra
in()

enter_st
ation()

stop_tra
in()

release_
break()

delete
_entry

()

stop_tr
ain()

Defined
in State

f g h i j

Data
Member

s

reach_st
op_mar
ker_1

reach_st
op_mar
ker_2

reach_st
op_mar
ker_3

reach_
station

emerg
ency_i
s_clear

ed

Defined
in

stop_tra
in()

stop_tra
in()

stop_tra
in()

release
_break

()

delete
_entry

()

Used in
delete_e

ntry()
delete_e

ntry()
lock_do

or()

enter_
station

()
stop_tr
ain()

NULL

5. a è b è c è f è j
6. a è b è c è g è j
7. a è b è c è h è a
8. a è b è c è i è d è j
9. a è b è c è i è e è f è j
10. a è b è c èi èe èg èj
11. a è b è c è i è e è h è a
12. a è b è c è i è f è j
13. a è b è c è i è g è j
14. a è b è c è i è h è a
15. a è b è d è j
16. a è b è e è f è j
17. a è b è e è g è j
18. a è b è e è h è a
19. a è b è f è j
20. a è b è g è j
21. a è b è h è a

The above sequences have def-use path with respect to
the data members but are infeasible sequence except
6, 11, 13, 15, 18 and 19 based on the requirement of
the system. The anomaly in the above generated
sequence except few of them has resulted due to the
presence of more than one different member variables
defined in one function and all of those being used in
another member function. Thus this results into
ambiguity in access of member variables in different
functions. The sequence such as a è b è h è a
which is lock_door()èinitiate_acc()èdelete_entry()
èlock_door() doesn’t exist in reality according to the
specification of the system. The sequence is an
anomaly that must be eliminated from the test case.

4.3.1 Infeasible and ambiguous test cases

Infeasible path problem is the primary
practical difficulty in using the all define-use path
criterion, as there are many infeasible paths to contend
with. In the automatic generation of methods to satisfy
the data flow criteria, the problem of generating
infeasible sequences is impossible to avoid. A
sequence of method calls from outside the class can be
specification infeasible or implementation infeasible.
Infeasible sequence methods (sub paths) cannot be
executed according to the specification. To obtain all
possible valid test cases and to reduce the cost of
testing, the redundant paths should be removed and
the infeasible test cases should be eliminated from the
test cases that are generated based on data flow testing
criteria.

4.3.2 Selection of feasible test message
 sequences

If the class under test is implemented by
following the state transition diagram, then the paths
of transition in the diagram reveal the feasible
sequences of member functions of the implemented

class. This means the sequences, of member functions
(mapping to the paths of transitions) of the object are
feasible. Therefore, data flow test cases can be
selected from the sequences of member functions
based on the def-use pair technique. After traversing
the state transition diagram of the DriverlessTrain
class (Fig. 4.1), the sequences of member functions
can be produced as follows.

1. a è b è c è g è j
 (seq. 6 data flow from class)

2. a è b è c è i è e è h è a
 (seq. 11 data flow from class)

3. a è b è c è i è g è j
 (seq. 13 data flow from class)

4. a è b è d è j
 (seq. 15 data flow from class)

5. a è b è c è e è h è a
 (seq. 18 data flow from class)

6. a è b è f è j
 (seq. 19 data flow from class)

The above sequences can be used as data flow test
cases to examine the occurrences of the data member.
Here we see that the sequence generated from the state
transition diagram is the same as generated from the
class DriverLessTrain. These sequences are already
present in the sequences generated from the class
DriverLessTrain. Now we can eliminate those
uncommon sequences from the test cases employed
among state transition diagram and class
DriverLessTrain.

5. Mutation analysis
The effectiveness of test cases can be

evaluated using a fault injection technique called
MUTATION ANALYSIS. Mutation testing is a
process by which faults are injected into the system to
verify the efficiency of the test cases. The product of
mutation analysis is a measure called Mutation Score,
which indicates the percentage of mutants killed by a
test set.

5.1 Fault Injection
The test cases derived using the define-use

path for the Driverless State-Transition diagram is
given in Section 4.3. In the fault injection technique,
we inject faults into the system by the following
manner. One faulty version of the program is created
at a time and run against all the test cases one by one
until either fault is revealed or all test cases are
executed.

Table 5.1 Operator and Description
S.No. OPERATOR DESCRIPTION

1 Function Replaces the name of the
function

2 Guard Changes/deletes the guard

condition condition

3 Relation
operator

Replaces the relational
operator

4 Data value Replaces the value of data

5 Data name Replaces the name of data

6 Parameter Change the letters of the
parameter

7 SQL query Change the query lines
and field

8 Subclass name Change the super class
name in the sub class

For the state transition diagram of the
driverless train, we created 43 mutants that use
mutation operator discussed above. The summary of
the mutants are shown in Table 5.2.

Table 5.2 Summary of the mutants

OPERATOR FAULTS
INJECTED

FAULTS
FOUND

Function 4 4
Guard condition 2 2
Relational
operator

4 3

Data value 13 9
Data name 5 5
Parameter 6 6
SQL query 3 2
Subclass name 6 6
Total 43 37

5.2 Mutation Score
 Mutation score is found by comparing the
faults injected to faults found. For our example, the
mutation score is 86%.
Score = (∑ faults found / ∑faults injected) * 100.

The mutation testing analysis is represented as bar
chart in Figure 5.1

0

2

4

6

8

10

12

14

Fn. G cdn . R el o p v alue nam e Param SQ L sc

F ault in j

F ault fnd

Figure 5.1 Mutation Testing

Total faults injectedà43
Total faults found à37

6. Comparison
To prove the effectiveness of the test cases

generated, we took cruise control problem. Test cases
were generated by Random Approach and Data flow
approach. 54 test cases were generated by Random
methodology but using our proposed approach, only
26 test cases were needed to test the system
thoroughly and mutation score for our approach is
92%. It is tabulated as shown in Table 6.1.

Table 6.1 Comparison table

Parameters Random Data Flow Approach

No. of test cases 54 26

Faults found 15 23

Faults missed 9 2

Percent coverage 62.5% 92%

7. Conclusion
It has been established that UML models can

be effectively used to derive test cases. This paper
suggests a model based approach in dealing with
behavioral aspect of the system and deriving test cases
based on Data Flow approach for UML Class
diagrams. This approach will help software developer
and tester to commence the testing process sufficiently
early in the software development cycle. This
approach also provides requirements traceability
throughout the life cycle, as the models form the basic
building blocks of system design. Data Flow approach
allow us to use the behavioral information stored in
state chart diagrams to generate appropriate and
adequate test cases. The generated test case was
further considered for the validation. Numerous errors
were injected into system and were revealed with the
probable occurrence of the each error or fault path in
the system. This approach provides efficient fault
revealing criteria. Our methodology has been
illustrated with a case study of a real world system.
We have concentrated on class diagrams and our
approach could be extended for Nested State Charts
and other UML diagrams for further research in this
direction.

References

1. Alessandra Cavarra, Charles chrichton, Jim
Davies, Alan Hartman, Thierry Jeron and
Laurent Mounier, “Using UML for
Automatic Test Generation”, Oxford
University Computing Laboratory, Tools and
Algorithms for the Construction and Analysis
of Systems, 2000, pp. 235-250.

2. Dong, Eric and David, “Automating the
testing of Object Behavior: A Statechart

driven approach”, WASET, Vol. 11, 2006,
pp. 145-149.

3. ED Adams and Sam Guckenheimer,
“Achieving Quality by Design part II using
UML”, The Rational Edge, IBM, 2004.

4. Emanuela G, Franciso G.O and Patricia D.L,
“Test Case Generation by means of UML
Sequence Diagrams and Labeled Transition
Systems”, Proc. Of IEEE conf. on systems,
man and cybernetics, 2007, pp. 1292- 1297.

5. Iftikhar, “Automatic Code Generation from
UML class and State Diagrams”, PhD Thesis,
University of Tsukuba, Japan, 2005.

6. Jeff Offutt, Shaoying Liu, Aynur Abdurazik
and Paul Ammann, “Generating Test data
from State based Specifications”, The Journal
of Software Testing Verification and
Reliability, Vol.13 (1), 2003, pp.25-53.

7. Mark Blackburn, Aaron Nauman, Bob Busser
(Software Productivity Consortium) and
Bryan Stensvad, “Defect Identification with
Model-Based Test Automation”, Society of
Automotive Engineers - SAE, Detroit MI,
2003. Vol. 112, No.7, pp. 425-431.

8. Mark Priestley, “Practical Object-Oriented
Design with UML”, Tata McGraw Hill,
2005, pp. 195-202.

9. Monalisa Sarma and Rajib Mall, “Automatic
Test Case Generation from UML
Models”, 10th International Conference on
Information Technology, 2007, pp. 196-201.

10. Novada Haji Ali, Zarina Shukur and Sufian
Idris, “A Design of an Assessment System
for UML Class Diagram”, 5th International
Conference on computational Science and
Applications, 2007, pp. 539-544.

11. Philip Samuel, R. Mall, and A.K. Bothra
,”Automatic Test Case Generation Using
UML State Diagrams”, IET Software, 2008,
pp. 79-93.

12. Shaukat Alia, , Lionel C. Briandb,
Muhammad Jaffar-ur Rehmana, Hajra
Asghara, , Muhammad Zohaib Z. Iqbala, and
Aamer Nadeema, “A state-based approach to
integration testing based on UML models”,
Elsevier, Vol. 49, Issue 11 and 12, 2007,
pp. 1087-1106.

13. Supaporn and Wanchai, “Automated-
Generating Test Case Using UML StateChart
Diagrams”, Proceedings of SAICSIT, 2003,
pp. 296 – 300.

14. Wang Linzhang, Yuan Jieson, Yu, Hu, Li and
Zheng, “Generating Test Cases from UML
Activity Diagram based on Gray-Box
Method”, APSEC, IEEE, 2004, pp.284-291.

Appendix :
Automatic Test Case generation Tool

