
 1

BUILDING A SERVICE PLATFORM FOR ELECTRONIC LEARNING

GOTTFRIED VOSSEN, PETER WESTERKAMP
European Research Center for Information Systems (ERCIS)

University of Muenster
Leonardo-Campus 3
D-48149 Muenster

Germany
[vossen|westerkamp]@uni-muenster.de

Tel: +49 251 83 38 156
Fax: +49 251 83 38 159

Abstract

Elearning platforms and their functionalities resemble each
other to a large extend. Recent standardization efforts in
elearning concentrate on the reuse of learning material, but
not on the reuse of application functionalities. The
LearnServe system under development in our institute
builds upon the assumption that a typical learning system is
a collection of activities or processes that interact with
learners and suitably chosen content, the latter in the form
of learning objects. This enables a decomposition of the
main functionalities of an elearning system into a number
of stand-alone applications which can be realized
individually or in groups. A proper implementation of these
applications enables their reuse and gives learners a bigger
flexibility of choosing content and functionalities to be
included into their learning platform. Several technical
possibilities exists to realize the interaction of these
applications and are well-known from distributed systems
construction. As will be shown in this paper, most of them
are not appropriate in the elearning context. However, Web
services exhibit enough flexibility, which is why they form
the basis of the LearnServe system.

Keywords: Learning Objects, Web services, elearning,
virtual elearning platform

1 Introduction
 The optimization of processes in the value chain is a key
factor for the survival of an enterprise. To do so, more and
more organizations concentrate on their core competence
by offering only those parts of the value chain the
respective enterprise has special know-how, technologies,
or abilities that are very valuable for a customer and not
imitable for competitors. By using modern Internet
technologies several of these companies are able to

combine their abilities to produce products very
efficiently. As the combination of these enterprises is not
obviously transparent for a customer who interacts with
such an organization, these combinations are known as
virtual companies [1]. Virtual companies are flexible in
their configuration and are able to change partners on
demand to optimize the output for the customer.

 The concepts of the virtual company can be
transferred to the field electronic learning (elearning) to
offer virtual elearning platforms. Although the concept
of a virtual company is not new, elearning manufacturers
still only concentrate on their core competence in limited
areas. Traditional elearning platform resemble one
another to a large extend and implement the various
functionalities in very different qualities. In particular,
all systems comprise a maintenance of user data, a
tracking of user actions, a module to display learning
content, authoring features, exercise modules, and search
mechanism for the discovery of content. However, each
platform implements these functionalities and a
specialization can only be found for authoring tools that
try to build Learning Objects (LO, see [2, 3]) to be used
in different Learning Management Systems (LMS) and
in the offering of LOs to be bought and included into a
system. The reuse of LOs in different systems is only
possible if they adhere to common standards. For other
functionalities this process of offering specialized
applications has just begun (see, e.g., [4, 5, 6]).

 By subdividing the functionalities of an elearning
platform into several applications that can henceforth be
included by various virtual elearning platforms via the
Internet, providers of functionalities would be able to
offer only those parts of platforms they are really experts
in. This includes, for example, content in special fields
as separate applications, advanced search functionalities
for content, special simulations to deepen explanations

 2

of content, as well as administration services like tracking,
authorization etc. The new organization of the company
offerings is sketched in Figure 1 and is obviously not
exhaustive. Important is the focus on a selected part of a
traditional platform instead of an entire system.

 By using distributed functionalities as shown in Figure
1, virtual elearning companies can offer very flexible
platforms. The provision of parts of elearning
functionalities by different manufacturers leads to new
demands in the design of market strategies and pricing
mechanisms because not a real software product but a
service is sold. Technically the difference is that the
functionality or the content is offered on demand by a
remote server somewhere on the Web and that there is no
centralized elearning server and no centralized content
storage anymore. Instead, services with equal
functionalities can be exchanged on the fly depending on
availability and response time. The scope of this paper is to
describe the technical background of elearning services as it
is possible to implement functionalities based on various
techniques. This includes the use of well established
approaches from the field of distributed systems like
Remote Procedure Calls (RPC), CORBA, DCOM as well
as message based approaches, in particular Web services.

 The organization of this paper is as follows: Section 2
covers user requirements for a virtual elearning platform.
Section 3 sketches the already mentioned approaches to
implement functionalities for a virtual elearning platform
and points out why traditional middleware approaches are
not the optimal choice for implementing decomposed
applications. It also motivates the use of Web services; a
work-around for most of the limitations is presented in
Section 4, where the Web services based LearnServe
system under development at the University of Muenster is
presented. Section 5 concludes the paper.

2 A Learner’s View

 Many institutions nowadays offer courses for tertiary
education. In order to pass a course, participants get
checklists that describe the content of teaching. Based on
these descriptions, the learners are relatively free to
choose one or more content providers. Some courses
may end in exams, which can be taken at different
institutions a learner can again choose from. Even
though there is typically a well-defined order of taking
exams of each part within a course, the order of exams
on smaller units may not be fixed, and even the
combination of exams on these units might not be fixed
(e.g., take two out of four).

 Traditional elearning platforms do not provide the
flexibility a learner needs in tertiary education. Platforms
are normally centralized and offer courses with well-
defined content instead of checklists. A major problem
for learners is that platforms implement closed
communities, leaving no room for including further,
personally preferred features. Often learners are not
allowed to upload additional content to be used as
Learning Objects. Some systems enable a simple upload
mechanism, but do not provide functionalities to offer
this content again for a self-directed learning of other
learners in the system. Instead, learners are forced to use
what is allocated by tutors and have no flexibility to
choose for a self-direction - neither in respect of
functionality nor content.

 If elearning providers would concentrate on their core
competencies and would offer elearning functionalities
as components that can be used via the Internet as a
service instead of physical software components, this
would optimize the platform for a learner. Indeed,
learners would have the ability to choose among content
from different authors and styles within a course, and the
content can be selected and adapted to a learners needs.
For example, this can be a simulation of a certain fact or
special content to be learned in a self directed way and
provided by the author of choice.

LEARNER DATA

CONTENT

EXERCISES

EXAMINATION

REPOSITORY E
-L
e
a
rn
in
g
 P
la
tf
o
rm

 1

E
-L
e
a
rn
in
g
 P
la
tf
o
rm

 2

E
-L
e
a
rn
in
g
 P
la
tf
o
rm

 n

CONTENT PROVIDER

EXERCISE PROVIDER

EXAMINATION PROVIDER

REPOSITORY PROVIDER

PROFILING PROVIDER

Traditional

E-Learning Platforms

Service Oriented

E-Learning Provider

 3

3 A Technical View

 Already in 1968, McIlroy has had the vision of a
software component industry that would offer groups of
routines for any given job [7] to be reused in various
software engineering projects. This idea was the first step to
provide software offerings by concentrating on specialized
functionalities:

“..., yet software production in the large would be
enormously helped by the availability of spectra of high
quality routines, quite as mechanical design is abetted by
the existence of families of structural shapes, screws or
resistors.”

 Starting from this concept and exploring the idea for
many years now, researchers and engineers have still not
been able to agree on a precise definition of a component in
computer science. Many modern programming languages
help to fulfill McIlroy’s dream at least to some extend, as
they provide small scale programming libraries (e.g.,
java.util), technology abstractions such as ODBC and
JDBC, special purpose software components like XML
parsers, large scale standardized frameworks (e.g.,
java.swing) or large scale standardized containers such as
database engines. However, these components largely
depend on their providers because their documentation,
component structures, interface definitions and behaviour
descriptions are mostly proprietary. It goes without saying
that in software development, object-oriented technologies
contributed decisively to an increase of the reuse and
encapsulation of software. Nonetheless, it clearly suffers
from several drawbacks, for example the fact that objects
often only can be composed and can cooperate if they are
written in the same language. Moreover, they have to be
tightly coupled if they are executed in the same process and
data space. In addition, their interface descriptions focus on
the incoming interface, whereas the outgoing interface is
mostly implicit. This makes it more difficult to deploy
objects independently.

Current software systems are often distributed over
networks and different platforms. Particularly in the future,
they will have to be able to be integrated and to interact
with each other, like it is the case in the distributed
elearning system. Apparently, objects are not able to handle
these upcoming challenges of such information systems on
their own. Instead, more and more components (which can
be made of objects) will offer their functionality to be
called remotely by providing well defined interfaces and
communication mechanisms; they can then be accessed by
other components via the Internet and enable, for example,
a construction of a (distributed) virtual elearning platform,

where each functionality is offered by another
manufacturer.

3.1 Usage of Middleware

 Different approaches of how components can be used
and located to build distributed systems are in use today.
Basically all of them build on the client-server paradigm.
The construction of distributed systems can be simplified
by leveraging middleware. Middleware is layered
between the operating system and the application
components and can cope with heterogeneity. It enables
software developers to build distributed systems across
networks by facilitating communication and
coordination of distributed components at a higher level
than the one an operating system offers. Based on the
techniques which middleware products use for the
interaction between distributed components, they can be
classified into RPC-based systems, transaction
processing (TP) monitors, object-based systems and
message-oriented systems [8]. The interaction of RPC-
based systems is based on remote procedure calls,
whereas TP monitors are an enhancement of RPC-based
systems by distributed transactions. Object-based
systems (e.g., CORBA and DCOM) use remote object
requests as the underlying interaction paradigm.
Message-based systems communicate by passing
messages and include Web services, which are the
fundamental of our LearnServe system described in
Chapter 4.

 To build a virtual elearning platform, the logical level
of integrating functionalities is important for the choice
of the technique, since it is not possible to use
approaches that have to be integrated at a programming
language or component level, where the learner has to
(re-)compile a client system after adding new
components. This is the case with RPC-based systems
and for TP monitors which makes them irrelevant for a
virtual elearning platform. Even sometimes in CORBA
and DCOM this is necessary if dynamic models are not
used. The level of integration should be higher than in
these approaches, and an integration should be doable in
a plug-and-play manner, at least for functionalities such
as content or exercises. Another problem with
conventional approaches is that there is no obvious place
to put the respective middleware, since the basic idea
was to place the middleware between the applications
that have to interact [8]. Obviously, in case of a virtual
elearning system it is difficult to properly position
middleware since the learner should be able to select the
functionalities depending on his own preferences on the
fly. When offering this flexibility to the learner, not all
providers can be known at the time of implementing the
client software.

 4

An installation of middleware systems on the client side
would be a very challenging task for a learner without
advanced information technology knowledge, due to the
complex nature of these systems, e.g., due to security and
transaction handling. In an elearning offering, as assumed
here, there is neither a central instance nor an administrator
to install and supervise the system. This may be different in
campus-wide systems or where a Web portal serves as
client, but is not the case in an open system where also
stand-alone applications might implement the client. Web
services as described below are installed on the provider’s
machine. The only thing a user of the service needs is a
Web service client to use the services. If the client is
offered as a portal on the Web a learner just needs a Web
browser, which makes things easy to install and maintain.

 Many of the technologies mentioned above are not
compatible to each other, not even inside the same
middleware category. As a consequence, all peers in a
given environment must use the same form of RPC, the
same object model (CORBA, DCOM, etc.), or a unique
form of messages. Thus, the operating system is implicitly
forced to the connected clients as most of them are not
platform-independent, in particular in the case of DCOM.
DCOM is used primarily on Windows machines, although
there are some implementations for other operating
systems. Apparently, the participants of a distributed
elearning environment do not have agreed upon a special
object model nor on an operating system. In addition, they
are not able to agree on a certain message format. However,
even if all users had agreed on using a CORBA system,
problems would occur due to the fact that CORBA
implementations of different suppliers may be incompatible
[9]. The situation is even worse in open scenarios that
should work across company boarders or for learners that
work at home and should offer a plug and play integration
of components as no company guidelines exists that
regulates systems hardware and software.

 In the communication process, frontiers of companies
may become a problem as Internet connected platforms will
typically be shielded by firewalls. An open elearning
platform also serves company employees to do training on
the job. The usage of protocols like CORBA to
communicate with elearning providers outside company
boarders may cause errors due to problems resulting from
closed ports etc.. Indeed, CORBA uses about 100 ports
which cannot be considered to be open. Using DCOM
through firewalls also causes trouble because it dynamically
allocates one port per process (configurable through the
registry), and additionally requires the ports for UPD and
TCP to be open. To use DCOM via port 80 and enable a
use with firewalls, tunnelling TCP/IP as the underlying
transport protocol can be used. However, this is not very
reliable, does not work through all firewalls, and introduces

additional limitations (e.g., lack of callback support) [10]
as well as administration efforts that cannot be handled
by average users. By opening further ports, security
guidelines may be disregarded. A direct connection of
two peers is not possible, either, if the company uses a
proxy. The proxy problems can be fixed, but the
performance will go down. On the other hand, Web
services do not need additional ports as their
communication is based on transport protocols which are
already in use (in particular HTTP).

 The overall finding from the above discussion is that
conventional approaches bear a couple of problems that
make them not easy to implement and even to use.
Particularly in the field of elearning, where learners
should be able to select distributed components at
runtime, conventional approaches suffer from an easy
handling and from compatibility problems. In
conclusion, DCOM and CORBA can be used in local
area networks with little heterogeneity and a central
administration. RPC and TP monitors have to be
included on a programming level and are not flexible
enough for a plug and play integration. As described
next, Web services are a reasonable choice in open
environments that act across the Internet, where a lot of
heterogeneity exists. It should be mentioned at this point
that all techniques can be wrapped by Web services
using approaches like J2EE, .NET and others and can
thus still be used.

3.2 Web Services to the Rescue

 Web services [11] generally enable partners to easily
(re-)use applications via the Internet. Web service are
characterized as real services that hide all details
concerning their implementation and the platforms they
are based on. A Web service is essentially a stand-alone
software component that has a unique URI (the Uniform
Resource Identifier is a unique address) and that operates
over the Internet and particularly the Web. The basic
premise is that Web services have a provider and
(hopefully) users or subscribers. Web services can be
combined to build new ones with a more comprehensive
functionality. Clearly, Web services need to be
interoperable. Moreover, they have to be independent of
the operating systems; they should work on every Web
service engine regardless of their programming
language; and they should be able to interact with each
other.

 To achieve these goals, Web services are commonly
based on standards; currently, the most common ones are
the XML-based specifications SOAP (Simple Object
Access Protocol), UDDI (Universal Description,
Discovery and Integration), and WSDL (Web Services

 5

Description Language). For the composition of Web
services and in order to build more complex services out of
given ones, XML-based languages such as BPEL4WS for
specifying the process logic are used, often in connection
with subordinate standards such as WS Coordination or WS
Transaction for the clarification of tasks (such as
communication coordination and observation of
transactional boundaries, resp.) that arise during service
activation. The benefits of a Web services architecture is
well recognized in the business-to-business (B2B) area,
where companies already use it for enterprise application
integration, B2B integration, application construction and a
flexible approach to outsourcing, a better access to business
functions, a free choice of the best technology platform in
each situation, and location and device independence. Even
in terms of interoperation of business-to-consumer (B2C)
systems, Web services as the basis of a service-oriented
architecture (SOA) are currently seeing a growing
importance.

 The problems of conventional middleware can be solved

because Web services are independent of the platform,
of the operating system, and the programming language
and are not based on a protocol of a special company
because the entire communication is based on XML.
Messages are transmitted using a standardized format
and the Internet via port 80 which can be considered to
be open. With the open standardization, a plug-and-play
integration of services at runtime can be achieved; a
corresponding architecture for a virtual elearning
platform will be presented in the next chapter.

4 Elearning Services: The LearnServe
Architecture

 Our LearnServe system starts from the perception that
a typical learning system is a collection of activities or
processes that interact with learners and suitably chosen

content, the latter in the form of learning objects. This
enables us to decompose the main functionality of an

Web Server with PHP- and
Java Servlet Engine

User Data / Excercise
Data

XLX

XML-Extender

OLAP - Engine

Text - Extender

IBM DB2
Universal Database

Internet

Learning Content

Web Services
 Interface

Web Services
 Interface

Content Provider

Profiles/Tracking

Web Services
 Interface

User Data

WSDL Files

WSDL Files

Meta Data

Content RepositoryWSDL Files

Web Services
 Interface

LearnServe
Client

Web Server

UDDI

Learner

Learner /
 other clients

WSDL Files

Further Web Service

Internet

Figure 2: High-Level LearnServe Architecture.

 6

elearning system into a number of stand-alone applications,
which can then be realized individually or in groups as Web
services. Conversely, relevant Web services are offered by
a number of providers, and can be composed to build the
functionality of a traditional elearning platform — now as a
virtual elearning platform. By the same token, content
offered as Web service can be composed into course units
or complete courses. Intuitively, learners can search for
content that matches their needs, book it, pay for it, and
finally consume it, all by composing Web services
appropriately.

 Web services for elearning can be classified into user
facing, presentation oriented services that should be able to
be integrated in a plug-and-play manner. Data oriented
services, on the other hand, can be seen as functionalities
that cover administration aspects such as authorization,
tracking, etc. and do not have to be included by the learner
on the fly but are used by the integration client as specified
by the administrator or programmer. Generally, we try to
design such services using common tools and languages as
far as possible. Consequently, we rely upon established
Web service standards (e.g., UDDI, WSDL), since they
appear sufficient for our purposes. The implementation of
Web services in the area of elearning facilitates a
considerable flexibility for the users of the system both in
usage of functionalities and selection of content.

 As shown in Figure 2, LearnServe is divided into two
parts: client software and Web services provided by several
suppliers. A LearnServe client is the access point for users
who utilize the learning services. These services are
implemented on distributed servers and in particular include
authoring, content, exercise, tracking, and discovery
services as well as communication services such as email
and message boards. The exercise services are provided by
our xLx system [12], that was enhanced to offer its
functionality as a Web service and can thus already be used
in external systems. Of course, the use of learning services
is not limited to our clients because the implementation of
the entire functionality as Web services enables an
integration of the elearning functionality directly into a
business application (e.g., a CRM or an ERP system) to
interact with applications, processes and information. The
learning Web services can also be used on mobile devices if
there is an appropriate client for that device.

 Building a non-centralized system by combining several
Web services to achieve the same functionality as in
traditional elearning systems leads to the problem of
managing the content for the learners and searching for
services to gain the desired functionality in the moment of
demand. To this end, LearnServe uses a UDDI registry [13]
to search for Web services as is common in the area of Web
services. However, UDDI is not appropriate for content
services since the storage of additional meta-data about the

content is not supported adequately. In such an
organization, learning objects cannot be imported to a
particular learning management system, either. Instead,
content needs to be stored on distributed servers and be
called on demand. This leads to presentation problems
since typical Web services are data-oriented, but the
presentation aspect is important to understand the
content to be learned. To mitigate the compatibility
problems of content integration, the system uses recent
standardizations for reuse, discovery and exchange of
content.

 The discovery process is supported by the LearnServe
repository [14] for learning object publication and
search, and essentially adapts the UDDI framework used
for commercial Web services to an elearning context. It
distinguishes itself by the fact that the repository itself
contains centralized data about learning objects, i.e. all
meta-information, while the actual content that it refers
to can be arbitrarily distributed. To use any content, the
underlying platform calls the desired learning object,
which is then executed by a presentation Web service
and delivered to the learner. This presentation service
enhances the information about the content as described
in the WSRP standard [15] for the plug-and-play
integration and thus additionally enables an adaption of
presentation information depending on the learners’
needs. We are thus able to tackle some of the problems
arising when realizing a service platform, including (1)
storing learning content in a distributed fashion, and (2)
dynamically exchanging content if necessary or
appropriate. For example, this can be based on the
individual profiles of the learners and the course
definitions an author has published in the LearnServe
repository.

5 Conclusions

We have implemented a first prototype of LearnServe
[16] and are currently enhancing it to provide the
complete elearning functionalities of traditional
platforms. Our attempts have been motivated by two
major observations: on the one hand, many custom
elearning platforms can only present their material inside
the platform; and on the other hand, Internet-based Web
services are becoming ubiquitous, both at a professional
and at a personal level. A service-oriented elearning
system results from a perception of the various tasks and
activities that are contained in such a system as
processes or as workflows; using appropriate encodings
of objects and tasks in UDDI and WSDL forms and
documents enable broad exchanges, flexible
compositions, and highly customized adaptations
possible. This even allows a reuse of services already
offered on the Web, such as payment and cashing

 7

services, chat rooms, or conferencing (via platforms such as
Webex).

References

[1] Porter M. E. (1985): Competitive Advantage, Collier
Macmillan Publishers, London.

[2] Vossen, G., P. Jaeschke (2002). Towards a Uniform and
Flexible Data Model for Learning Objects. In Proc. 30th
Annual Conf. of the Int. Bus. School Computing Assoc.
(IBSCA), Savannah, Georgia, July 2002, pp. 99-129.

[3] Vossen, G., P. Jaeschke (2003): Learning Objects as a
Uniform Foundation for E-Learning Platforms. In Proc. 7th
International Conference on Database Engineering and
Applications (IDEAS), Hong Kong, China, IEEE Computer
Society Press, 2003, pp. 278-289.

[4] Bry, F., N. Eisinger, G. Schneemeyer (2003). Web
Services for Teaching: A Case Study.. In Proc. First
International Conference on Web Services (ICWS’03), Las
Vegas, USA, June 2003.

[5] Blackmon, W.H., Rehak, D. R. (2003): Customized
Learning: A Web Services Approach. In Proc. Ed-Media
2003, June 2003.

[6] Chen,W. (2002): Web Services - What Do They Mean
to Web based Education?. In Proc. Int. Conf. on Computers
in Education, Auckland, Newzealand, December 2002,
pp.707-708.

[7] McIlroy, M. Douglas (1968): Mass Produced Software
Components. In Report of NATO Conference on Software
Engineering, NATO Science Committee, Garmisch,
Germany, pp. 138-155.

[8] Alonso, Gustavo; Casati, Fabio; Kuno Harumi;
Machiraju, Vijay (2004): Web Services. Concepts,
Architectures and Applications. Springer Verlag, Berlin,
Germany.

[9] Coenraets, Christophe (2001): Web Service: Building
the Next Generation of E-Business Applications.
Macromedia White Paper.

[10] Wasznicky, Martin (2002): Using Web Services
Instead of DCOM.
http://msdn.microsoft.com/library/default.asp?url=/librar
y/enus/dndotnet/html/webservicesdcom.asp. 2004-11-16.

[11] Newcomer, E. (2002). Understanding Web
Services: XML, WSDL, SOAP, and UDDI. Addison-
Wesley.

[12] Huesemann, B.; Lechtenboerger, J.; Vossen, G.;
Westerkamp, P. (2002): XLX - A Platform for Graduate-
Level Exercises; in Proc. International Conference on
Computers in Education (ICCE2002), Auckland, New
Zealand, December 2002, pp. 1262-1266.

[13] Universal Description, Discovery and Integration
(UDDI). http://www.uddi.org.

[14] Vossen, G., P. Westerkamp (2003). UDDI for E-
Learning: A Repository for Distributed Learning
Objects. In Proc. 2nd International Conference on
Information and Knowledge Sharing (IKS2003),
Scottsdale, AZ, USA, November 2003, pp. 101-106.

[15] Kropp, A., C. Leue, R. Thompson (2003). Web
Services for Remote Portlets Specification, OASIS
Standard Version 1.0, August 2003.

[16] Vossen, G., P. Westerkamp (2003). E-learning as a
Web service (extended abstract). In Proc. 7th
International Conference on Database Engineering and
Applications (IDEAS), Hong Kong, China, IEEE
Computer Society Press, pp. 242-249.

