
ADAPTIVE TEXT COMPRESSION TECHNIQUE

N.SAIRAM, R.VARADHARAJAN
SASTRA Deemed University,
Thanjavur, India – 613 402.

ABSTRACT
 In this paper, we propose a simple and efficient
lossless compression technique for reducing the size of
the text. For typical text files, we achieve about 50%
reduction of space. This technique can be used where
space is the predominant concern. The intended
applications of this technique are files that are
frequently transmitted over the net, such as address
books, stock quotes, weather forecasting etc. Such files
are typically not compressed, but, at the same time, with
this scheme they can remain compressed indefinitely,
saving space while allowing faster transmission over
the net. We also analyze the performance of our
technique with other standard text compression
techniques.

KEY WORDS: Lossless Compression, Reduction of
Space, Saving Space.

1. INTRODUCTION
 Text compression is typically used to save storage or
communication costs. By reducing the size of a text file
in a special way, we can reduce the time of transmission
over the net. Our scheme improves the speed of
character pair matching and we also save space in this
process. The savings are spectacular. The compression
consists of substituting each of the common pairs with
the special byte allocated for it, and decompression is
achieved by reversing this procedure. This kind of
compression is as good as adaptive compression
techniques (such as the Lempel-Ziv based algorithms [7]
or context modeling algorithms [2]).

 Files that are usually not compressed, because they
are often read, can now be compressed without loss of
data and at the same time the speed of transmission can
be improved. The improvement is independent of
current technology, because it comes from the fact that
the compressed files are smaller than the original and
therefore less work is done. The same improvement will
hold for faster CPU or I/O. Another important
advantage of our scheme is that it is independent of the
actual character pair -matching program.

Our scheme can be used to compress
indexed text using two-level approach. We will assume,
throughout the paper, that the search is sequential.
Sequential search [6] occurs in many other applications,
including DNA and protein search (although in that
case approximate matching is used most of the time),
bibliographic search, etc. Sequential search also plays a

CHITRA MANIKANDAN

THIAGARAJAR School of Management
Madurai, India – 625 005.

key role in an information-retrieval system[3], based on
a two-level approach. For typical text files, we achieve
about 50% reduction of space. This technique can be
used where space is the predominant concern. The
intended applications of this technique are files that are
frequently transmitted over the net, such as catalogs,
bibliographic files, and address books. Such files are
typically not compressed, but with this scheme they can
remain compressed indefinitely, at the same time saving
space while allowing faster transmission.

Our paper is organized as follows.

 In section 2.1, we have proposed a lossless text
shrinking algorithm called Pair-Length Shrinking
Algorithm. In section 2.2, the lossless, shrunk text
expansion algorithm called Pair-Length Expansion
Algorithm is proposed. In Section 3, the algorithms
are weighed against other standard text compression
schemes. We finally conclude with a discussion of
possible applications.

2. PAIR-LENGTH ALGORITHM

2.1 PAIR-LENGTH SHRINKING
ALGORITHM
 This algorithm is used to create a compressed
file. In the first level of the algorithm, A source file is
transformed into a file which is slightly compressed
using the code table. For example, the content of the
file AAAABBCBBAA is replaced by ||}C}| with the
help of the following code table.

 Table 1. Code Table

In the next level of the algorithm, the
slightly compressed file is again compressed by
counting the consecutive identical characters and
replacing them with their count and character. Now the
content of the compressed file becomes 2|}C}|. The
diagrammatic representation of the Pair-Length
Shrinking Algorithm is depicted in Fig 1.

Character Code
A |
B }

Figure 1. Pair-Length Shrinking.

Algorithm Pair-LenghtShrink(File1)
begin

Loop until all the characters in File1 are
exhausted
begin
 If two consecutive characters are identical
 then
 begin

 Assign a unique code to that character.
 Store that character and the corresponding
 code in the code table.
 Replace the pair by the corresponding
 code in File2.

 end
 else
 Write the character in File2.
end loop
Loop until all the characters in File2 are
exhausted
begin

 Count the number of consecutive
 identical characters
 if (Count > 1) then
 Write the Count followed by
 the corresponding character in
 File3.
 else
 Write the character in File3.

end loop
end.

2.2 PAIR-LENGTH EXPANSION
ALGORITHM

 This algorithm is used to transform a compressed
file into its original file. In the first level of the
algorithm, the compressed file is transformed into a file
which is slightly expanded by replacing the characters,
which are preceded by a number ‘n’, n times. For
example, the content of the compressed file 2|}C}| is
replaced by ||}C}| .

In the next level of the algorithm, the
slightly expanded file is again expanded by identifying
the corresponding character from the code table and
replacing the code by the character twice. Now the

content of the original file becomes AAAABBCBBAA.
The diagrammatic representation of the Pair-Length
Expansion Algorithm is depicted in Fig 2.

Figure 2. Pair-Length Expansion.

Algorithm Pair-LenghtExpand(File1, CT)
begin

Loop until EOF(File1)
begin
 If the character ch is numeric then
 begin
 n <-- ch
 Read the next character ch
 Write ch ‘n’ times in File2
 Search the corresponding character x
 of ch in CT
 Replace each ch by x twice File2.

 end
 else
 begin

Search the corresponding character x
of ch in CT

 Replace ch by x twice in File2.
 end
end loop

end.

Where
File1 – Shrunk File
CT – Code Table

2.3 IMPLEMENTATION

 We used texts of varying sizes (these texts were
also used in Table 2), and also experiments were done
with random text. Our program uses a two level
approach and as a result the file size is significantly
reduced. We selected 100 random words from a
dictionary (the effectiveness of this Pair-Length
algorithm depends somewhat on the pattern), and the
size of the compressed file, when compared to original
file size, is never increased. We have shown the
compression size and compressed rate of various texts
in Table 2 (See Appendix).

Document

Parsing Pairs
& Converting
to tokens

Replace Tokens with their
corresponding Code

Shrunk
Document

Code Table
Generation

Shrunk
Document

Code Table

Replace tokens
to
corresponding
code

Parsing
Pairs &
Converting
to tokens

Original
Document

3. PAIR-LENGTH VS OTHER
STANDARD TECHNIQUES

 The following table shows the
performance of the Pair-Length algorithm when
compared with LZW [5, 7] and RLE [2]. Another
interesting experiment was done with random text. The
compression rates of this algorithm for random text of
uniform distribution are quite predictable. In the
charts(Fig 3 – 5, see Appendix), the Original size and
compressed size of various texts that are listed in Table
2, using RLE, Pair-Length and LZW are depicted.

4. CONCLUSION

In this paper, an efficient compression algorithm is
proposed. The compression algorithm is a two-stage
algorithm; the first stage reads the file and identifies the
consecutive identical pairs. The second stage reads the
file again and performs the compression. When our
algorithm is compared with other standard compression
algorithms like LZW, RLE etc., the size of the
compressed file is significantly less. This algorithm can
be effectively used to transmit data through mobile
network and in all areas where file size is the
predominant concern.

REFERENCES

[1]. Khalid Sayood, Introduction to Data Compression
(San Diego, USA, Academic Press, 1996).

[2]. Bell, T. G., J. G. Cleary, and I. H. Witten, Text
Compression (Englewood Cliffs, NJ, Prentice- Hall,
1990).

[3]. Manber, U., and S. Wu, ‘‘A two-level approach to
information retrieval.’’ Technical report, 93-06,
Department of Computer Science, University of
Arizona (March 1993).

[4]. Witten, I. H., T. C. Bell, and C. G. Nevill, ‘‘Models
for compression in full-text retrieval systems,’’ Data
Compression Conference, Snowbird, Utah (April 1991),
pp. 23−32.

[5]. Welch, T. A., ‘‘A technique for high-performance
data compression,’’ IEEE Computer, 17 (June 1984), pp.
8−19.

[6]. Wu S., and U. Manber, ‘‘Fast Text Searching
Allowing Errors,’’ Communications of the ACM 35
(October 1992), pp. 83−91.

[7]. Ziv, J. and A. Lempel, ‘‘A universal algorithm for
sequential data compression,’’ IEEE Trans. on
Information Theory, IT-23 (May 1977). pp. 337−343.

[8] David Salomon, Data Compression: The Complete
Reference (Springer Verlag, 1998).

[9] Mark Nelson, The Data Compression Book (M&T
Books, 1995).

[10] James A.Storer, Image and Text Compression
(Kluwer, 1992).

[11] Mayne, A. and James E.B., “Information
Compression by Factorizing Common Strings” The
Computer Journal, Vol. 18, No.2 1974, PP 157 – 160.

Table 2: Statistics for the compression and Decompression algorithms

Original Size Vs Compressed Size -
RLE

11 12
10 10 1113

9
13

10
12

0
5

10
15

1 2 3 4 5

Text

S
iz

e
in

 B
yt

es

Original Size

Compressed
Size

Figure 3. RLE Comparison

-100%
-50%

0%

50%
100%

Compression
Rate

1 2 3 4 5

Text

Compression Rate of Three Techniques

Pair-Length

RLE

LZW

Figure 6. Comparison of Three Techniques

Original Size Vs Compressed
Size - LZW

11 12
10 10 119.79 8.76
11.4 10.111.22

0

5

10

15

1 2 3 4 5

Text

S
iz

e
in

 B
yt

es Original Size

Compressed
Size

Figure 4. LZW Comparison

Original Size Vs Compressed Size -
Pair-Length

11 12 10 10 11
6 4

7 7 7

0
5

10
15

1 2 3 4 5

Text

Si
ze

 in
 B

yt
es

Original Size

Compressed
Size

 Figure 5. Pair-Length Comparison

APPENDIX

Technique Text Original File
Size

(in Bytes)

Compressed
 File Size
(in Bytes)

Compression Rate

LZW AAAABBCBBAA
EEEEEEEECCGG
ZXCWWBCCRR
TYTTTTNMUU

25667788889

11
12
10
10
11

9.79
8.76
11.4
10.1

11.22

11%
27%
-14%
-1%
-2%

RLE AAAABBCBBAA
EEEEEEEECCGG
ZXCWWBCCRR
TYTTTTNMUU

25667788889

11
12
10
10
11

13
9
13
10
12

-18%
25%
-30%
0%
-9%

Pair-Length AAAABBCBBAA
EEEEEEEECCGG
ZXCWWBCCRR
TYTTTTNMUU

25667788889

11
12
10
10
11

6
4
7
7
7

45%
66%
30%
30%
36%

