On some kinds of fuzzy connected space

by

Qutaiba Ead Hassan

Departamento de Geometria y Topologia Facultad de Matematicas, Universidad Complutense de Madrid 28040-Madrid .Spain e-mail: Qutaiba_Ead@mat.ucm.es

Abstract

In this paper new results in fuzzy connected space are obtaind and prove that locally fuzzy connectedness is good extension of locally connectedness also it is proved that in a T₁-fuzzy compact space the notations c-zero dimensional, Strong c-zero dimensional and Totally c_i -connected are equivalents.

Keywords: Fuzzy connected space, fuzzy strong connected, fuzzy super connected, c-zero dimensional, strong c-dimensional and totally c_i-connected. Mathematics Subject Classification 54A40, 03E72

1 Introduction

In 1965 Zadeh in his classical paper generalized characteristic functions to fuzzy sets. Chang in 1968 introduced the topological structure fuzzy sets in a given set. Pu and Liu defined connectedness by using the concept fuzzy closed set. Lowen also defined an extension of a connectedness in a restricted family of fuzzy topologies. Fatteh and Bassam studied further the notion of fuzzy super connected and fuzzy strongly connected spaces. However they defined connectedness only for a crisp set of a fuzzy topological space. Ajmal and Kohli extend the notations of connectedness to an arbitrary fuzzy set, and defined the notions of c-zero dimensional, total disconnectedness and strongly zero connectedness.

In this paper we give more results on these spaces and prove that locally fuzzy connectedness is a good extension of locally connectedness. Also, it is proved that in a T_1 -fuzzy compact space the notions c-zero dimensional, Strong c-zero dimensional and totally c_i -connected are equivalents.

2 Basic definitions

The following definitions have been used to obtain the results and properties developed in this paper.

Definition 1 [7] A fuzzy topological space X is said to be fuzzy connected if it has no proper fuzzy clopen set. (A fuzzy set λ in X is proper if $\lambda \neq 0$ and $\lambda \neq 1$).

Definition 2 [7]A fuzzy topological space X is said to be fuzzy super- connected iff X does not have non- zero fuzzy open sets λ and μ such that $\lambda + \mu \leq 1$.

Definition 3 [7]A fuzzy topological space X is said to be fuzzy strongly connected if it has no non-zero fuzzy closed sets f and k such that $f + k \leq 1$.

Definition 4 [1]A fuzzy topological space X is said to be c-zero dimensional if every crisp fuzzy point x_1 in X and every fuzzy open set μ containing x_1 there exists a crisp clopen fuzzy set δ in X such that $x_1 \leq \delta \leq \mu$.

Definition 5 [1] A fuzzy topological space X is said to be totally c_i -disconnected (i = 1, 2, 3, 4) if the support of every non zero c_i -connected fuzzy set in X is a singleton.

Definition 6 [1] A fuzzy topological space X is said to be strongly c-zero dimensional if it is not c-connected between any pair of its disjoint fuzzy closed sets.

Definition 7 [2] A fuzzy topological space X is said to be fuzzy locally connected at a fuzzy point x_{α} in X if for every fuzzy open set μ in X containing x_{α} , there exists a connected fuzzy open set δ in x such that $x_1 \leq \delta \leq \mu$.

Definition 8 A fuzzy topological space (X,T) is said to be locally fuzzy super connected (locally fuzzy strong connected) at a fuzzy point x_a in X if for every fuzzy open set μ in X containing x_a there exist a fuzzy super connected (fuzzy strong connected) open set η in X such that $x_a \leq \eta \leq \mu$

Definition 9 A fuzzy quasi-component of a fuzzy point x_1 in a fuzzy topological space (X,T) is the smallest fuzzy clopen subset of X contain x_1 and denoted by Q.

Definition 10 A fuzzy path component of a fuzzy point x_1 in a fuzzy topological space (X,T) is the maximal fuzzy path connected in (X,T) contain x_1 and denoted by C.

3 Fuzzy connectedness and its stronger forms

In this section we study some stronger forms of connectedness such as fuzzy super connected, totally c_i -disconnected and fuzzy strongly connected introduced by Fatteh and Bassam and we proved that locally fuzzy connectedness is a good extension of locally connectedness also we get some additional results and properties for these spaces.

3.1 Theorem

A topological space (X, τ) is locally connected if and only if $(X, \omega(\tau))$ is locally connected.

Proof. Let μ be a fuzzy open set in $\omega(\tau)$ containing a fuzzy point \mathbf{x}_{α} , since μ is lower semicontinuous function, then by local connectedness of (X, τ) there exists an open connected set U in X containing x and contained in the support of μ . i.e $(x \in U \subset Supp \ \mu)$. Now χ_U is the characteristic function of U and it is a lower semicontinuous, then $\chi_U \land \mu$ is fuzzy open set in $\omega(\tau)$. We claim $\delta = \chi_U \land \mu$ is fuzzy connected set containing \mathbf{x}_{α} , if not then by [8, Th.(3.1),] there exists a non zero lower semicontinuous functions $\mu_1, \ \mu_2$ in $\omega(\tau)$ such that

 $\mu_1 \mid \delta + \mu_2 \mid \delta = 1$

Now Supp $\delta = U$ and Supp μ_1 , Supp μ_2 are open sets in τ such that

$$U \subset Supp \ \mu_1 \cup \ Supp \ \mu_2$$

then,

 $U \cap Supp \ \mu_1 \neq \Phi$

and

$$U \cap Supp \ \mu_2 \neq \Phi$$

then

$$(U \cap Supp \ \mu_1) \cup (U \cap Supp \ \mu_2) = U \cap (Supp \ \mu_1 \cup Supp \ \mu_2) = U$$

is not connected. Conversely let U be an open set in τ containing $x, x_{\alpha} \in \chi_{U}$, $(\chi_{u} \text{ is the characteristic function of } U), \chi_{u} \text{ is fuzzy open set in } \omega(\tau)$. By fuzzy connectedness of $(X, \omega(\tau))$ there exists a fuzzy open connected set μ in $\omega(\tau)$ such that.

$$x_{\alpha} \le \mu \le \chi_{U}$$

Claim that $Supp \ \mu$ is connected $(x \in Supp \ \mu \subset U)$, if not there exists two non empty open sets $G_1, G_2 \in \tau$ such that

$$Supp\mu = G_1 \cup G_2$$
 and $G_1 \cap G_2 = \Phi$

it is clear that

$$\chi_{G_1} + \chi_{G_2} = 1_{\mu}$$

which is contradiction, because μ is fuzzy connected.

3.2 Theorem

If G is a subset of a fuzzy topological space (X,T) such that μ_G (μ_G is the characteristic function of a subset G of X) is fuzzy open in X, then if X is super connected space implies G is fuzzy super connected space.

Proof. Suppose that G is not fuzzy super connected space then by [7, Th.(6.1),] exists fuzzy open sets λ_1, λ_2 in X such that $\lambda_1/G \neq 0, \lambda_2/G \neq 0$ and $\lambda_1/G + \lambda_2/G \leq 1$ there for $\lambda_1 \wedge \mu_G + \lambda_2 \wedge \mu_G \leq 1$.

Then X is not fuzzy super connected space and we get contradiction.

3.3 Theorem

If A and B are fuzzy strong connected subsets of a fuzzy topological space (X,T) and $\overline{\mu_B}/A \neq 0$ or $\overline{\mu_A}/B \neq 0$, then $A \vee B$ is a fuzzy strong connected subset of X where μ_A , μ_B are the characteristic function of a subset A and A and B respectively.

Proof. Suppose $Y = A \vee B$ is not strong fuzzy connected subset of X. Then there exist fuzzy closed sets δ and λ such that $\delta/Y \neq 0$ and $\lambda/Y \neq 0$ and $\delta/Y + \lambda/Y \leq 1$. Since A is fuzzy strong connected subset of X, then either $\delta/A = 0$ or $\lambda/A = 0$. Without loss the generality assume that $\delta/A = 0$ in this case since B is also fuzzy strong connected we have

$$\delta/A = 0, \lambda/A \neq 0, \delta/B \neq 0, \lambda/B = 0$$

there for

$$\lambda/A + \overline{\mu_B}/A \le 1 \tag{1}$$

If $\overline{\mu_B}/A \neq 0$, then $\lambda/A \neq 0$ with (1) imply that A is not fuzzy connected subset of X. In the same way if $\overline{\mu_A}/B \neq 0$ then $\delta/B \neq 0$ and $\lambda/B + \overline{\mu_A}/B \leq 1$ imply that B is not a fuzzy strong connected subset of X, we get a contradiction.

3.4 Theorem

If A and B are subsets of a fuzzy topological space (X,T) and $\mu_A \leq \mu_B \leq \overline{\mu_A}$, if A is fuzzy strong connected subset of X then B is also a fuzzy strong connected.

Proof. Let B is not fuzzy strong connected, then there exist two non zero fuzzy closed sets f/B and k/B such that

$$f/B + k/B \le 1 \tag{1}$$

If f/A = 0 then $f + \mu_A \leq 1$ and this implies

$$f + \mu_A \le f + \mu_B \le f + \overline{\mu_A} \tag{2}$$

then $f + \mu_B \leq 1$, thus f/B = 0 contradiction, there for $f/A \neq 0$, similarly we can show that $k/A \neq 0$. By (1) with the relation $\mu_A \leq \mu_B$ imply

$$f/A + k/A \le 1$$

so A is not fuzzy strong connected which is contradiction also. \blacksquare

3.5 Theorem

A fuzzy topological space (X, T) is locally fuzzy connected iff every open fuzzy subset of X is fuzzy connected.

Proof. let A be a subspace of X and let η be a fuzzy open set in X. To prove A is fuzzy connected, let x^a_{α} be a fuzzy point in A and let η/A be a fuzzy open set in A containing x^a_{α} , it must prove that there exist a connected fuzzy open set μ/A in A such that

$$x^a_{\alpha} \leq \mu/A \leq \eta/A$$

clearly, the fuzzy point x_{α} in X is contained in η . Since X is locally fuzzy connected, then there exist an open fuzzy connected μ such that

$$x_{\alpha} \leq \mu \leq \eta \text{ and } \mu \leq \eta \land \chi_A$$

.It is easy prove that

$$x^a_{\alpha} \leq \mu/A \leq \eta/A,$$

if μ/A is not fuzzy connected, there exist a proper fuzzy clopen λ/A in μ/A (λ is proper fuzzy clopen in μ) This is contradiction that μ is fuzzy connected and then A is fuzzy connected.

In the same way we can prove the case of (X,T) is strong connected space and super connected space.

3.6 Theorem

Let X be a locally super connected and Y be a fuzzy topological space, let F be a fuzzy continuous from X onto Y, then Y is locally super connected.

Proof. Let y_{λ} be a fuzzy point of Y, to prove Y is locally fuzzy super connected i.e for every open set μ in Y containing $y_{\lambda}(y_{\lambda} \leq \mu)$ there exist a super connected fuzzy open set η such that $y_{\lambda} \leq \eta' \leq \mu$. Let $F: X \longrightarrow Y$ be a fuzzy continuous, then there exist a fuzzy point x_{δ} of X such that $F(x_{\delta}) = y_{\lambda}$, $F^{-1}(\mu)$ is fuzzy open set in X then

$$F^{-1}(\mu)(x_{\delta}) = \mu(F(x_{\delta})) = \mu(y_{\lambda}), \ F(x_{1}) \le \mu$$

thus $x_{\delta} \leq F(\mu)$, Since X is locally fuzzy super connected there exist a fuzzy super connected open set η such that

$$x_{\delta} \le \eta \le F^{-1}(\mu)$$

then

$$F(x_{\delta}) \le F(\eta) \le \mu$$

and then $F(\eta)$ is super connected fuzzy.[7, Th.(6.5)].

In the same way we can prove the case for locally fuzzy strong connected space.

4 Other types of connectedness

In this section we proved that in a T_1 -fuzzy compact space the notions c-zero dimensional, strong c-zero dimensional and totally c_i -connected are equivalent.

4.1 Definition

let A be a subspace of a fuzzy to0000pological space (X, T) and let $\{u_s\}_{s\in S}$ be a family of fuzzy open subsets of X such that $A \leq \bigvee_{s\in S} u_s$. If A is fuzzy compact then there exist a finite set $\{s_1, s_2, \dots, s_k\}$ such that $A \leq \bigvee_{i=1}^k u_{s_i}$.

4.2 Theorem

In a fuzzy topological space (X,T) a fuzzy quasi-component $\{Q\}$ is less than the fuzzy quasi-component $\{C\}$ for every point x_1 .

Proof. Let \mathbf{x}_1 be a fuzzy point in (X,T), suppose $C \notin Q$, let μ be any fuzzy clopen subset of X contain \mathbf{x}_1 , then we consider $C \wedge \mu$ and $C - \mu$. It is clear that $C \wedge \mu \neq 0$

$$(C - \mu)(x) = \begin{cases} C(x) & if \quad C(x) > \mu(x) \\ 0 & \text{otherwise} \end{cases}$$

If $C - \mu = C$ this mean

$$(C \wedge \mu)(x) + (C - \mu)(x) = 1c$$

Contradiction, it must be $C - \mu = 0$, then $C \leq Q$ since μ is arbitrary, thus $C \leq Q$.

4.3 Lemma

Let μ be a fuzzy open subset of a topological space (X, T). If a family $\{Fs\}_{s\in S}$ of closed subset of X contains at least one fuzzy compact set, in particular if X is fuzzy compact and if $\wedge_{s\in S}Fs < \mu$, there exists a finite set $\{s_1, s_2, \dots, s_k\}$ such that $\wedge_{i=1}^k Fs_i < \mu$.

Proof. let μ be a fuzzy open set, then $1 - \mu = \mu^c$ is fuzzy closed

$$\left(\wedge_{s\in S}Fs < \mu\right)^c = \bigvee_{s\in S}F_s^c > \mu^c = 1 - \mu$$

which is fuzzy compact [every fuzzy closed of fuzzy compact is fuzzy compact].

$$1 - \mu < \vee_{s \in S} F_s^c$$

then

$$1 - \mu < \vee_{i=1}^k F_{s_i}^c$$

and then

$$\wedge_{i=1}^k Fs_i < \mu.$$

4.4 Theorem

Let (X,T) be a T₁- fuzzy compact space then the following are equivalent.

1- (X,T) is c-zero dimensional.

2-(X,T) is strong c - zero dimensional.

3-(X, T) is totally $c_i - connected, i = 1, 2, 3, 4$.

Proof. (1) \Rightarrow (2) it is clear that every fuzzy compact is fuzzy Lindeloff topological space, then by [Th.(4.5), 4], (X,T) is strongly c - zero dimensional. $(2) \Rightarrow (1), by [Th.(4.4), 4].$

(1) \Rightarrow (3), by [Th.(4.3), 4], (X, T) is totally $c_i - connected, i = 1, 2, 3, 4$.

(3) \Rightarrow (1), it must prove that if (X,T) is fuzzy compact totally c_i – connected, then it is c - zero dimensional. let x_1 be a crisp fuzzy point in X and let μ be a fuzzy open set containing x_1 , to prove that there exists a crisp clopen fuzzy set δ in X such that

$$x_1 \le \delta \le \mu$$

Let

$$\mu^* = \{\mu : \mu \text{ is fuzzy clopen and } x_1 \le \mu\}$$

is fuzzy quasi-component of x_1 , let U be a neighborhood of $x_1, \mu^* < U$ then by [Lemma (4.3)] and the fuzzy compactness of (X, T),

$$\mu^* = \mu_1 \land \ \mu_2 \land \dots \land \mu_k < U$$

and then we get

 $x_1 \le \mu^* < U.$

Conclusion 5

We studied some fuzzy topological spaces such fuzzy super connected, fuzzy strongly connected, c-zero dimensional, total disconnected and strongly zero connected, we gave more results on these spaces and prove that locally fuzzy connectedness is a good extension of locally connectedness. Also, it is proved that in a T₁-fuzzy compact space the notions c-zero dimensional, Strong c-zero dimensional and totally c_i -connected are equivalents.

6 Acknowlegment

The author is highly grateful to Dr. Francisco Gallego Lupiañez's constructive suggestions, instructions and guidance in the preparation of this paper.

References

- N. Ajmal and J. K. Kohli, Zero dimensional and strongly zero dimensional fuzzy topological spaces, *Fuzzy Sets and Systems*, (61) 1994, 231-237.
- [2] N. Ajmal and J. K. Kohli, Connectedness and local connectedness in fuzzy topological spaces and Heyting-algebra-valued sets, *Fuzzy Sets and Sys*tems, (44) 1991, 93-108.
- [3] D. M. Ali and A. K. Srivastava, On fuzzy connectedness, Fuzzy Sets and Systems, (28) 1988, 203-208
- [4] C. L. Chang, Fuzzy topological Space, J. Math. Anal. Appl., (24) 1968, 182-190.
- [5] E. Cuchillo-Ibañez and J. Tarrés, On zero dimensionality in fuzzy topological spaces, *Fuzzy Sets and Systems*, (82) 1996, 361-367.
- [6] A.K. Chaudhuri and P. Das, Fuzzy connected sets in fuzzy topological spaces, *Fuzzy Sets and Systems*, (49) 1992, 223-229.
- [7] U. V. Fatteh and D. S. Bassam, Fuzzy connectedness and its stronger forms, Journal Math. Ann. Appl, (111) 1985, 449-464.
- [8] R. Lowen, Connectedness in fuzzy topological spaces, Rocky Mountain J. Math. (11)1981, 427-433.
- [9] P-M. Pu and Y-M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl.(76) 1980, 571-599.
- [10] N. Turanli and D. Coker, On fuzzy types of fuzzy connectedness in fuzzy topological spaces, *Fuzzy Sets and Systems*, (60) 1993, 97-102.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control, (8) 1965, 1-23.
- [12] X. Zhao, Connectedness on fuzzy topological spaces, Fuzzy Sets and Systems, (20) 1986, 223-240.
- [13] C-Y. Zheng, Fuzzy path and fuzzy connectedness, *Fuzzy Sets and Systems*, (14) 1984, 273-280.