
THREE-DIMENSIONAL EXTENSION OF KIRKPATRICK'S PLANAR
POINT LOCATION METHOD

ABDULLAH ZAWAWI TALIB
School of Computer Sciences

University of Science Malaysia
11800 USM Penang, Malaysia

AHMAD IZANI MD. ISMAIL
School of Mathematical Sciences
University of Science Malaysia
11800 USM Penang, Malaysia

ABSTRACT

 The point location problem is an important problem
in computational geometry. Most of the methods that
have been developed have been for the planar point
location problem. By contrast, the spatial point location
problem has received less attention. In this paper we
discuss the extension of an efficient implementation of
an extensively used planar point location method to
three dimensions.

KEY WORDS

 Point location problems, computational geometry,
geometric algorithms.

1. INTRODUCTION

 The planar (or 2D) point location problem (de Berg
et al [1]) can be stated as follows: Given a subdivision S
of the plane and a query point Z, determine the region R
of S which contains Z. Various methods for the point
location problem have been developed. A method
which is extensively used is Kirkpatrick’s method [2].
This method creates and employs an efficient search
structure which consists of a suitable small set of new
triangles organized in a subdivision hierarchy called the
K-structure. An efficient implementation of
Kirkpatrick’s planar point location method has been
developed by Talib et al [3]. The spatial (or 3D) point
location problem has not received as much attention as
the planar problem. The earlier methods for the spatial
point location problem are basically direct extensions of
their two-dimensional counterparts (Dobkin and Lipton
[4], Cole [5]). However, some of the reported results
present a different approach such as using space-
sweep/plane-sweep techniques. Preparata and Tamassia
([6],[7]), and Tan et al [8] are two examples of the
methods that employ this approach. Another spatial
method is the Meshed Polyhedra Point Location method
(MPPL) which uses the data structure for the Meshed
Polyhedra Visibility Ordering (MPVO) algorithm
(Williams [9]).

 In this paper, the possibility of extending
Kirkpatrick's planar point location method to locating a

point in spatial subdivisions based on the corresponding
planar method is investigated. It is anticipated that the
same organisation for the K-structure can be used for
spatial point location search. However, the analogy of
triangulation (tetrahedralisation) in 3D is not a
straightforward process in that the number of
tetrahedrons which is to appear is unknown a priori
(Yvinec [10]). Furthermore, the number of vertices,
edges, faces and regions in 3D are not necessarily
linearly related (Yvinec [10], Croom [11]).

 Figure 1 represents the overall structure of a
program for an efficient implementation of
Kirkpatrick’s method developed by Talib et al [3]).
Referring to Figure 1, the modifications required to
fulfil a 3D implementation of the Kirkpatrick's method
are as follows.

(i) Representation of the three-dimensional

subdivision and the algorithm to construct such a
structure.

(ii) Representation of the K-structure for three-
dimensional tetrahedral elements, K3-structure
and the algorithms to construct such a structure
including the 3D hierarchical tetrahedralisation
process.

(iii) Algorithms for tetrahedralisation (instead of
triangulation) and the intersection of tetrahedral
elements (instead of triangles).

(iv) A new point location search algorithm for 3D.

2. ALGORITHMS AND DATA
 STRUCTURES FOR THE 3D
 SUBDIVISION

 An efficient representation of 3D subdivisions S3
relies on the nature of the tetrahedralisation algorithm
and the updates of S3 during the 3D hierarchical
triangulation process. The 3D hierarchical triangulation
process is identical to its 2D counterpart except that a
tetrahedralisation algorithm is used to retriangulate the
resulting polyhedron after the removal of a vertex and
its associated edges and faces.

Circles - take in input and return output
Squares - either take in output or return input

FIGURE 1 THE OVERALL STRUCTURE OF THE PROGRAM

FOR THE KIRKPATRICK'S PLANAR POINT LOCATION
METHOD

 Triangulation in 3D space or tetrahedralisation is
much more complicated due to the fact that the number
of tetrahedrons which is to appear is unknown a priori.
In the 3D extension of Kirkpatrick's method, an
algorithm to triangulate a nonconvex polyhedron is
required. However, there exists an indirect approach to
tetrahedralisation as described in Zienkiewicz and
Taylor [12]. In this method, the polyhedron is sectioned
into a number of quadrilaterals called bricks (eight-
cornered elements). Each of these bricks can then be
divided into five tetrahedra in two (and only two)
distinct ways. Another alternative is to subdivide the
bricks into six tetrahedra but this time several variations
are available.

 Without going into the details of the
tetrahedralisation algorithm and the 3D hierarchical
triangulation process, the following data structure for S3
is proposed for the purpose of extending the method to
three dimensions. The most appropriate orientation of
the data structure is that of the edge-based orientation
as in the planar representation (Talib et al [3]). The

proposed data structure is formulated based on the
modified edge-ordered representation (Talib et al [3]).
The representation is as for the planar representation
(Talib et al [3]) with the following modifications:

(i) Each directed edge (v,w) has a list of faces that

touch it.
(ii) Each face is associated with the names of the

region lying immediately to the right and the left
of it as opposed to the name of the region to the
right of an edge in the planar representation.

 The appropriate region i.e. left or right must be
chosen based on the orientation of the face during the
hierarchical triangulation process.

 The declaration of the basic components of the
structure are as shown in Table 1. The highlighted
entries indicate the additional information proposed for
the 3D implementation from the implementation of its
2D-counterpart (in Talib et al [3]). An example of the
representation is shown in Figure 2. In this
representation all duplicate instantiations of a face can
be made to point to a single face structure.

TABLE 1: DECLARATION OF DATA STRUCTURES FOR THE
3D SUBDIVISION FOR THE IMPLEMENTATION OF THE 3D

KIRKPATRICK'S METHOD

 Declaration Description
Edge

struct edge {
struct face *faces;

struct edge *recedge;

struct vnode *vertex ;

struct edge *next;

};

Pointer to the list of
faces.
Pointer the reciprocal
edge.
Pointer back to the
vertex.
Pointer to the next
edge.

Vertex struct vnode {
 int nodenum;
double x,y;
int mark;

int cornernode;

struct vnode *predv;

struct edge *edgelist;

};

Vertex identifier.
Vertex co-ordinate.
Marker for the vertex
so that a set of
independent nodes is
removed at each stage.
Marker for corner node
but not the boundary
node as nodes on the
boundary edges are
allowed - can be
removed.
Previous vertex in the
list.
Edge list.

Face struct face {
int rightregion;

int leftregion;

struct face *nextface;

};

The name of the region
to the right.
The name of the region
to the left.
Pointer to the next face
in the list.

1
Read
Data

6.1
Generate
Random
Points

4.2
Remove
Vertex

8
Average

Query Time

7.1
Point in

Triangle Test

4
Construct
K -Structure

2
Construct

Subdivision

3.1
Create
Edge

5
Triangulation

6
Test Point
Location

3
Add

Triangle

2.2
Construct

Edges

2.1
Construct
Vertices

4.2.2
Remove
Edges

3.1.2
Edge

Insertion

7
Search

Algorith
m

4.1
Initialise

K -Structure

4.2.3
Triangles

Intersection &
Create Path In
K -Structure

3 2

1

A

F3, F1

2

3

1

Subdivision

End of
Subdivision

List of Vertices Lists of Edges

1-3 : Vertex identifier

Fi : The name of the face that touches the edge

The Spatial Subdivision

: Reciprocal pointer for the edge

: Pointer to the next element in the list

: Pointer from the edge to the vertex

4

F3

F1

F2

F4

4
F3, F4

F3, F1

F2, F1

F2, F1

F3, F2

F3, F2

F4, F2

F4, F2

F1, F4

F1, F4

F3, F4

FIGURE 2: THE DATA STRUCTURE FOR THE 3D
SUBDIVISION FOR THE 3D KIRKPATRICK'S METHOD

 The data structure for S3 can be constructed in the
same manner as in the planar implementation (Talib et
al [3]). For the list of edges for each vertex, the correct
insertion procedure into the respective edge list depends
on the nature of the tetrahedralisation algorithm.

3. ALGORITHMS AND DATA
 STRUCTURES FOR THE 3D
 K-STRUCTURE

 As in the K-structure for the planar method, the K-
structure for spatial point location search (K3-structure)
is constructed based on the corresponding 3D
hierarchical triangulation process which is performed
on S3. Efficient data structures for both S3 and the K3-
structure are needed to ensure an efficient
implementation of the algorithm to construct the K3-
structure and the point location search algorithm. Also,
the construction of the K3-structure depends on the

algorithms to determine the intersection of the
tetrahedral elements and the data structure for the K3-
structure. As mentioned earlier, the data structure for
the 2D K-structure can be modified easily to allow
spatial point location searches. The only modification
required is the inclusion of a fourth co-ordinate for the
triangle node to convert it into a tetrahedral node.

 The K 3-structure can therefore be constructed in
the same way as in the 2D implementation. In this case
a path is created from a newly created tetrahedron to the
tetrahedron which has been removed from the
subdivision if the former intersects (except on the edges
or vertices or faces) the latter tetrahedron. The
calculation of intersection of tetrahedral elements is
also modified easily from the calculation of triangle
intersection by extending the latter to include the edges
from the fourth vertices of the tetrahedron. The point
location search algorithm for S3 is identical to its planar
counterpart as described in Talib et al [3]. The only
modification required is to replace the inclusion in a
triangle test with the inclusion in a tetrahedron test.

4. CONCLUSIONS

 It has been shown that the extension of the
Kirkpatrick's method to spatial subdivisions is in some
ways very straightforward. The only problem appears to
be the need for an efficient tetrahedralisation algorithm
for non-convex polyhedron. The rest of the method only
needs minor modifications. This is especially true for
the data structures for K3-structure and the point
location search algorithm for this structure. A suitable
data structure for S3 is also established. Nonetheless, the
final structure is subject to the nature of the
tetrahedralisation algorithm for the nonconvex
polyhedron. Yet to be proven is its simplicity and
practicality as no implementation is carried out.
However, intuitively the notion is true as the proposed
extension is based on its planar counterpart.

REFERENCES

[1] M. de Berg, O Schwarzkopf, M. van Icreveld, M.

Overmass, Computational geometry: Algorithms
and applications (Springer-Verlag, 2000).

[2] D. G. Kirkpatrick, Optimal Search in Planar

Subdivisions, SIAM Journal on Computing,
12(1), 1983, 28-35.

[3] A. Z. Talib, A. I. Ismail, M. Chen, Efficient
implementation of a planar point location
method, Proc. 2nd Int. Conf. on Computer
Graphics and Interactive Techniques in
Australasia and Southeast Asia, ACM
SIGGRAPH Publication, 2004, 155-161.

[4] D. P. Dobkin and R. J. Lipton, Multidimensional

searching problems, SIAM Journal on
Computing, 5(2), 1976, 181-186.

[5] R. Cole, Searching and storing similar lists",

Journal of Algorithms, 7(2), 1986, 202-220.

[6] F. P. Preparata and R. Tamassia, Efficient spatial

location, An extended abstract, Lecture Notes In
Computer Science, Vol. 382, Springer Verlag
1989, 3-11.

[7] F. P. Preparata and R. Tamassia, Efficient point

location in a convex spatial cell-complex", SIAM
Journal on Computing, 21(2), 1992, 267-280.

[8] X.-H. Tan, T. Hirata and Y. Inagaki, Spatial
Point Location and Its Applications, Lecture
notes in Computer Science, Vol. 450, Springer-
Verlag, 1990, 241-250.

[9] P. C. Williams, Visibility ordering meshed

polyhedra, ACM Transaction on Computer
Graphics, 11(2), 1992, 103-126.

[10] M. Yvinec, Triangulation in 2D and 3D spaces,

Lecture Notes in Computer Science, Vol. 391,
Springer Verlag, 1989, 274-291.

[11] F. H. Croom, Basic Concepts of Algebraic

Topology (Springer-Verlag, 1978).

[12] O.C. Zienkiewizc and Taylor, The Finite Element

Methods (McGraw-Hill, 2000).

