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ABSTRACT 
 
 The point location problem is an important problem 
in computational geometry.  Most of the methods that 
have been developed have been for the planar point 
location problem.  By contrast, the spatial point location 
problem has received less attention.  In this paper we 
discuss the extension of an efficient implementation of 
an extensively used planar point location method to 
three dimensions. 
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1.  INTRODUCTION 
 
 The planar (or 2D) point location problem (de Berg 
et al [1]) can be stated as follows: Given a subdivision S 
of the plane and a query point Z, determine the region R 
of S which contains Z. Various methods for the point 
location problem have been developed. A method 
which is extensively used is Kirkpatrick’s method [2]. 
This method creates and employs an efficient search 
structure which consists of a suitable small set of new 
triangles organized in a subdivision hierarchy called the 
K-structure. An efficient implementation of 
Kirkpatrick’s planar point location method has been 
developed by Talib et al [3].  The spatial (or 3D) point 
location problem has not received as much attention as 
the planar problem. The earlier methods for the spatial 
point location problem are basically direct extensions of 
their two-dimensional counterparts (Dobkin and Lipton 
[4], Cole [5]).  However, some of the reported results 
present a different approach such as using space-
sweep/plane-sweep techniques. Preparata and Tamassia 
([6],[7]), and Tan et al [8] are two examples of the 
methods that employ this approach. Another spatial 
method is the Meshed Polyhedra Point Location method 
(MPPL) which uses the data structure for the Meshed 
Polyhedra Visibility Ordering (MPVO) algorithm 
(Williams [9]). 
 
 In this paper, the possibility of extending 
Kirkpatrick's planar point location method to locating a 

point in spatial subdivisions based on the corresponding 
planar method is investigated. It is anticipated that the 
same organisation for the K-structure can be used for 
spatial point location search. However, the analogy of 
triangulation (tetrahedralisation) in 3D is not a 
straightforward process in that the number of 
tetrahedrons which is to appear is unknown a priori 
(Yvinec [10]). Furthermore, the number of vertices, 
edges, faces and regions in 3D are not necessarily 
linearly related (Yvinec [10], Croom [11]). 
 
 Figure 1 represents the overall structure of a 
program for an efficient implementation of 
Kirkpatrick’s method developed by Talib et al [3]).  
Referring to Figure 1, the modifications required to 
fulfil a 3D implementation of the Kirkpatrick's method 
are as follows. 
 
(i) Representation of the three-dimensional 

subdivision and the algorithm to construct such a 
structure. 

(ii) Representation of the K-structure for three-
dimensional tetrahedral elements, K3-structure 
and the algorithms to construct such a structure 
including the 3D hierarchical tetrahedralisation 
process. 

(iii) Algorithms for tetrahedralisation (instead of 
triangulation) and the intersection of tetrahedral 
elements (instead of triangles). 

(iv) A new point location search algorithm for 3D. 
 
 
2. ALGORITHMS AND DATA 
 STRUCTURES FOR THE 3D 
 SUBDIVISION 
 
 An efficient representation of 3D subdivisions S3 
relies on the nature of the tetrahedralisation algorithm 
and the updates of S3 during the 3D hierarchical 
triangulation process. The 3D hierarchical triangulation 
process is identical to its 2D counterpart except that a 
tetrahedralisation algorithm is used to retriangulate the 
resulting polyhedron after the removal of a vertex and 
its associated edges and faces. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Circles - take in input and return output 
Squares - either take in output or return input 

 
FIGURE 1 THE OVERALL STRUCTURE OF THE PROGRAM 

FOR THE KIRKPATRICK'S PLANAR POINT LOCATION 
METHOD 

 
 Triangulation in 3D space or tetrahedralisation is 
much more complicated due to the fact that the number 
of tetrahedrons which is to appear is unknown a priori. 
In the 3D extension of Kirkpatrick's method, an 
algorithm to triangulate a nonconvex polyhedron is 
required. However, there exists an indirect approach to 
tetrahedralisation as described in Zienkiewicz and 
Taylor [12]. In this method, the polyhedron is sectioned 
into a number of quadrilaterals called bricks (eight-
cornered elements). Each of these bricks can then be 
divided into five tetrahedra in two (and only two) 
distinct ways. Another alternative is to subdivide the 
bricks into six tetrahedra but this time several variations 
are available.  
 
 Without going into the details of the 
tetrahedralisation algorithm and the 3D hierarchical 
triangulation process, the following data structure for S3 
is proposed for the purpose of extending the method to 
three dimensions. The most appropriate orientation of 
the data structure is that of the edge-based orientation 
as in the planar representation (Talib et al [3]). The 

proposed data structure is formulated based on the 
modified edge-ordered representation (Talib et al [3]). 
The representation is as for the planar representation 
(Talib et al [3]) with the following modifications: 
 
(i) Each directed edge (v,w) has a list of faces that 

touch it. 
(ii) Each face is associated with the names of the 

region lying immediately to the right and the left 
of it as opposed to the name of the region to the 
right of an edge in the planar representation. 

 
 The appropriate region i.e. left or right must be 
chosen based on the orientation of the face during the 
hierarchical triangulation process. 
 
 The declaration of the basic components of the 
structure are as shown in Table 1. The highlighted 
entries indicate the additional information proposed for 
the 3D implementation from the implementation of its 
2D-counterpart (in Talib et al [3]). An example of the 
representation is shown in Figure 2. In this 
representation all duplicate instantiations of a face can 
be made to point to a single face structure.  
 
 

TABLE 1: DECLARATION OF DATA STRUCTURES FOR THE 
3D SUBDIVISION FOR THE IMPLEMENTATION OF THE 3D 

KIRKPATRICK'S METHOD 
 

 Declaration Description 
Edge  
 

struct edge { 
struct face *faces;  
 
struct edge *recedge; 
 
struct vnode *vertex ; 
 
struct edge *next; 

}; 

 
Pointer to the list of 
faces. 
Pointer the reciprocal 
edge.  
Pointer back to the 
vertex.  
Pointer to the next 
edge.  

Vertex struct vnode { 
 int nodenum; 
double x,y; 
int mark; 
 
 
 
int cornernode;  
 
 
 
 
 
struct vnode *predv; 
 
struct edge *edgelist; 

}; 

  
Vertex identifier.  
Vertex co-ordinate.  
Marker for the vertex  
so that a set of 
independent nodes is 
removed at each stage.  
Marker for corner node 
but not the boundary 
node as nodes on the 
boundary edges are 
allowed - can be 
removed.  
Previous vertex in the 
list.  
Edge list. 
 

Face struct face { 
int rightregion;  
 
int leftregion;  
 
struct face *nextface;  

}; 

 
The name of the region 
to the right.  
The name of the region 
to the left.  
Pointer to the next face 
in the list.  
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FIGURE 2: THE DATA STRUCTURE FOR THE 3D 
SUBDIVISION FOR THE 3D KIRKPATRICK'S METHOD 

 
 The data structure for S3 can be constructed in the 
same manner as in the planar implementation (Talib et 
al [3]). For the list of edges for each vertex, the correct 
insertion procedure into the respective edge list depends 
on the nature of the tetrahedralisation algorithm. 
 
 
3. ALGORITHMS AND DATA 
 STRUCTURES FOR THE 3D 
 K-STRUCTURE 
 
 As in the K-structure for the planar method, the K-
structure for spatial point location search (K3-structure) 
is constructed based on the corresponding 3D 
hierarchical triangulation process which is performed 
on S3. Efficient data structures for both S3 and the K3-
structure are needed to ensure an efficient 
implementation of the algorithm to construct the K3-
structure and the point location search algorithm. Also, 
the construction of the K3-structure depends on the 

algorithms to determine the intersection of the 
tetrahedral elements and the data structure for the K3-
structure. As mentioned earlier, the data structure for 
the 2D K-structure can be modified easily to allow 
spatial point location searches. The only modification 
required is the inclusion of a fourth co-ordinate for the 
triangle node to convert it into a tetrahedral node.   
 
 The K 3-structure can therefore be constructed in 
the same way as in the 2D implementation. In this case 
a path is created from a newly created tetrahedron to the 
tetrahedron which has been removed from the 
subdivision if the former intersects (except on the edges 
or vertices or faces) the latter tetrahedron. The 
calculation of intersection of tetrahedral elements is 
also modified easily from the calculation of triangle 
intersection by extending the latter to include the edges 
from the fourth vertices of the tetrahedron. The point 
location search algorithm for S3 is identical to its planar 
counterpart as described in Talib et al [3]. The only 
modification required is to replace the inclusion in a 
triangle test with the inclusion in a tetrahedron test.  
 
 
4.  CONCLUSIONS 
 
 It has been shown that the extension of the 
Kirkpatrick's method to spatial subdivisions is in some 
ways very straightforward. The only problem appears to 
be the need for an efficient tetrahedralisation algorithm 
for non-convex polyhedron. The rest of the method only 
needs minor modifications. This is especially true for 
the data structures for K3-structure and the point 
location search algorithm for this structure. A suitable 
data structure for S3 is also established. Nonetheless, the 
final structure is subject to the nature of the 
tetrahedralisation algorithm for the nonconvex 
polyhedron. Yet to be proven is its simplicity and 
practicality as no implementation is carried out. 
However, intuitively the notion is true as the proposed 
extension is based on its planar counterpart. 
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