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Abstract: - The Goursat partial differential equation is a 

hyperbolic partial differential equation which arises in 

various field of study. Several approaches have been 

suggested using forward difference for developing schemes 

which approximate the Goursat partial differential equation. 

However it is known that the central difference 

approximation is more accurate than forward difference. In 

this paper we develop a new finite difference scheme for the 

Goursat partial differential equation using central 

differences together with Heronian mean averaging of 

functional values. 
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1  INTRODUCTION 

 

The Goursat problem arises in many areas of scientific 

applications, such as applied physics, environmental 

sciences, engineering etc. Researchers such as [7] and [2] 

have studied the problem theoretically while applications 

were studied by [6], [3], [10], [1], [8] and [11]. Finite 

difference schemes have been widely used to solve partial 

differential equations. These schemes involve the 

replacement of derivatives in the equations by the 

corresponding forward, backward or central difference 

approximations. Several finite difference schemes combined 

with various means of functional values have been 

developed for the Goursat problem ([5]; [13]).  

 



 2

In this paper we develop a new finite difference scheme for 

the Goursat problem based on central differences and apply 

this scheme to two Goursat problems. 

 

 

2 THE GOURSAT PROBLEM, FINITE 

DIFFERENCE SCHEMES AND HERONIAN 

MEAN 

 

The Goursat problem is of the form [13]: 
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The left hand side of equation (1) can be discretized by 

using forward difference approximations as follows: 
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…(2) 

 

By indexing the variables, equation (2) becomes: 
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If central difference approximations are used, we obtain: 
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Thus finite difference approximation for xyu  is: 
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Let x and y be positive numbers. The heronian mean of 

order 1 (“the heronian mean”) denoted by H(x,y) is              

defined as [12]:  
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The relationships between the arithmetic, geometric and 

heronian mean is given by H = (2A + G)/3 where A is the 

arithmetic mean (x+y)/2 and G is the geometric mean 

( xy ). 

 

The R.H.S of equation (1) is approximated at                       

(i + 1/2, j + 1/2) as follows: 
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From (7) we obtain: 
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Hence the scheme based on forward difference 

approximation as follows: 
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…(9) 

and the new scheme based on central difference 

approximation as follows: 
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Henceforth, we shall refer to the finite difference scheme (9) 

as the forward difference scheme and the new scheme (10) 

as the central difference scheme. 

 

We note that this implementation of the new central 

difference scheme (10) requires that u values on the first 

grid line in the x and y directions be known. This can be 

computed using the scheme (9). 

 

 

3  NUMERICAL EXPERIMENTS 

 

We consider the non-linear Goursat problem: 
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The analytical solution of problem (11) is [13]: 
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Results of Numerical Experiments: 

For grid sizes h = 0.025, 0.05, 0.1 and 0.2 we obtained the 

following results: 

The Time Steps 

Average error of 

Heronian central 

scheme 

Average error of 

Heronian forward 

scheme 

h = 0.025 1.5176833e-005 7.7545350e-005 

h = 0.05 5.7753022e-005 3.1465180e-004 

h = 0.1 2.0528428e-004 1.2941443e-003 

h = 0.2 5.8135113e-004 5.4554515e-003 

 

Fig.1: Solution in graphic form with h = 0.05 

 

 

We consider the derivative linear Goursat problem: 
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The analytical solution for the Goursat problem (12) is [4]: 

yxe)y,x(u +=  

 

Results of Numerical Experiments: 

For grid sizes h = 0.005, 0.010, 0.020 and 0.025 we 

obtained the following results: 

The Time Steps 

Average error of 

Heronian central 

scheme 

Average error of 

Heronian forward 

scheme 

h = 0.005 8.5210105e-004 8.5530845e-004 

h = 0.010 1.6988128e-003 1.7115304e-003 

h = 0.020 3.3766949e-003 3.4266802e-003 

h = 0.025 4.2081718e-003 4.2855907e-003 

 

Fig.2: Solution in graphic form with h = 0.010 
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It can be seen that the Heronian central scheme gives better 

accuracy for the non linear and the derivative linear Goursat 

problem. 

 

 

4  CONCLUSIONS 

 

In this paper we have developed a new finite difference 

scheme for the Goursat problem. This scheme which uses 

central difference approximation (with heronian mean 

averaging of functional values) is more accurate than the 

forward difference scheme for the two Goursat problems 

considered. However the use of the forward difference 

scheme is required to compute some starting values. 
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