
SEARCHING FOR SEMANTIC WEB SERVICES - A
GOOGLE BASED APPROACH

SINUHE ARROYO1, HAN SUNG-KOOK2, DIETER FENSEL1

1DERI
Technikerstraße 21a,

6020, Innsbruck, Austria
{sinuhe.arroyo,

dieter.fensel}@deri.org
http://www.deri.org

2Won Kwang University,

South Korea
www.wonkwang.ac.kr

Abstract. Semantic Web Service discovery and selection are a very
time and resources consuming task. They require reasoning support for
the matchmaking of the capabilities of services against user defined
goals and constituent sub-goals, and for the mediation of the domain
knowledge used to describe the different relevant aspects of services.
This paper presents a performance study around the number of times
the reasoner has to be used in nowadays initiatives. Such study lays the
basis for an innovative approach inspired in the popular search engine
Google, which tries to improve the performance of the whole process.
The main idea is to carry the reasoning as an off-line task, storing the
output for later reuse. It also elaborates on the idea of making service
descriptions and goals available independently of registries or reposito-
ries, i.e. Web pages. Such idea permits to profit, extend and further re-
use, well established concepts developed by popular search engines,
thus assimilating service discovery and selection to any other type of
search engine task.

Keywords: Semantic Web Services, WSMO, Google, Search engines.

1 Introduction
The combination of Semantic Web
Technology and Web Services has
been termed Semantic Web Services.
Semantic Web Services count with
the ability to change the Web into a
common platform where agents (or-
ganizations, individuals, and soft-
ware) communicate with each other to
carry out various activities. In order to
successfully use Semantic Web Ser-

vices its relevant information needs to
be described in a machine under-
standable and processable way. The
semantic markup of services by means
of ontologies facilitates the machine-
processability and machine-
understandability that added on top of
Web Services permits to publish,
discover, select, mediate, compose,
execute, monitor, replace, compensate
and audit services, for the benefit of
some agent who seeks to fulfill some
user-defined task conceptualized as a

goal. The set of steps that put together
the different relevant aspects for the
use of Semantic Web Services has
been termed, Semantic Web Service
Usage Process. Such process will
allow the development and execution
of a value added services that will
solve increasingly complex tasks by
making available for discovery new
composed Services. In order to suc-
cessfully discover services, a detailed
description of its relevant information,
namely, service capability, interfaces,
non-functional properties, goals and
constituent sub-goals needs to be
published. Current approaches to
publication are based on services
registries that store a partial descrip-
tion of the service, and goal reposito-
ries that store goals and constituent
sub-goals. Once services are pub-
lished, the discovery phase tries to
match the capabilities of the different
available services against the descrip-
tion of the goal that the end user aims
to achieve. Finally, during selection
and based on the non-functional prop-
erties of the service, the most appro-
priate ones, e.g. the most reliable and
cost effective ones, among the discov-
ered services are selected. A common
feature to discovery and selection is
that a reasoner engine is required in
order to match goals and capabilities
(discovery), and to mediate among
domain specific terminologies (selec-
tion and discovery). Essentially the
user goal is decomposed into con-
stituent sub-goals which need to be
individually matched against the ca-
pabilities of registered services, re-
quiring the alignment of the terminol-
ogy used to describe capabilities and
sub-goals. During the selection phase
mediation is also required in order to
align the different vocabularies used

to describe non-functional properties.
It could be included as part of the
goal-capability mediation in order to
save resources. In general, the number
of times that the reasoner needs to be
used for goal-capability matching and
mediation is really big, growing as the
number of available services and
vocabularies grows. In this paper an
approach based on the popular search
engine Google is presented, which
tries to solve some of the performance
limitations presented by discovery. It
revolves around the idea of making
the process in an off-line fashion,
keeping a list of goals and sub-goals
that include references to the services
whose capabilities can satisfy them,
minimizing the impact of the reason-
ing in the discovery and selection
tasks. It also proposes to publish the
description of services and goals in-
dependently of the registries and re-
positories respectively, making it
available like any other Web re-
sources, i.e. Web page. This approach
allows the reuse of the concepts and
ideas already developed for search
engines, permitting to extend them
and further reusing them in regard to
Web Services, thus understanding the
goal-capability matching like any
other type of search. A performance
study in regard the number of times
the reasoner has to be used in the case
that previously carried reasoning tasks
are not stored is presented, setting the
basis that allow elaborating and justi-
fying the necessity of a new proposal.
The contents of this paper are organ-
ized as follows: Section 2 introduces
the concept and basic ideas around
Semantic Web Services. Section 3
sketches the main ideas behind the
semantic usage of services, together
with the requirements for describing

them, putting it all together in relation
publication, discovery and selection.
Section 4 presents a performance
study that motivates the rest of the
work. Section 5 depicts the main
components of the Google search
engine. Section 6 draws a solution to
improve the performance of the dis-
covery and selection of services, in-
spired in the Google search engine
and depicts its main building blocks.
Finally, section 7 presents the conclu-
sions and future work.

2 Semantic Web Services
The combination of machine proc-
essable semantics provided by the
Semantic Web with current Web
Service technologies has coined the
term Semantic Web Services. Seman-
tic Web Services offer the means to
achieve a higher level of value-added
services by adding dynamism to the
task driven assembly of inter-
organization business logics, thus
making the Internet a global, common
platform where agents (organizations,
individuals, and software) communi-
cate with each other to carry out vari-
ous activities.
Ontologies enable the machine proc-
essable semantics that added on top of
current Web Services realize the idea
of the Semantic Web Services. Se-
mantic Web Services are defined as
“Decoupled, semantically marked-up
Web Services, with concrete execution
semantics, that can be published,
discovered, selected, composed, me-
diated and executed across the Web in
a task driven way, carrying its inter-
action [1] following a choreographed
or orchestrated approach”.
In order to fully realize the ideas be-
hind the Web Service Usage process,
different aspects of services need to

be described in order to allow its
interoperation. In the following sec-
tion the most relevant aspects for
publication, discovery and selection
are sketched.

3 Semantic Usage of Services
The semantic markup of services
allows the description their capabili-
ties and interfaces for the benefit of
some agent, who seeks to discover it,
determine how to execute it and addi-
tionally may want to combine it with
other services in order to produce
some aggregated functionality.
The process of publishing, discover-
ing and executing services carried
with the aim of fulfilling some user-
defined task, conceptualized as a goal,
has been termed Semantic Web Ser-
vice Usage Process. The aims of the
service usage domain are wide, not
being limited to just publish, discov-
ery and execution. These core steps
are complemented with selection,
composition, mediation, monitoring,
replacement, compensation and audit-
ing, thus covering all the different
aspects involved. The

3.1 Semantic Web Service
Description Requirements

In order to allow the location of ser-
vices suitable to accomplish a user
defined task, different important as-
pects of services need to be described.
Such description should be done,
taking as basis the formalism and
domain independence provided by
ontologies.
Service publishers are in charge of
describing the main aspects of ser-
vices, and making that information
available, so it can be further discov-
ered and selected. Among the most

relevant aspects that need to be de-
scribed are counted [3]:

• Capability: Description of a
Semantic Web Service by
means of its functionality,
based on pre-conditions,
post-conditions, assumptions
and effects.

• Goal: Specifies the objec-
tives that a client may have
when he consults a web ser-
vice based on post-
conditions and effects.

• Interface: Specification of
how the functionality of the
service can be achieved, by
means of fulfilling its capa-
bility. It takes a twofold ap-
proach based on choreogra-
phy, or how to communicate
with the web service in order
to consume its functionality,
and orchestration, which de-
fines how the overall func-
tionality is achieved by the
cooperation of more elemen-
tary service providers.

• Non-functional properties:
Properties related to quality
aspects of Web Service
(QoS).

3.2 Publication

In order for successful discovery to
occur, the publisher needs to facilitate
a description of the relevant informa-
tion of the service/s that is going to be
made available, namely, service capa-
bility, interfaces, non-functional prop-
erties, goals and constituent sub-
goals.
Current approaches to service publi-
cation are based on traditional UDDI
registries semantically enhanced.
Service registries make available a
reduce amount of information about

service descriptions, being the de-
tailed depiction stored at the service
provider. Such registries provide
interfaces for both the service pub-
lisher and service requester, present-
ing a centralized approach that per-
mits to find matching elements.
The same approach is followed in the
case of goals, being also stored in
goal repositories. Thus, once the de-
scription of a new service is made
available, its corresponding goal and
constituent sub-goals need to be made
available in goal registries, thus facili-
tating discovery and enable its further
reuse. Also, when services are com-
posed, the corresponding new descrip-
tion and goals is made available in the
service registries and goal repository
respectively.
It is important to notice that the goals
and sub-goals that a service makes
available in the publication phase,
which that can fulfill in principle, are
the pre-conditions and effects of the
capability of the service, renamed to
post-conditions and effects.

3.3 Discovery

Discovery can be understood as the
matchmaking task of the capabilities
of services (pre-conditions and as-
sumptions) against the goal (post-
conditions and effects) that the end
user aims to achieve. The idea is to
locate a selection of services that by
themselves or in combination with
others –provide a solution to a sub-
goal– allow accomplishing a particu-
lar goal. For this, the user goal is
decomposed in sub-goals that are
submitted as discovery queries.
Matching should be as complete as
possible, not being just restricted to
simple string matching, but support-
ing subsumption and other techniques

in order to carry more complex que-
ries that return better matches. The
discovery phase returns a set of can-
didate services whose functional char-
acteristics can fulfill the goal. Due to
the fact that there will be most likely
thousands of different ontologies for a
concrete domain, –publishers will
describe the capabilities of services
using specific domain knowledge and
the goals provided to service request-
ers will be as well expressed by
means of different vocabularies– the
appropriate support for domain
knowledge mediation among capabili-
ties and goals must be available.
Matching requires reasoning support
both for goal capability resolution, as
well as domain knowledge mediation,
that it is not provided as part of the
registry functionality.

3.4 Selection

Once the list of matching services has
been retrieved, a selection process is
to be carried based on the non-
functional properties of the service,
with the aim picking the most appro-
priate ones, e.g. the most reliable and
cost effective one. A common feature
of the services that reach this phase is
that they can be used as a solution to a
sub-goal. In case no appropriate ser-
vices are found, or the ones found don
not provide a solution to each one of
the sub-goals, the service requester
should inform the end user, who
should either refine the description of
the discovery query, in case the partial
solutions are not sufficient, or proceed
with a group of services. Heterogene-
ity still remains in this part of the
usage process. Services are provided
by different vendors with different
characteristics, and probably for a
different domain, thus requiring me-

diation facilities, to make their non-
functional properties understandable
to the service requester.

4 Performance study
The approach introduced in section 3
for publication and discovery presents
an important limitation in terms of
performance when it comes to carry
the reasoning process required for the
matchmaking of the user goal and the
capability of the service. Matching is
carried by a reasoning engine for each
one of the sub-goals. In an environ-
ment with a couple hundreds of ser-
vices restricted to a concrete applica-
tion domain where services are dis-
tributed over few registries, the ap-
proach could be feasible. Neverthe-
less, in a real setting where possible
hundreds of thousands of services are
available to solve a part of the goal,
distributed over a number of regis-
tries, the reasoning becomes an inten-
sive time and resources consuming
task, same for network and computa-
tional power. Prior to the goal-
capability matching, in some cases,
mediation should be applied, to trans-
late among domain specific terminol-
ogies. Due to the fact that ontology
mediation also relies heavily on rea-
soning, the whole process becomes
even more resource and time consum-
ing.
The reasoning required to align the
meaning of non-functional properties
is understood to be carried as part of
the goal-capability matching, only in
case the service satisfies partially or
completely the goal.
Let’s imagine a setting with n service
registries, with c denoting the number
of capabilities of services in the each
one of the registries. The total number
of terminologies used to describe the

capabilities of the different available
services throughout the registries is
denoted by ts. The goal can be de-
compose into g sub-goals expressed
using a concrete domain terminology.
In the best case all the capabilities
available in the registries exactly
match the un-decomposed goal. In
case no ontology mediation is re-
quired, all the capabilities will be
expressed using the same terminology
as the goal, it will be necessary to
carry the reasoning (n * c) times, this
is the number of registries times the
number of capabilities found in each
one of them. In the average case me-
diation will be required ts/2 times,
thus requiring reasoning (n * c * ts/2)
to align terminologies, and (n * c *
ts/2) + (n * c) times in total. In the
worst case mediation will be required
(n * c * ts) times for mediation and (n
* c * ts) + (n * c) times over the
whole discovery process.
In the average case, the goal will be
decomposed into g/2 sub-goals requir-
ing each one of them to be individu-
ally matched against each one of the
capabilities of the services registered.
Then the reasoning will have to be
carried (n * g/2 * c). Same as before
in case they all use the same terminol-
ogy no mediation has to be put in
place being this the best possible
scenario. In the average case, media-
tion will be required ts/2 times, thus
requiring reasoning (n * g/2 * c * ts/2)
times, and a total of (n * g/2 * c *
ts/2) + (n * g/2 * c) times counting
alignment and matching. In the worst
case mediation will be required (n *
g/2 * c * ts) times, and the whole
process will require (n * g/2 * c * ts)
+ (n * g/2 * c) times the support pro-
vided by the reasoning engine.

In the worst case the goal will be
decomposed into its most primitive
components requiring to carry the
reasoning (n * g* c) times. Again if
the language is the always the same
no mediation is required. In the aver-
age case, mediation will be required
ts/2 times, thus needing reasoning
support (n * g * c * ts/2) times, and a
total of (n * g * c * ts/2) + (n * g* c)
times. In the worst case, mediation
will be required (n * g * c * ts) times,
and thus the total process will involve
(n * g * c * ts) + (n * g* c) calls to the
reasoner.
As can be derive from the results
presented, current approach to discov-
ery is not feasible. Even though regis-
tries could include replication facili-
ties that minimize the network over-
load, and grouping of services by
capability and domain knowledge
used to describe them, thus restricting
up to some extent the number of ser-
vices whose capabilities should be
considered for reasoning, still the
whole process would be really heavy
and resource consuming.
A workaround that could alleviate this
problem revolves around the idea of
storing previously carried reasoning
tasks and performing the goal-
capability reasoning as an off-line
task. Besides, it is interesting to con-
sider the idea of not storing service
description and goals in registries and
repositories respectively, but make
them available just like any other Web
resource, i.e. Web page. Thus the
semantic description would be pub-
lished and discovered from the pro-
vider site extending and further reus-
ing the concepts already developed by
popular search engines such as
Google or Yahoo. In this sense the
goal-capability matching task is un-

derstood as any other type of search,
which profits from well established
concepts.
Section 6 presents a proposal that tries
to alleviate these problems by com-
bining the concepts and architecture
of Google introduced in section 5,
with Semantic Web Services.

5 How Google works
In this section the main building
blocks of the Google search engine
are introduced as a basis to inspire the
approach presented in section 6.
 The Google search engine is made of
three different parts namely [2]:

• Googlebot: It can be under-
stood as a crawler, event
though it does not crawl the
web. Its functionality is di-
vided into three different
steps. First it sends requests
to Web servers to get a con-
crete web page, then
downloads the page and fi-
nally hands it to the indexer.
 Once a page has
been downloaded the links
found on it are added to a
queue in order to be further
requested. Due to the differ-
ent nature of Web pages
available, and in order to
keep indexes up to date,
Googlebot must determine
how often a web page must
be re-indexed, a newspaper
content changes more dy-
namically than a personal
Web page. The Googlebot
makes use of a number of
computers requesting and
fetching pages in parallel.

• Indexer: The content of the
pages downloaded by the
Googlebot is stored in the

index database where it is
sorted alphabetically by
terms including references to
documents where the term
appears.

• Query processor: User que-
ries are forwarded to the in-
dex servers, where are
matched against the terms
indexed retrieving the refer-
ence of the pages that in-
clude the term. Then, the
query is submitted to the
document server which re-
trieves the stored documents
presenting the search results
to the user. Google uses Pag-
eRank to determine the rele-
vance of documents with re-
spect to a concrete query. It
takes under consideration the
popularity of the page or the
proximity of search terms to
one another in the page
among others. It uses a vot-
ing policy in which every
link from one page to an-
other is considered a vote
that increase the relevance of
the voted page. The rele-
vance of a vote is also de-
termined by the importance
of the voter, weighing more
the votes of well-know pages
than the vote of less popular
ones.

6 A Google based approach
Current approaches to service discov-
ery present a serious limitation in
terms of efficiency when it comes to
reasoning as introduced in section 4.
This section presents an approach
inspired in the popular search engine
Google, which tries to minimize the
impact of the reasoning in the discov-

ery task by making the process in an
off-line fashion and keeping a list of
goals and sub-goals that include refer-
ences to the services whose capabili-
ties can satisfy them.
The concepts elaborated here revolve
around the idea of having the descrip-
tion of services and goals accessible at
the provider side and independently of
registries and repositories, just like
any other Web resources, as already
presented.
The main building blocks of the ser-
vice search engine are depicted in the
following lines.

• WSbot: It performs the

same function as the
Googlebot but in this case
for Web Services. It
crawls the Web searching
for Web Services. It sends
requests to servers in or-
der to get the description
and reference to the ser-
vice, passing it to the
Goal-Indexer.

• Goal-Capability Rea-
soner: It is responsible for
the reasoning support re-
quired to match the goal
or sub-goal with the ser-
vice(s) that can satisfy it.

• Domain Reasoner: It
takes care of the align-
ment of the different ter-
minologies used to de-
scribe goals and the capa-
bilities of services. Its
functioning is required be-
fore the Goal-Capability
Inference engine can carry
on its work. By having
two separate reasoners
performance can be im-
proved.

• Query processor: It
translates the end user dis-
covery query to concrete
application domain
knowledge and decom-
poses it into sub-goals.
Each one of the sub-goals
is handed to the Goal In-
dexer that matches them
against available goals, re-
trieving the list of refer-
ences to services that ful-
fill the goal and presenting
the search result to the
user. Another approach is
to present to the user a set
of goals for reuse among
the ones stored in the
Goal-WS database for a
concrete application do-
main, being then the task
of the translation engine
and search engine in gen-
eral, much simpler and ef-
ficient. Since there will
probably be a number of
services satisfying the
same goal, the selection of
the most suitable ones is
achieved based on the
non-functional properties
of the service, expressed
by the end-user in the dis-
covery query. The popu-
larity of the service should
be taken under considera-
tion to rank results. The
proposed approach is
based on the calculation of
the number of times the
service is selected as a so-
lution to the goal.

• Goal Indexer: The goals
and sub-goals translated
by the Query processor,
and also the ones ex-

tracted from the capability
of the services found by
the WSbot, are handed to
the Goal Indexer who is
responsible for storing
them in the Goal-WS da-
tabase in case they do not
already exit. The Goal-
WS database is indexed
by goal, having each one
attached a set of refer-
ences to Web Services
that can fulfill it. Every
time the WSbot gets a
new service, its capability
is matched against the
stored goals and sub-
goals, adding a reference
to the Web Service in the
Goal-WS database in case
the capability and the goal
are compatible. This proc-
ess takes place off-line. In
case there is no matching
among the capability of
service and exiting goals
in the repository, a new
entry is added for each
one of goal/sub-goals of
the capability. A similar
procedure is applied for
the goal and sub-goals of
the discovery query. In
case the goal or constitu-
ent sub-goals are found in
the Goal-WS database the
list of services is handed
to the query processor
who is responsible to pre-
sent it to the user, as al-
ready stated. In case the
goal or one of the sub-
goals does not exist in the
Goal-WS database, the
Goal Indexer will add a
new entry for each one of

them, and will try to find
matching services in the
WS database. This match-
ing process is also carried
off-line, thus returning the
Goal indexer an empty list
of services for the corre-
sponding sub-goal of the
query. The goal-capability
matching relies on the
Domain reasoner to align
terminologies and the
Goal-Capability reasoner
to carry on the matching.
In order to make the
search process more effi-
cient goals could be
grouped by domain.

The architecture presented in this
section tries to provide a more scal-
able an efficient solution to the dis-
covery of Web Services, by reducing
and trying to perform as off-line as
possible the reasoning required. The
underlying concept revolves around
publishing the descriptions of the
services and the goals they satisfy
independently of registries or reposi-
tories, just like in the case of any
other Web resource, being the task of
a dedicated search engine to find
services, and to match them against
goals. Nevertheless, this approach
could as well be applied to services
whose descriptions are stored in ser-
vice registries.

7 Conclusions and future
work
In this paper a new approach for the
discovery and selection of Semantic
Web Services based on the architec-
ture of the popular search engine
Google was presented. It tried to im-
prove the performance of both proc-
esses, overcoming current limitations

of the reasoning process required for
the goal-capability matchmaking, and
the mediation required for translating
among the different domain specific
terminologies, used to describe the
relevant aspects of services.
The paper presented a performance
study based on the number of times
that the reasoning process needs to be
carried in a real setting, from which
the inefficiency and unfeasibility of
current approach is derived. It took
under consideration the best, average
and worst case. Further, the paper
proposed a workaround to alleviate
the problem, by reducing the number
of times the reasoner is required. The
driving concept revolves around stor-
ing previously carried reasoning tasks,
and performing the reasoning required
for the goal-capability and mediation
as an off-line task. This approach is
complemented with the idea of mak-
ing the description of services and
goals available independently of reg-
istries or repositories, like any other
Web page. Such initiative allows

profiting and reusing the concepts and
ideas developed in popular search
engines, thus assimilating discovery
and selection to regular search tasks.
Finally an architecture inspired in the
popular search engine Google was
presented, which depicted the main
building blocks and the relation
among them.
In regard to future work is worth to
mention that based on the ideas elabo-
rated in this paper, a new proposal for
a EU funded project will be submit-
ted, with the aim of implementing the
approach presented. Still there is a lot
of work to be done in order to im-
prove the performance and efficiency
of the usage process of services. An
important open point revolves around
improving the reasoning involved in
the remaining parts of the usage proc-
ess. A solution could possibly follow
a similar approach, in terms of storing
the results of already carried reason-
ing, in these cases mainly required for
mediation.

Acknowledgements
The work is funded by the European Commission under the projects DIP (IST –
2004-507483), Knowledge Web (IST – 2004-507482), Ontoweb (IST – 2000-29034),
SEKT (IST – 2004-50826, and SWWS (IST 2001-37134); by Science Foundation
Ireland under the DERI-Lion project and by the Austrian government under the Co-
Operate program.

References
1. S. Arroyo, R. Lara, J. M. Gómez, D. Berka, Y. Ding,, D- Fensel, D.: Semantic as-

pects of Web Services, in Practical Handbook of Internet Computing. Munindar P.
Singh, editor. Chapman Hall and CRC Press, Baton Rouge, 2004.

2. Google Inc. How Google works. http://www.googleguide.com/google_works.html,
2003.

3. D. Roman, H. Lausen, H. and U. Keller (eds): “Web Service Modeling Ontology”.
WSMO Working Draft v0.3.
http://www.wsmo.org/2004/d2/v1.0/, 2004 .

