

AN INFRASTRUCTURE APPROACH TO DARTABASE COMPONENTS

ROLAND KASCHEK

Department of Information Systems Massey University
Palmerston North, New Zealand

R.H.Kaschek@massey.ac.nz

ABSTRACT
In large scale database development the data in a

database to be developed is not raw data. Rather it is
extracted from other databases. Large scale database
development therefore would benefit from employing
database components, as these would have the potential
for simplifying database reuse. In this paper the concept
of database components is discussed. The approach used
to database components is based on a particular
infrastructure. That infrastructure aids in providing and
using database components and may be used for
establishing a component market. The idea to use such
an infrastructure results from under5standing database
components and database reuse as a problem of software
economy rather than a technical or motivational
problem. The infrastructure helps establishing a
component- and database- reuse culture. It enables to
store so-called component candidates. These may be
promoted to database components if usage experience
indicates so. Similarly, a database component may be
relegated to a component candidate if that appears as
reasonable.

Keywords component, database, CBD, modelling,
software economy, data engineering, software
engineering

1 INTRODUCTION
Information systems development requires creation and
maintenance of a database that stores the data that may
be queried and then used by users of the information
system. Relational databases still count for the majority
of databases used. So far their largest building block is
the table. For small-scale database development where a
database is developed that stores and maintains raw data
this is sufficient. For large scale development where
databases have to be developed on top of other
databases and source in some of their data that might
not be so. For this kind of database development the
availability of larger database building blocks would
simplify the development process and thus increase the
quality of the information system utilizing the database.
Large scale database development is not so much a
problem of size as it is of dynamically integrating
available databases that have their own refresh-cycle
and database administration.

Database components shall aid in developing new
databases out of sets of old databases, i.e., components.
Some "glue" will be needed to fit everything together.
This glue on the one hand will simply be based on

conventional relational concepts, in particular "foreign
keys" and "joins". On the other hand non-relational
operations that will be defined on components serve as
that glue. Component based development (CBD) shall
improve system quality and at the same time reduce
system development-cost and -time. The author believes
that database components as defined here, if used, will
simplify systems integration, development and
maintenance, increase the reuse of systems or parts
thereof, and will therefore increase data quality, a major
information system quality aspect. Also buying and
selling of databases can be simplified by using database
components. Traditionally the trading of databases is
limited to, e.g., phone- or address books, in particular
yellow pages and the like. Also the various schedules
such as flight plans, sailing lists, train- and bus-
schedules are directly part of business deals. Finally,
dictionaries are databases that are traded traditionally.

In this paper the structure of a database is not
focused at. Rather the database’s utility is used as an
indicator for whether that database should be a
component. The well-known two-library approach, is
employed for devising an infrastructure as well as a
respective usage model that allows dealing with
database components. For the respective infrastructure
database components essentially will be databases
defined on top of databases. They will be introduced by
decision of an approval committee and then stored in a
repository. Component candidates that do not make
their way into the component repository will be stored
in candidate repository. Jury decisions govern the flow
of component candidates into the component repository
and the flow of components back into the candidate
repository. While using components will be up to the
disposal of a development team at hand candidates can
be used for systems development only after approval by
the jury. Using either of them might be due to a usage
charge.

Ascribing a component candidate the status of
component is a jury decision that not only considers
formal properties of the candidate. The reason for this
lies in the fundamental distinction in the class of
mappings as either synthetically or empirical. An
empirical mapping is a mapping for which a check of
correctness of association of ordinate values (i.e., values
of the depending variable) to abscissa values (i.e.,
values of the independent variable) cannot be done
formally. A mapping is here called synthetically if such
check can be done formally, i.e., using computational
resources only. The correctness check of the mapping

that associates to employees their date of birth in the
end involves reference to birth certificate and identity
card. Therefore it is empirical. On the other hand
checking whether a particular mapping correctly
associates the square of a number to that number
involves a mathematical proof. It is the view of this
paper that software engineering in part is distinguished
from data engineering by software engineering
ultimately aiming at identifying and implementing (by
means of algorithms) suitable synthetically mappings
while data engineering aims at identifying and
implementing (by means of databases) empirical
mappings. Note that the distinction between
synthetically and empirical mappings is not one of
representation, as all mappings can be represented as
one-tuple-table with the table heading containing the
abscissa values and the tuple providing the ordinate
values. The distinction reflects the existence of a
mathematical proof of correctness of the ordinate-to-
abscissa association provided by a given
implementation of a mapping.

If a number of important problems with respect to a
domain can be solved with the help of the empirical
mappings in a database it can be expected that this
database will be considered worth the necessary
investment. In that case an inter-organizational or public
market for that database can be established. Assessing
the utility of a database with respect to a given domain
is a decision that relies on expert knowledge of the
domain in question.

2 RELATED WORK
Large scale database design appears to be connected
with data warehousing. Searching with the search
engine “Google” for definitions of that term reveals that
a number of quite different definitions is used in the
Web. (A search for the key words "define: ’Data
Warehouse’" done on 15 February at 12:45 am resulted
in 25 definitions of the term provided.) Several of the
definitions found shared some of the specifications
provided by the one quoting William Immon as saying
that a data warehouse is a "Subject-Oriented, Integrated,
Time-Variant, Nonvolatile collection of data in support
of decision making". The definition continues with
"Data Warehouses tend to have these distinguishing
features: (1) Use a subject oriented dimensional data
model; (2) Contain publishable data from potentially
multiple sources and; (3) Contain integrated reporting
tools." (see www.peaksoftware.com/glossary/) Most of
what is addressed in this definition does not apply to
database design in the large, as understood in this paper.
Data warehousing therefore is not considered any
further in this paper.

Based on Wieringa, [Wie03], within this paper a
component is a part of an information system that
delivers a service to its environment. A component is
here considered as empirical or synthetically if the

service it delivers is empirical or synthetically
respectively. Following Herzum and Sims [HS00] it is
required here that a component is sufficiently self-
contained, i.e., can be deployed and plugged into an
information system by considering defined interfaces
only.

The services delivered by a component can be
classified as primary or secondary. Primary services are
those for implementation of which the respective
information system was built. Secondary services are
those that can aid in identifying, finding, and using
primary services. With respect to a database both
classes of service are important and well-known. The
primary service is provided by a database programming
language and allows recording, storing, manipulating,
and retrieving data, i.e., empirical mappings. The
secondary service is provided by the self-description
facility, i.e., the catalogue of the database that enables it
to provide users on overview of the database structure,
i.e., its schema.

Thalheim [Tha03] has, based on the work of Broy,
[Bro97], started discussing the component concept for
databases. He focuses on secondary services, i.e.,
schema components, as he aims at a schema engineering
based on schema components. This paper focuses at
primary services, i.e., database components. It seems to
be that not much work has been done in this respect.
There is, however, Notess’ "Google Special Report:
Database Components" in the Search Engine
Showdown (accessed from
http://www.searchengineshowdown.com/features/googl
e/dbanalysis.shtml at 10 Feb 2005). This report does not
aim at a structure analysis. Rather it list the ratios of the
various kinds of contents the search engine Google had
in its database by 4 - 6 March 2002. A theoretical
investigation into understanding database components
in the sense of this paper is not intended by Notess. The
author believes that schema components cannot be
successful in practice if not accompanied by a concept
of database component. A well-known database text
book such as Elmasri & Navathe [EN94] does not have
an index entry for "schema component", for "database
component", and for "component".

Database design in the large (that here is understood
to be a conceptual design) is different from conventional
conceptual database design in so far as it explicitly takes
into account already existing databases, which is not the
case for conventional conceptual database design. Batini
et al., for example, say: "The objective of conceptual
database design is to produce a high-level DBMS-
independent conceptual schema, starting from
requirement specifications that describe reality...", see
[BCN92].

3 A LARGE SCALE DEVELOPMENT
EXAMPLE
In a large company, such as a full-scale internationally
operating bank, the individual departments may have
constructed large databases the schema of which is
remarkable stable over time. There will be, however,
versions of it and in rather regular time-intervals new
current extents. These databases may be of interest for a
lot of the data processing in the company and thus
actually are heavily reused. The example discussed here
involves the hypothetical biggest bank of Switzerland
(BBS). It is presupposed that for provisioning of data
services regarding risk assessment and (based on it)
enterprize steering a new information system (CFS, i.e.,
component fabrication system) shall be introduced. CFS
shall dynamically integrate the available data and bring
it into the shape needed by business analysts and top
management. The clients of CFS often will not pay
much attention for quality aspects such as lack of
redundancy that are important for storing and
maintaining data. Rather they want data in a form that
can be analyzed easily. This requirement in some cases
even might enforce de-normalization and thus introduce
redundancy. The same goes for databases sourced from
CFS, as obtaining the data is the primary concern of the
respective vendors. Maximum independence of the
databases provided by CFS from the sources on which it
builds had to be achieved. Therefore it was decided that
CFS copies the databases it needs as input and locally
maintains these copies. Similarly customers of CFS may
ask for copies of the databases they need. Obviously the
files sent to CFS as well as those sent from CFS, as they
contain the databases, may be quite large. Storing the
input databases as local copies enforces CFS to update
these in a controlled way. Consequently CFS’ output
databases must be updated accordingly. Note that based
on the peculiarities of the business in which CFS’s data
providers and data consumers are involved in
respectively the refresh period applied to the individual
databases may be different.

Assume now that CFS has a request to deliver to the
RIS (risk information system) on a regular base the last
month’s provisions, writeoffs and recoveries. A
preliminary business analysis has shown that CSF will
need data according to the high level ER-diagram in
Figure 1 (see the appendix below). In this figure dashed
lines signify the department of BBS, from which the
data described by the entity types inside the dashed lines
can be retrieved (KDB, CAS and IS respectively stand
for "Kundendatenbank" (i.e., customer database),
"Critical Assets System", and "International Services").
A more sophisticated business analysis has shown that
the data records described by "Kunde" (i.e., customer)
can be retrieved from IS and actually are subsumed
under the data records described by "Partner" from IS.
Similarly, it resulted from a further business analysis
that the data records described by "Konto" (i.e.,

account) including the association to "Kunde" can be
retrieved from IS as well. Consequently, rather than
retrieving data from all three departments mentioned in
the Figure 1 it suffices to use two of them, i.e., CAS
and IS. Clearly the decision to use only two different
sources as input results in fewer dependencies to be
observed, higher data quality and higher availability of
the data CFS was requested to deliver.

In the example the infrastructure that is proposed
below is not in place. However, one can imagine that
based on the departmental maintenance of their local
databases such infrastructure could be introduced.
Retrieving departmental data then would be limited to
accessing components in the component repository.
This first of all would centralize all available
components and any staff looking for available data
would know where to have a look at. Furthermore, the
functions of collecting and maintaining data as it is
naturally done in departments would be separated from
economically managing the data and therefore could be
implemented more efficiently. Finally, introducing a
work fore role that cares about managing database
components would help establishing and systematizing
the knowledge for effectively and efficiently use
database components.

In the example no detail is provided regarding the
attributes of the entity types shown in Figure 1. It is,
however, clear that the decision as to whether the data
records described by "Kunde" can be subsumed under
the data records described by "Partner" is not a formal
one. In particular it cannot be decided by only referring
to the database schema. The definitions of the respective
attributes need to be read, analyzed and compared.
Furthermore the established practice of including a
particular tuple in one of the mentioned tables needs to
be discussed. That discussion needs to disclose the
availability of the respective empirical mappings. The
discussion below is restricted to the case of relational
databases. The author believes that this does not cause
difficulties to readers.

4 RELATIONAL DATABASES
For sets M , N a mapping f: M → N is a right-unique
relation f ⊆ M × N and for such mapping the term def(
f) denotes the set { m ∈ M | ∃ n ∈ N, (m, n) ∈ f }. Let
B be a set of so-called base types, i.e., of pairs t = (n , e
), where n is the name of the base type and e is its
extent, i.e., the set of values of this type. Frequently
occurring base types are, e.g. INT, CARD, and STRING
respectively having implementable subsets of the sets of
integers, non-negative integers and strings over a given
alphabet as value sets. A relation schema S over B is a
5-tuple (N, Γ , Π , Φ , Δ) such that:
• N is the name of the relation schema,

• Γ = { (c1 , b1) , … , (cm , bm) }, such that m is a
non-negative integer and a subset { (n1 , b1) , … , (
nm , bm) } ⊆ B, exists. Γ is called the type of S.
Each element (c , b) of Γ is called attribute of S
and c is called the name thereof.

• Π ⊆ Γ, which is called the primary key of S,
• Δ is a set of logical formulae, the so-called

constraints of S, and
• Φ is a set of triples (R , T , f), such that R ⊆ Γ, T is

a relation schema with primary key ΠT, f ∈
STRING, and a bijection β : R → ΠT exists such ∀
(r , b) ∈ R ∃ (p , b) ∈ ΠT, with β(r , b) = (p ,b).
Each element (R , T , f) of Φ is called foreign key
of S on T if S ≠ T and self reference otherwise. The
string f is called the role of T in S.

When there is no doubt regarding the set of base types
over which a relation schema is considered or, when it
is not important for the purpose at hand which set of
base types is actually presupposed, then one simply uses
the term relation schema rather than relation schema
over B

Let S be a relation schema over base types B. A
relation R over S is a pair (N , Ω), where N ∈
STRING is the name of the relation and Ω is a set of
partial mappings ϖ : Γ → ∪(c , b) ∈ Γ b, called extent of
the relation schema S, such that the following assertions
hold:
• Π ⊆ def(ϖ), ∀ ϖ ∈ Ω,
• ϖ(c , b) ∈ b, ∀ ϖ ∈ Ω , (c , b) ∈ def(ϖ),
• ϖ|Π = ϖ’|Π implies ϖ = ϖ’ and Π is minimal with

this property.
• Ω is a model of Δ, i.e., all formulae in Δ are true

when interpreted in Ω.
A database schema ∑ is a finite set {S1 , … , So }

of relation schemas Si = (Ni , Γi , Πi , Φi , Δi), i ∈
{1,...,o}, such that T ∈∑ holds, ∀ (R , T , f) ∈ Φi, i∈
{1,...,o}. A database D over the database schema ∑ is a
triplet (ND , R , d), such that ND is the name of the
schema, R = {R1 , … , Ro } is a set of relations Ri = (Ni ,
Ωi) over Si , for all i ∈ {1,..., o}, and d is the as-of date,
i.e., the date at which the empirical mappings in the
extents of the schemas involved in the database are
supposed to be correctly describing the state of affairs.
It furthermore is required that the following foreign key
assertion holds: ∀ i ∈ {1 ,..., o }, (R , Sj , f) ∈ Φi, ϖ ∈
Ωi ∃ ϖ’ ∈ Ωj, such that ϖ(c , b) = ϖ’(βSiSj

(c , b)) , for
all (c , b) ∈ R. Here βSiSj

 is the bijection introduced in
the definition of the term relation schema. Note finally
that the full complexity of treating temporal aspects of
data are ignored here. In more sophisticated banking
applications, however, these have to be considered to a
larger extent. A legal or managerial requirement is to be
capable of reproducing important documents that
heavily depend on the state of basic data at any future

point in time. The so-called bi-temporal data storage
was introduced, see for that requirement, e.g. [Kün04].
In that way of storing data additionally to the
correctness-dimension of time that was considered
above the awareness-dimension of time is introduced.

The Figure 2 (see appendix below) shows a database
with the two relation schemas "Employee" and
"Project". Assume that these respectively are the names
of the mentioned relation schemas. The database
contains relations R1, R2 over "Employee" and "Project"
respectively. The Employee" schema has the attribute
set Γ={ (n1,STRING), (n2, STRING), (DOB, DATE),
(p, STRING), (q, STRING) }. Its primary key Pi is the
set of the three attributes underlined twice, i.e.,
{(n1,STRING), (n2,STRING), (DOB, DATE) }. Its set
of formulae Δ is empty and its foreign keys are
indicated by underlining, i.e., ((p, STRING), Project,
leads), and ((q, STRING), Project, works). The roles of
the relation schema “Project” in these foreign keys are
“leads” and “works”. The relation schema “Project” can
be analyzed accordingly. The main difference is that it
does not have any foreign keys. The relation R1
comprises the set of the following partial mappings

{< (n1, STRING), John > , < (n2 , STRING) , Smith
> , < (DOB , DATE) , 1/1/1984 > , < (q , STRING) ,
red > },

{ < (n1 , STRING) , Jane > , < (n2 , STRING) , Jones
> , < (DOB , DATE) , 20/5/1985 > , < (p , STRING)
, red > },

{ < (n1 , STRING) , Jim > , (n2 , STRING) , Brown >
, < (DOB , DATE) ,12/3/1978 > , < (p , STRING) ,
blue > }.

The elements of the relation R2 can as well be
determined easily.

4.1 DATABASE COMPONENTS
The term database component is not formally defined in
this paper. It rather only formally defines the term
database component candidate and leaves it up to a jury
to promote a candidate to a component or to relegate a
component to a candidate if that appears to be suitable.
The concept of component in this paper thus is a fully
pragmatic one. Component candidates meet the formal
requirements for being components. Whether such
candidate actually becomes or stays a component
depends on the experiences that the organization makes
with using the service provided.

A database component candidate C or simply
candidate is a 4-tuple (N , E , I , q), such that N is the
name of C, E is the exported database, I is the
imported database, and q is a surjective partial

mapping q : ∪R∈I R → ∪R∈E R, the so-called defining
query. In this definition the view concept (i.e., defining
query) was used for defining the concept of candidate.
Note that the limitation to just one input database does
not restrict expressivity since the union of a set of
databases can be considered as a database. Taking the
union over a set of databases only reduces the
refreshment cycle of the union to the minimum
refreshment cycle of the databases in that set.

Obviously databases can be considered as special
case component candidates where the imported database
equals the exported database and the defining query is
the identity. The definition of component candidate
shows that database components in fact can be
considered as black boxes implementing particular
empirical mappings as is required by the component
literature. Additionally to stating what a component
candidate (and thus a component) is we introduce two
different ways of using components for defining
databases. These ways are component composition and
database specialization. Database specialization applies
to components in so far as it can be applied to the
exported as well as to the imported database of a
component.

Let candidates C1 , C2, C3 be given for i ∈ {1, 2 , 3
}. Let further be E3 = I2, I3 = I1, I2 = E1 and q3=q2°q1,
then C3 is called the composition C2°C1 of C2 and C1.
The composition of candidates is obviously associative.

Let i ∈{1 , 2 }, mj an integer, ji ∈ { 1 , … , mj } and
Si

,ji
 = (Ni,j , Γi,j , Πi,j , Φi,j , Δi,j) be a relation schema,

Ri,j = (NRi,j
 , Ωi,j) a relation over Si

ji
 and ∑i = {Si

1 ,…,
Si

mi
 }, a database schema, and finally Di a database over

∑i. Then ∑2 is called specialization of ∑1 if there is an
injective mapping ι : ∑1 →∑2, such that ι (S) is a
specialization of S, for all S ∈∑1. Let ι (S) = (N’ , Γ’,
Π’ , Φ’ , Δ’), and S = (N , Γ, Π , Φ , Δ). Then ι (S)
is a specialization of S, if Γ ⊆ Γ’, Π ⊆ Π’, Φ ⊆
Φ’, and Δ ⇒ Δ’ hold. Finally, let ∑2 be a
specialization of ∑1. Then D2 is called
specialization of D1 if regarding the specialization
mapping ι each relation R2 = (N2 , Ω2) in D2 over ι
(S , Γ , Π , Φ , Δ) = (N’ , Γ’, Π’ , Φ’ , Δ’) is a
specialization of the relation R1 = (N1 , Ω1) in D1 over (
S , Γ , Π , Φ , Δ). That is the case if Ω2|Γ \ Γ’ = Ω1 holds.
Obviously specialization is a reflexive and transitive
relation on the class of all databases.

Once a number of component candidates is
available for use a respective infrastructure and usage
model will be needed. Both of these are discussed
below. The intended mechanisms of derivation of new
components from old ones are composition or
specialization. Both of these operations reuse already
cleansed and validated data. Compared to following a
green field approach an increased data quality and

reduced project duration can thus be expected. Note that
for large organizations such as BBS one must expect to
deal with really large databases the schema of which
may have 2000 relation schemas and 15000 attributes,
[Kün04]. Also the transaction load must be expected to
be very high, i.e., above in total 1,000,000 transactions
per hour in average for the key databases (general
ledger, master & reference data, account assignment
logic, valuation logic, and the front system databases)
,[Kün04]. It is obvious that reusing the primary or
secondary services of such databases requires database
building blocks above the relation level. A glimpse of
an idea of how computer use in Swiss banks came to
happen can be obtained from Neukom, [Neu04].

5 A COMPONENT INFRASTRUCTURE
Database components shall simplify development and
maintenance of information systems and in particular
aid in increasing their data quality. These requirements
appear to depend on the context of component creation
and use. It therefore is unlikely that a useful component
concept can be defined based on the structure of
databases only. Rather it appears likely that a usage
model and an infrastructure should be proposed that
helps organizations to identify, create, use and maintain
database components. Such a usage model and
respective infrastructure idea is borrowed from the
software reuse community, see, e.g., [Gra98].

The infrastructure consists of a component
repository R, a candidate repository C and a connection
P between these. The items stored in R or C are called
components and candidates respectively. The
infrastructure allows items being moved from R to C
and vice versa. An organization may use this
infrastructure such that:

1. A component jury is implemented that has
authority about the candidates to be stored in R
and C and that awards an initial score to these
data. That jury furthermore defines
discrimination threshold R-, C+ and C- for
components and candidates respectively such
that:

• a component the score of which falls
under R- is flagged as candidate for
being moved from R to C,

• a candidate the score of which grows
over C+ is flagged as candidate for being
moved from C to R,

• a candidate the score of which falls under
C- is flagged as candidate for removal
from C

2. Every staff may propose candidates being added
to C.

3. Every staff may propose candidates or
components being awarded a score increment or
decrement.

4. The jury decides on the initial population of C
and the initial score of each of its inhabitants.

5. The jury defines the score increments or
decrements awarded to inhabitants of R and C.

6. The jury decides about what to do with data
collections in R or C the score of which has
fallen under R-,C- or has grown over C+.

7. Components are free for use by everyone.
Candidates may only be used after Jury
approval.

For each component or candidate respectively in R
or C there is some additional information stored with
the data. For example, for each candidate and for each
component a generic definition is stored that allows to
decide whether an empirical function is an instance of
the candidate or component or not. Furthermore for
each relation R in the exported database that is a relation
over the schema S = (N, Γ , Π , Φ , Δ) a list of
synonyms to the defined attributes in Γ as well as a list
of related terms is stored and can be queried. Similarly
for each attribute a generic definition is stored according
to which a function value ϖ (c , b) can be defined
provided for the primary key Π the function values ϖ (
p , b) are known, ∀ (p , n) ∈ Π. Also a synonym list
and related terms are stored for each column.

6 IDENTIFYING POTENTIAL FOR
COMPONENT-REUSE
The potential for reusing a component depends on
finding a universe of discourse (in ones own
environment) that is sufficiently similar to the database
exported from the component so that one can hope to
adapt the component at sensible cost to what one
actually needs. Two relations between databases have
been defined above that could be used in this respect,
i.e., composition and specialization. Obviously a
suitable modification of the defining query of a
component comes into account even if none of these
relationships applies.

For making the terminology more precise in the
sequel the term universe of discourse of a database is
defined. Whether a domain that in the sense of the
following definition is a universe of discourse exists
physically or only conceptually is of no relevance. Let
∑ = {S1 , … , So } be a database schema and D = (N , R
, d) be a database over ∑ with R = { R1 , … , Ro } a set
of relations such that Ri = (Ni , Ωi) is a relation over
relation schema Si = (NSi

 , Γi , Πi , Φi , Δi) with Γi = { (
ci

1 , bi
1) , … , (ci

mi
 , bi

mi
) }, for all i ∈{1,..., o}. A set U

is called universe of discourse of D if there exists a
bijection a : U → ∪ i ∈{1,..., o}Ωi, such that the following
assertions hold.

1. For all i ∈{1,..., o} there is a thing-predicate ti
defined on U, such that ti(u) ≡ true holds iff a(u)
∈Ωi.

2. For all i ∈{1,..., o} there is a property-predicate
pi,j defined on U such that for u ∈ U with ti(u) ≡
true it holds that pi,j (u , x) ≡ true iff a (u) (ci

j
, bi

j) = x.
3. u = v, iff the following assertions hold true

(a) ti(u) ≡ true iff ti(v) ≡ true , for all i
∈{1,..., o}.

(b) a (u) = a (v), ∀ i ∈ {1,...,o} with ti (u)
≡ true ≡ ti (v).

4. A reference predicate r is defined on U such that
r (u , f , v) ≡ true, if ti (u) ≡ true ≡ tj (v), (R ,
Sj , f) ∈ Φi , and a (u) (c , b) = a (v) (βSiSj

(
c , b)) holds, for all (c , b) ∈ R.

The predicates introduced right now define a
rudimentary language for accrediting properties to
entities. A business expert who is educated to use it can
after studying the available components come up with a
proposal for using such a language to design a solution
for a problem at hand. That indicates how the proposed
infrastructure could help in reusing databases.
Respective experts would know what components are
available and would match a problem at hand to the
database that allows for the most suitable problem
solution.

Obviously the set ∪ Ωi of all partial mappings in
the database is a universe of discourse of database D.
The purpose of modelling languages like the Entity
Relationship Model, [Che76], in data engineering is the
creation of a universe of discourse of a database in a
way that easily a respective database can be defined.

Glass says in [Gla03] that "(r)euse in the large
remains an unsolved problem, ..." The proposed
infrastructure and usage model of repositories to some
extent allows people to try out what can be reused and is
helpful and what is not. One has, however, to observe
that there is no "free lunch". Or, as Glass puts it in
[Gla03] "(t)here are two ’rules of three’ in reuse: (a) It is
three times as difficult to build reusable components as
single use components, and (b) a reusable component
should be tried out in three different applications before
it will be sufficiently general to accept into a reuse
library." And finally: "Modification of reused code is
particularly error-prone. If more than 20 to 25 percent is
to be revised, it is more efficient and effective to rewrite
it from scratch." [Gla03]. One therefore should be
careful regarding the expectations in reuse in general
and in database components in particular. Of course this
warning applies to schema components as well.
Presupposing that Glass’ "facts" are true software reuse
appears to be mainly a problem of software economy.
The infrastructure specified above can be used for
establishing an intra organizational market for database
component at which a price for using or possessing
components could be built. Vendors of components
could improve their economical- and thus working

conditions based on the royalty they earn from others
using their components.

7 CONCLUSIONS
In this paper it was supposed to consider the component
concept for databases. It was indicated by listing
examples of commercially available database
components and by an example illustrating conditions in
large data driven organizations that in fact a concept of
database component may be useful. Basic database
related concepts and in particular the concept database
component were then defined. An infrastructure for
dealing with database components and a usage model
was then sketched. Finally potentials for reusing
database components were shortly discussed.

REFERENCES
[BCN92] Carlo Batini, Stefano Ceri, and Shamkant

Navathe. Conceptual Database Design. The
Benjamin/Cummings Publishing Company;
Inc., Redwood City, California, 1992.

[Bro97] Manfred Broy. Compsitional refinement of
interactive systems. Journal of the ACM,
44(6):850 – 891, 1997.

[Che76] Peter P. Chen. The Entity-Relationship Model:
Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–37,
1976.

[EN94] Ramez Elmasri and Shamkant Navathe.
Fundamentals of Database Systems. The

Benjamin/Cummings Publishing Company,
Inc., Redwood City, California et al., 1994.

[Gla03] Robert M. Glass. Facts and fallacies of
software engineering. Addison - Wesley, Boston et al.,
2003.
[Gra98] Ian Graham. Requirements Engineering and

Rapid Development. Addison-Wesley
Longman Limited, Harlow, England, 1998.

[HS00] Peter Herzum and Oliver Sims. Business
component factory: A comprehensive overview
of component-based development for
theenterprise. John Wiley & Sons, Inc., New
York et al., 2000.

[Kün04] Philipp Künsch. Ein Accounting- und
Reporting - System für die Zukunft.
InfoWeek.ch, 19:37 – 40, 25. Oktober 2004.

[Neu04] Hans Neukom. Early use of computers in
Swiss banks. IEEE Annals of the History of
Computing, 26(3):50 – 59, July - September
2004.

[Tha03] Bernhard Thalheim. Database component
ware. In Xiaofang Zhou and Klaus-Dieter
Schewe, editors, Fourteenth Australian
database conference (ADC 2003). Australian
Computer Society, Inc., 2003.

[Wie03] R. J. Wieringa. Design methods for reactive
systems: Yourdon, Statemate, and the UML.
Morgan Kaufman Publishers, Amsterdam et
al., 2003.

Appendix

Kunde

Konto

Position Amount

Project

KDB CAS

Partner

IS
Figure 1 THE STRUCTURE OF DATA AVAILABLE TO CFS

Employee, as of 1 / 1 / 2003

(n1, STRING) (n2, STRING) (DOB, DATE) ((p, STRING), Project, leads) ((q, STRING), Project, works)

John

Jane

Smith

Jones

1 / 1 / 1984

20 / 5 / 1985

red

red

Project,as of 1 / 1 / 2003

(ID, STRING) (start, STRING) (budget, currency)

blue

red 1 / 1 / 2003

1 / 1 / 2002

1,000,000

0

Jim Brown 12 / 3 / 1978 blue

Figure 2 AN EXAMPLE DATABASE

	AN INFRASTRUCTURE APPROACH TO DARTABASE COMPONENTS
	ABSTRACT
	1 INTRODUCTION
	2 RELATED WORK
	3 A LARGE SCALE DEVELOPMENT EXAMPLE
	4 RELATIONAL DATABASES
	The Figure 2 (see appendix below) shows a database with the two relation schemas "Employee" and "Project". Assume that these respectively are the names of the mentioned relation schemas. The database contains relations R1, R2 over "Employee" and "Project" respectively. The Employee" schema has the attribute set (={ (n1,STRING), (n2, STRING), (DOB, DATE), (p, STRING), (q, STRING) }. Its primary key Pi is the set of the three attributes underlined twice, i.e., {(n1,STRING), (n2,STRING), (DOB, DATE) }. Its set of formulae (is empty and its foreign keys are indicated by underlining, i.e., ((p, STRING), Project, leads), and ((q, STRING), Project, works). The roles of the relation schema “Project” in these foreign keys are “leads” and “works”. The relation schema “Project” can be analyzed accordingly. The main difference is that it does not have any foreign keys. The relation R1 comprises the set of the following partial mappings
	{< (n1, STRING), John > , < (n2 , STRING) , Smith > , < (DOB , DATE) , 1/1/1984 > , < (q , STRING) , red > },
	{ < (n1 , STRING) , Jane > , < (n2 , STRING) , Jones > , < (DOB , DATE) , 20/5/1985 > , < (p , STRING) , red > },
	{ < (n1 , STRING) , Jim > , (n2 , STRING) , Brown > , < (DOB , DATE) ,12/3/1978 > , < (p , STRING) , blue > }.
	The elements of the relation R2 can as well be determined easily.
	4.1 DATABASE COMPONENTS

	5 A COMPONENT INFRASTRUCTURE
	6 IDENTIFYING POTENTIAL FOR COMPONENT-REUSE
	7 CONCLUSIONS
	REFERENCES

