
THE PECULIARITIES OF SOFTWARE COMPOSITION
MODELS

K. Chandra Sekharaiah
Distributed Object Systems

Group
Department of Computer
Science & Engineering

JNTU College of Engineering
Hyderabad 500 072

shakes123@sify.com

D. Janaki Ram
Distributed Object Systems

Lab
Department of Computer
Science & Engineering

Indian Institute of Technology
Madras India 600 036

djram@lotus.iitm.ernet.in

Mohd. Abdul Muqsit
Khan

Department of Computer
Science

Moulana Azad National Urdu
University

Hyderabad India 500 032

abdul muqsit khan@yahoo.co.in

ABSTRACT

Concerns are at the core of software engineering and
composition. Concerns apply in terms of objects, meth-
ods, subjects, aspects, roles. This paper explores such
various concerns from a comparison perspective. It
concludes that none of the software composition tech-
niques explored so far give adequate treatment in ad-
dressing the object schizophrenia problem for a com-
plete solution. Our work is related to HRI and robot
motion controls based on software composition.

Keywords
Roles, Subjects, Aspects, Object Schizophrenia Prob-
lem (OSP), Human Computer Interaction (HCI)

1. INTRODUCTION
Object-orientation provides latest development method-
ology in software engineering. In this methodology,
the decomposition of a system is based on the con-
cept of an object. Inheritance and object composition
are two basic, standard composition models of object-
oriented languages [1, 2]. Delegation enriches object
composition with inheritance properties.

Delegation is considered more powerful than class-
inheritance because the latter can be simulated using
the former but not vice versa. Object state is shared
among instances in prototype systems whereas it is
not so in class-based systems. On a contrary note,
Stein demonstrated with a model for class-inheritance
that it also captures delegation [3]. Delegation and
class-inheritance are considered equally powerful. When
inheritance mechanism is emulated using message pass-
ing, a user is not allowed to designate another object
to reply in place of the original object. This is known
as the ”self problem”. In [4], inheritance is said to
breach encapsulation whereas in [5], it is argued that
delegation breaches encapsulation [6]. Delegation-based
languages such as Self allow more flexible composition.
But, they mainly focus on how to share common func-
tions at the instance level and have little intention of
letting two or more objects combine together to form
a larger structure. Basically, delegation is unidirec-

tional and two objects related by delegation relation
preserve their relatively independent nature.

Contracts [7] is a construct for the explicit specifica-
tion of behavioral compositions. A contract defines
a set of communicating participants and their con-
tractual obligations. This notion of participants cor-
responds to roles but participants are actually objects
and thus the separation of objects and roles is some-
what blurred. A contract specifies a composition at
the class level and by instantiating a contract, a be-
havioral composition is created. In that sense, com-
positions of the contracts model remain in the conven-
tional object-oriented framework.

In the realm of role modeling, Gottlob et al. [8] do
not use the word composition. In their model, a role
type hierarchy paves the way for the creation of role
instance hierarchies. Inheritance is at object level.
This is seen as composing a role instance with an ob-
ject instance that already exists. The role hierarchy
specifies the route of delegation at the instance level.
The delegation hierarchy could also be interpreted by
composition, i.e. a role at the node of the tree can be
regarded as a composite packing of nodes along the
path from the role node to the root.

Recently, different software composition techniques such
as roles, subjects and aspects have aroused much in-
terest among the object community. These techniques
provide different kinds of modules that encapsulate
different concerns of a system. Separation of concerns
can provide many software engineering benefits such
as reduced complexity, improved reusability, and sim-
pler evolution.

Separation of concerns provides modular design. In
object orientation, modularization is by class (or ob-
ject). Hence, changing a data representation in the
system is well localized. Objects of different types can
provide a natural separation of concerns. However,
objects are ’not like islands’ and always exist in rela-
tion with other objects. Conventional object-oriented
programming languages support a one-dimensional space
wherein all concerns are ”class” concerns. However,

a second dimension is necessitated for providing sep-
aration of concerns in modules that qualify objects.
Roles, subjects, and aspects provide three distinct ap-
proaches for modeling separation of concerns.

Separation of concerns is also aimed at eliminating the
invasive changes to many classes when a new feature
is added to a system. Generally, adding a new feature
to a system leads to scattering of feature code across
multiple classes. Also, the feature code is tangled with
other code among these classes. The term feature
refers to either methods or attributes. Different mod-
ularizations are needed for different purposes in the
form of class, feature, aspect (e.g. distribution or per-
sistence), role, variant or other criterion. Subjects and
aspects provide modules that cut across classes which
are the dominant composition-decomposition mecha-
nism in object-oriented languages.

Stakeholders are entities related with the software de-
velopment and prevail at all stages of the development
process. Stakeholders determine the kind of separa-
tion of concerns to be employed in the system devel-
opment. Stakeholders at various phases of the soft-
ware development may hold idiosyncratic viewpoints.
Concerns are related to different stakeholders. Stake-
holders work with their concerns depending on their
role in the system development life cycle. Clients for
the system, its users, developers, operators, vendors
and so on form the stakeholders of the system. A con-
cern space is the union of concerns of all the stake-
holders. Generally, a view is a partial model of a
system. Viewpoints are fixed items. For example,
the functional viewpoint and the data viewpoint are
two kinds of viewpoints in structured design meth-
ods. There are no definite, formal definitions for con-
cerns and viewpoints in the literature. View is an
instance just as viewpoint is a type. A view of a sys-
tem typically addresses one or more concerns. View-
points are stakeholder-dependent. They describe the
requirements from the perspective of a stakeholder.
The concerns are related to the current context of the
system with which the stakeholders work.

It is rather not possible to ensure separation of con-
cerns in true sense of the term. Concerns are, of-
ten, not altogether independent or ”orthogonal”. In
practice, a support for interacting concerns is neces-
sary even as useful separation is achieved. Concerns
exist on the sender side and the receiver side. The
forces of state, sender and context on the sender’s side
given in [9] are but different concerns in system de-
velopment. Some of the concerns are synchronization
constraints, addressing the history information, evo-
lution of behavior, coordinated behavior, security and
reliability measures, real-time behavior, distribution
aspects, multiple views concerns, persistence, concur-
rency, performance etc.

In [10], the concept of composition of different con-
cerns must be also applied during the software devel-
opment process. Certain design concerns such as ac-
cess control, synchronization and object interactions
cannot be expressed in current OO languages as sep-

arate software modules.

Objects are a means of providing separation of con-
cerns. Different software composition models have
been built based on object orientation. They capture
separation of concerns in different ways with various
modeling requirements, composition semantics and com-
plexity. Subject-oriented composition, aspect-oriented
composition and role-oriented composition have come
up as extensions to the basic object-oriented compo-
sition mechanism. [11] compares and contrasts such
concerns as roles, subjects and aspects. These com-
position models are explained below. The composi-
tion models are prone to object schizophrenia prob-
lem. They are closely related to role modeling and
yet maintain different features. A solution approach
to OSP is significant to reduce the modeling complex-
ity with separation of concerns.

Schizophrenia is increasingly becoming an investiga-
tive topic amongst cognitive science researchers in-
cluding linguists [12], computer scientists, neuroscien-
tists, software composition and modeling community
[13, 14, 15]. The term has etymological significance as
explained below.

Schizophrenia = Schiz or Schism as the root word +
phreno as the root word

The root word schiz or schism denotes the splitness
or dividedness property in things. It means that the
thing of relevance exists as fragmented, split or di-
vided. ’phren’ is another root word in the term. It
means ’related to the brain’. Taken together, the term
refers to the split issues related to the structural and
functional semantics of the memory and processing
systems in human beings.

The rest of the paper is organized as follows. The
next two sections explain how separation of concerns
is facilitated or eliminated in terms of composing and
decomposing them in the concerns space. In section
4, the fundamentals of object schizophrenia problem
are explained. In section 5, various facets of object-
oriented composition are detailed. Sections 6, 7, 8,
and 9 highlight the failure of the composition tech-
niques involving subjects, aspects, glues and roles re-
spectively to provide a complete solution to the ob-
ject schizophrenia problem. Section 10 discusses ap-
proaches to human-computer interaction. Section 11
gives the directions for future research in the arena
of human-robotic interface. Section 12 concludes the
paper.

2. OBJECT SCHIZOPHRENIA PROB-
LEM: WHAT IT MEANS

The notion of schizophrenia has been explored in soft-
ware systems such as behavior systems which include
object-oriented systems [13, 14, 15] and linguistic sys-
tems [12]. In this paper, we explore to what extent
various software composition techniques address solu-

tion to the object schizophrenia problem.

Object schizophrenia problem is defined as ”a condi-
tion of an object which is under object schizophrenia
and also characterized by such symptoms as broken
delegation (BD), broken assumptions (BA), dopple-
gangers (DG), wrong method interpretation (WMI)
due to message forwarding mechanism, security prob-
lem (SP) due to message forwarding mechanism etc”.
Thus, OS is a necessary but not sufficient condition
for OSP. OSP is an offshoot of OS, but not the vice
versa. In [16], three symptoms of OS are provided as
broken delegation, broken assumptions and dopple-
gangers. In this paper, they are categorized as symp-
toms of OSP to avoid the confusion between OS and
OSP. OSP symptoms are explained in the context of
role modeling. Message forwarding mechanisms such
as delegation and consultation are main causes of OSP.
A role model has to provide non-intrusive evolution
(problems can be addressed at without modifying the
existing code) of objects playing roles. If OSP symp-
toms prevail, this requirement can not be met. Hence,
a role model has to be free from the OSP. In terms of
the identity semantics, split identity is sure to result
in OSP. Broken identity may or may not result in OSP.

OSP = OS + at least one symptom such as
wrong method semantics, insecure message
forwarding, broken contracts (for e.g., in a role
hierarchy), violation of the ident-
ity principle, etc.

3. DECOMPOSING CONCERNS: PRO-
VIDING SEPARATION OF CONCERNS

In the context of software decomposition, the notion
of concern is defined as a domain used as a decomposi-
tion criterion for a system or another domain with that
concern [17]. Concerns can be used during analysis,
design, implementation, and refactoring. Presently, in
software construction, there are many types of decom-
position such as functional decomposition, separation
of interface and implementation, separation of imple-
mentation and policy, separation of responsibilities,
and decomposition based on various data structures.

A composite object can be decomposed. The set of
part objects is a result of decomposition of a whole
concept. Nevertheless, decomposition is not supported
if it is available only implicitly as the result of aggre-
gation. No language supports decomposition. How-
ever, it is possible to design language constructs that
support this process [18]. Object identity combines
the distinct notions of the facility of object reference
and the facility of object comparison. Object reference
permits object correlation and access to object’s inter-
nal states. Object comparison facilitates to decide if
two variables actually point to the same object. The
two OID concerns are separated in such patterns as
the Decorator pattern [19]. The Decorator pattern can
be employed to dynamically attach additional respon-
sibilities to objects. By separating the two notions of
object reference and object comparison that are usu-

ally subsumed in the concept of object identity, we can
greatly increase the expressiveness of a corresponding
model. Since the Decorator pattern can be seen as a
kind of role model, and role models are known to be
closely related to the concepts of aspects and subjects,
separation of the OID concerns may further improve
the possibilities of separation of concerns. With the
usage of the Decorator pattern, one cannot rely on ob-
ject identity. In [19], ”...from an object identity point
of view, a decorated component is not identical to the
component itself.”

4. COMPOSING CONCERNS: ELIMI-
NATING SEPARATION OF CONCERNS

Issues such as reuse concerns and identity concerns
are important in composition. Multi-dimensional sep-
aration of concerns is a new sub-branch of software
engineering. Its goals are to enable: one, encapsu-
lation of all kinds of concerns in a software system
such that dynamic (re)selection of concerns is permit-
ted; two, overlapping and interacting concerns; three,
on-demand remodularization, and to encapsulate con-
cerns that are identified anew in the software life cycle.

Separation of concerns is a notion that is at the core
of software engineering since Parnas’ seminal work
in [20]. It refers to the ability to identify, encapsu-
late, and manipulate such parts of software that are
relevant to a particular concern (concept, goal, pur-
pose etc.). Concerns are the principal motivation for
organizing and decomposing software into manage-
able and comprehensible parts. Different developers
who work at different phases of the software life cycle
have different kinds of concerns. For instance, class
is an important concern in object-oriented program-
ming. It encapsulates data concerns and behavior
concerns together. Concerns such as printing, per-
sistence, and display capabilities are known as feature
concerns even as there are other concerns such as as-
pects, roles, variants, and configurations. Proper sep-
aration of concerns reduces software complexity, im-
proves comprehensibility, promotes traceability, and
facilitates reuse, non-invasive adaptation, customiza-
tion, and evolution, and simplifies component integra-
tion.

5. OBJECT-ORIENTED COMPOSITION
Basically, system development involves stakeholders
at various stages of the development process. The
development life cycle itself consists of such phases
as analysis, design, implementation, coding and test-
ing. At language level, a particular language may not
be able to to meet some of the specifications. This
is because a language is set toward a particular goal
set. Language development is the process of modify-
ing it to satisfy the trends in programming. In [21],
the four programming languages Oberon-2, Modula-3,
Sather and Self are compared as to how support for
inheritance, dynamic dispatch, code reuse, and infor-
mation hiding is provided in very different ways and
with different levels of efficiency and simplicity. In
[18], a comparison of object-oriented languages such
as Smalltalk , Beta [22], C++, Eiffel [23], CLOS [24],

Self [25], Objective C [26] Ada, SIMULA [27] and Ob-
ject Pascal [28] was made. The framework could be
used to measure the extent to which a programming
language supports conceptual understanding. As re-
called in [18], in [29], the language definition includes:
”A language supports a programming style if it pro-
vides facilities that makes it convenient (reasonable,
easy, safe, and efficient) to use that style. A language
does not support a technique if it takes exceptional
effort or skill to write such programs; in that case,
the language merely enables programmers to use the
technique.”

In class-based languages, inheritance is supported by
subclassing, whereas in prototype-based languages, it
is supported by delegation. Often, inheritance is used
to represent composition [30]. In spite of a tendency to
equate reusability with inheritance, in [31], composi-
tion of one object from other objects is another impor-
tant form of reusability. In [31], roles are suggested to
enhance the reusability of object-oriented models. It
was shown that objects can be less reusable if they are
aware of their containment in aggregates (sets. lists,
etc.). Roles allow us to satisfy behavioral protocols
without a necessity to resort to modifying the type-
hierarchy.

An object may consist of part objects, the compo-
nents, that are physically part of a whole object. An
object may also consist of components that are ref-
erences to other objects. An object may also consist
of such components as patterns. Furthermore, an ob-
ject may contain components that are references to
patterns. Usually, such references are closures that
denote patterns and the lexical scopes. In the Scan-
dinavian school on object orientation in [30], variance
in support for composition in such languages as C++,
Eiffel, Beta, CLOS and Smalltalk is detailed. The
comparison perspective is in terms of part objects, ob-
ject references, part patterns and pattern references.

In [18, 32], decomposition is the inverse process of ag-
gregation. In [32], aggregation is the second main ab-
straction principle. The term composition is used as
a synonym for aggregation. Aggregation refers to the
principle of considering collections of things as sin-
gle higher-level things called aggregates. Things are
described in terms of parts and wholes and the princi-
ple represents the has-a relationship among things. In
[33], things are the abstractions that are first-class cit-
izens in a model whereas relationships tie these things
together. The aforesaid abstraction principle in [32]
is considered a special kind of association. Neverthe-
less, in [32], grouping, association, partitioning and
cover aggregation synonymously represent the fourth
abstraction principle.

In [34], composite concepts can be modeled from mul-
tiple perspectives. Role classes and role objects pro-
vide multiple perspectives on the aggregation of a whole
with same atomic parts. Subjects [35] do not involve
multiple aggregation hierarchies. The UML notation
[33] considers aggregation and composition differently.
Simple aggregation is entirely conceptual and does not

change the meaning of navigating across the associa-
tion between the whole and its parts. It does not link
the lifetimes of the whole and its parts. Composition
is a variation of simple aggregation with strong own-
ership and coincident lifetime as part of the whole.
Composite aggregation is contrasted with simple ag-
gregation. In a composite aggregation, an object may
be a part of only one composite at a time. A part may
be shared by several wholes. A wall may be part of
multiple room objects. Further, the whole is responsi-
ble for the disposition of its parts. In other words, the
composite must manage the creation and destruction
of its parts. For example, in a windowing system, a
created Frame must be attached to an enclosing Win-
dow. Destroying a Window object must in turn de-
stroy its Frame parts. Composition is a special kind
of association. A concept may be decomposed into
multiple sets of concepts [36], i.e. several decomposi-
tions help to understand the same concept better. For
instance, elephant may be decomposed into trunk, leg,
body, head and tail; a second kind of decomposition
of the elephant would be hair, meat, bone etc.

6. SUBJECT-ORIENTED COMPOSITION
Separation of concerns in a software system may be
supported by roles i.e., by applying various subjects
in the application domain. Subject-oriented program-
ming [35, 37] is a program-composition technology
that supports building object-oriented systems as com-
positions of subjects. A subject is a collection of
classes or class fragments. The abstraction hierarchy
of a subject may model its domain in its own, sub-
jective way. A subject may be a complete application
in itself, or it may be a complete fragment that must
be composed with other subjects to produce a com-
plete application. Subject composition combines class
hierarchies to produce new subjects that incorporate
functionality from existing subjects. The program-
ming paradigm supports building object-oriented sys-
tems as compositions of subjects, extending systems
by composing them with new subjects, and integrat-
ing systems by composing them with one another.

Like subject-oriented programming, subject-oriented
design supports decomposition of object-oriented soft-
ware into modules, called subjects, that cut across
classes, and integration of subjects to form complete
designs. In subject-oriented design, an object-oriented
design model is divided into design subjects which en-
capsulate some concerns in an object oriented design.

A subject-oriented program is described by subjects.
Subjects are object-oriented models which are com-
posed according to a set of rules. Subjects provide
partial views of a system. A subject is a context of its
domain of application. In [16], subject composition is
claimed to lead to no object schizophrenia since only
one object identity is used. In [9], roles were used
for subject composition. An object-role hierarchy is a
subject.

Object has a ”self”. But, subject has no self. It is a
good idea to maintain a design object that can contain

many selfs. SOP cannot model RPCM objects. Mod-
eling an object as multiple subjects is different from
modeling an RPCM object. An RPCM object is based
on a single role hierarchy whereas modeling an object
as multiple subjects means that multiple classification
hierarchies might be prevalent in the design.

Object schizophrenia and object schizophrenia prob-
lem are addressed in [16]. However, the two notions
are not well contrasted and not well elaborated. In
[16], subject composition avoids broken delegation be-
cause only a single object identity is used. On similar
grounds, subject composition avoids broken assump-
tions symptom of object schizophrenia. Many of the
problems that arise on account of the prevalence of
OS could be avoided if a master identity could be es-
tablished and it could be ensured that no OID other
than that of the master is ever used (except within
the master object). Seemingly simple, this solution is,
nevertheless, not workable in practice. For instance,
to avoid the broken delegation symptom, the pseudo-
variable ”self” or ”this” must actually refer to the mas-
ter, even in the slave objects. Noticeably, most of the
programming languages do not facilitate the enforce-
ment of such a protocol.

7. ASPECT-ORIENTED COMPOSITION
Separation of concerns in a software system may be
supported by aspectualization, i.e., by the expression
of parts of that system in terms of separate aspects.
Aspects crosscut. They include different use cases,
collaborations, distribution, persistence, error detec-
tion/handling, logging, tracing, caching, requirements,
features, qualities, perspectives, processes, implemen-
tation structures, synchronization etc. Like object-
orientation and other separation of concerns technolo-
gies, aspect-orientation has implications throughout
the software life cycle.

Aspects allow different aspects of a system to be de-
scribed separately, and in different languages where
this is appropriate. An aspect-oriented program com-
prises a number of aspects which are woven together to
produce the relevant system. Aspect weaver composes
different aspects to form a composition.

Aspect-Oriented Programming (AOP) [38] is a pro-
gramming paradigm that is used where a concern that
cross-cuts a group of objects is modularized as an as-
pect. Cross-cutting between components and aspects
is a key feature of AOP. In Figure 1, n components
and m aspects are depicted by vertical bars and hor-
izontal bars respectively to represent cross-cutting.
Filled circles represent join points where aspects in-
teract with components. The same aspect may inter-
act with all components as is the case with Am or
only some of them as is the case with A1, and vice
versa (for e.g. C2 and C1). This cross-cutting is the
main feature of AOP. Aspects would not be called
aspects if they do not cross-cut components. A com-
piler, called weaver, weaves aspects and objects to-
gether into a system. Concerns such as error-checking
strategies, synchronization policies, resource-sharing,

distribution concerns and performance optimizations
are examples of aspects. AspectJ, AOP language, is
an aspect-oriented extension to Java. A program in
AspectJ is composed of aspect definitions and ordi-
nary Java class definitions. An aspect is an AspectJ
specific language extension to Java. AspectJ weaver
weaves together Aspects and classes. Main language
notions in AspectJ are introduces and advises. Intro-
duces adds a new method in which cross-cutting code
is described to a class that already exists. Advises
modifies a method that already exists. Advises can
append cross-cutting code to a specified method. In
the approach in [39, 40], introduces weaving only adds
a method interface and the body of the method is
added through advises weaving. Before is used in or-
der to append code before a given method. After is
used in order to append code after a given method.

A
S

P
E

C
T

S

A1

A3

A4

Am

C1 C2 C3 C4 C5 Cn.....
.....

A2

COMPONENTS

JOIN POINTS

Figure 1: Components and Aspects Crosscut

in AOP

Aspects are cross-cutting concerns over a set of ob-
jects. Join points should be easily located in systems.
Join points are directly related to weaving. Weav-
ing does not necessarily rely on weavers and is always
a process achieved once or several times as it is pre-
sented in [38]. Role models synthesis and subject com-
position are examples of such processes. The rules and
principles of weaving form the important feature of
weaving. For example, subject composition rules [41],
specification of roles as domains for activities [42], or
even sharing specified by delegation links for split ob-
jects in [43] facilitate weaving. The notion of identity
is an important notion implicitly implied in weaving
in the sense that roles are attached to an object with
a unique identity. An object might appear in several
subject activations and yet has a unique identity used
as a basis for subject composition whereas pieces [43]
belong to an object with a unique identity. Absence
of this feature leads to inherent object schizophrenia
problems in the composition models.

In [39, 40], role model designs and implementations
with AspectJ were proposed. In the model, an object
has core/intrinsic attributes/methods. A role adds
extrinsic attributes/methods and facilitates perspec-
tives that can be used by other objects. The approach
recommended is: (1.) introduce the interface for the
role-specific behavior to the role class; (2.) advise
the implementation of the role-specific behavior to in-
stances of the core class; (3.) add role relationships
and role contexts in the aspect instance. In AOP, an
executable program can be constructed only by ob-
jects even if there are no aspects that add cross-cutting
properties to objects.

The work in [40] presents aspect-oriented role model
designs and implementations to provide a promising
approach to reduce object schizophrenia, interface bloat,
support of dynamic role assignment at an instance
level and for flexible integration of object hierarchies.
However, the claims are weak in that it is explicitly
stated that the findings are preliminary. Basically,
there is no clear notion of object schizophrenia and
OSP in the literature. Our work brought out analyti-
cal results of contrast OS vis-a-vis OSP and to provide
a sound basis for the two notions in the realm of role
modeling.

8. ROLE-ORIENTED SOFTWARE COM-
POSITION

Separation of concerns in a software system may be
supported by roles i.e., by applying the role mecha-
nism to objects either dynamically or statically. An
object can play several roles. This provides system-
atic separation of concerns by describing different phe-
nomena in different role models [44]. The OOram
method [44] provides the notion of role model synthe-
sis that supports the construction of complex mod-
els from simpler ones in a safe and controlled man-
ner. Here, a role is an idealized description of an ob-
ject in the context of a pattern of collaborating ob-
jects. The OOram method uses a policy of divide
and conquer to focus on the object aspects that are
relevant for the role model’s area of concern. Role-
based modeling supports the separation of functional
aspects by means of contracts. The different roles a
subsystem can play within a design can be described
by distinct contracts. This is made possible by sepa-
rating roles from each other. Roles are a well-known
mechanism to provide multiple views, role-based ap-
proach to access control, object migration [45, 46],
and composition-decomposition for object evolution
[14]. Important properties for roles include visibility,
dependency, identity, multiplicity, dynamicity, and ab-
stractivity [14, 47, 48, 49, 13]. The properties were
also explained in [8]. This set of properties are part
of the role paradigm [14, 49]. Role paradigm con-
formance is a requirement for advanced role models.
A role model which conforms to the role paradigm
is called role paradigm conformance model (RPCM).
The role models in [8, 48] are RPCMs.

In [14, 13], seminal work on OS and OSP is presented.
Various kinds of OSPs were presented. Role Model-

ing Problem (RMP) is the problem of developing an
RPCM that is also OSP-free. None of the existing
role models have strong claims for a solution to RMP.
Compositions in advanced role models are delegation-
based. Objects with roles have to satisfy certain char-
acteristics called role paradigm conformance charac-
teristics. In the subject-oriented paradigm, only OID
is necessarily shared. In advanced role models, com-
position with roles satisfies the identity property by
following the OID integrity principle [13]. In advanced
role models, object and its roles are supported for
singular, isolated applications. Hierarchical organi-
zation of object behavior is essential. Object-role hi-
erarchies are used. In role modeling, an object is not
defined as composition of independently defined part
objects. The role objects are not independent; they
are existence-dependent on the player object. On the
other hand, SOP supports decentralized development
of objects. The class definition is decentralized. SOP
supports multifarious behaviors spread across multi-
farious interrelated, interoperating, integrated appli-
cations. Classification hierarchies are application-specific.
Hierarchical organization of object behavior is not a
fundamental issue. An object is defined as composi-
tion of independently defined part objects, which can
be dynamically added or removed.

Most of the role-oriented composition models use is-
role-of inheritance [14] kind of reuse support in con-
trast with the traditional specialization and aggrega-
tion models which use white-box reuse and black-box
reuse support respectively. Nevertheless, some of the
early, rudimentary role models [50, 51] do not provide
this inheritance model for objects with roles. Roles
describe the responsibilities of objects in a collabora-
tion, but how a role is actually modelled or specified
is often left open. Whereas some design techniques
model roles using interfaces [44], some others use as
part of a behavioral contract between participants [7].
In contrast to the design idea of separating concerns as
distinct collaborations, at run-time, things look much
more complex. Several design collaborations may be
interleaved and instances of the same class often play
different roles in one call sequence. This makes it diffi-
cult to disentangle concerns and to reconstruct collab-
orations as they were conceived at the design stage.

9. GLUE-ORIENTED COMPOSITION
There have been many an attempt in the literature
to provide clean separation between the concepts of
interface and implementation. Some object-oriented
programming languages do provide such separation.
Languages Cecil [52] and its ancestor BeCecil [53] pro-
vide a clean separation between these two notions
as well as between the two notions of subtyping and
subclassing. Emerald [54] also distinguishes between
types (interfaces) and classes (implementations), but
does not support implementation inheritance. Theta
[55] and Lagoona [56] are other languages that provide
such a separation. Galileo [57] provides partial sepa-
ration between interface and implementation. It is
generally known that implementation inheritance im-
plies interface inheritance [32, 58] whereas interface

inheritance does not include implementation inheri-
tance [33]. Java is a language which supports either
interface inheritance or implementation inheritance.

Glue model was proposed for object reuse by cus-
tomization in object-oriented systems [59, 60, 61] pro-
viding interfaces and plug-and-play support. It sup-
ports multiple interfaces in a single class definition fa-
cilitating the multiple views approach specified in [62]
to extend the OO paradigm. The class can consist of
a public interface which captures the time-invariant
behavior of the object and a set of Typeholes. A
Typehole abstracts the variant or context-dependent
behavior. It supports an interface for the object. It
consists of a set of method declarations in the base
class. The implementation itself for the Typeholes is
provided in the Glue classes. A class with a Typehole
can be instantiated even though its context-dependent
behavior is not defined. An instance of a glue class
provides a context-dependent behavior. During run-
time, instances of the classes with the variant and the
invariant behaviors can be composed.

base object

different glue objects
diffetent object compositions

Figure 2: Object Reuse by Customization: The

Glue Model Approach for Multifarious Com-

positions

Corresponding to a Typehole, there may be multiple
glue classes. Specification of glue relationship does
not directly result in the composition of the instances
of the base class and the glue class. Two operators
viz. plug and unplug are used to compose the base
object and the glue object and to decompose the ob-
jects respectively. Facilitating the multifarious glue
objects to be composed with one and the same base
object by these operations results in object reuse by
customization as shown in Figure 2. The base object
and the glue object can be dynamically composed, de-
composed and recomposed using these two operators.
There are four compositional patterns supported by
the model, viz. in, out, part-of and using. The base
object and the glue object can be dynamically com-
posed, decomposed and recomposed using these two
operators. The model has been implemented with the
proposed language constructs by extending the Java
language. For this purpose, a parser has been writ-

ten in Perl language. The parser takes glue code as
input and generates pure Java code as output. It is
designed to permit separate compilation of the classes
with the basic and the variant behaviors and to permit
late binding of their instances.

One of the kinds of OSPs is broken delegation. A bro-
ken delegation problem is said to arise if a this call
is made in a Typehole method of a part object and
that call is delegated to the glue object rather than
the base object. In the case of Glue-oriented compo-
sition, a reference to the base object is always made
available in the glue object. Any call on this is han-
dled on the base object. A new pseudo-variable glue
is introduced, and any call on glue is handled by the
glue object. Nevertheless, glue model does not address
a a complete solution to all the object schizophrenia
problems. It addresses a solution approach to broken
delegation only.

10. HUMAN-COMPUTER INTERACTION
(HCI)

HCI is a discipline concerned with the design, eval-
uation and implementation of interactive computing
systems for human use and with the study of major
phenomena surrounding them [63]. The focus is on in-
teraction and specifically between one or more humans
and one or more computational machines e.g. GUI (an
interactive graphics program support on a worksta-
tion). Instead of workstations, computers may be in
the form of embedded computational machines, such
as parts of spacecraft cockpits or microwave ovens.
HCI studies both the mechanism side and the human
side. A computer mouse, a touch screen, a program
running on machine that includes a trashcan, icons of
disk drives and folders, pulldown menus are different
forms of HCI features.

The emerging HCI systems have such characteristics
as ubiquitous communication, high functionality sys-
tems, mass availability of computer graphics, and in-
teractive animation, mixed media (systems will handle
images, voice, sounds, video, text, formatted data),
high-bandwidth interaction, large and thin and light
weight and low-power consumption displays (enabled
by paper-like pen-based computer systems), embed-
ded computation, group interfaces (e.g., for meetings,
for engineering projects, for authoring joint documents),
user tailorability in such application areas as char-
acterization of application areas (e.g., individual vs.
group, paced vs. unpaced), document-oriented inter-
faces (text-editing, document formatting, illustrators,
spreadsheets, hypertext), communications-oriented in-
terfaces: Electronic mail, computer conferencing, tele-
phone and voice messaging systems, design environ-
ments (programming environments, CAD/CAM), on-
line tutorial systems and help systems, multimedia in-
formation kiosks, continuous control systems (process
control systems, virtual reality systems, simulators,
cockpits, video games), embedded systems (copier con-
trols, elevator controls, consumer electronics and home
appliance controllers (e.g., TVs, VCRs, microwave ovens,
etc.).

HCI has a common theme, to some extent, with er-
gonomics, cognitive systems and cybernetics. GUIs
form a part of HCI. Human robotic interface (HRI)
is emerging as a subtheme under HCI. Often, HCI in-
volves transducers between humans and machines and
because humans are sensitive to response times, viable
human interfaces are more technology-sensitive than
many parts of computer science. Out of the various
aspects of HCI, we are currently involved in research
about the human-robot interface from a software com-
position perspective because such a perspective will
facilitate evaluation of various permutations and com-
binations of robot motion controls in the execution of
a task.

11. FUTURE DIRECTIONS FOR RE-
SEARCH: HUMAN-ROBOT INTER-
FACE (HRI)

HRI systems use a combination graphical and non-
graphical language and dialogue styles and interaction
metaphors (tool metaphors, agent metaphor) and con-
tent metaphors (desktop metaphor, paper document
metaphor) and other media such as film, theater and
graphic design.

An intelligent robot can determine its own behavior
and conduct through functions of both transducer-
based sensing and recognition. Human-robot com-
munication is facilitated by discrete word recognition,
teach and play-back and high-level programming lan-
guages [64]. Robot control languages such as WAVE,
AL, AML, AUTOPASS, HELP, JARS and MAPLE
[64] use a variety of features for software composi-
tion. We are exploring the merits and demerits of the
various software composition approaches discussed in
this paper for joint/wrist control of robots and the
relevance of OSP in cybernetics. The various motion
controls of robots could extensively use delegation fea-
ture in trajectory planning and it is in this regard that
the work is explored.

12. CONCLUSIONS
New perspectives are brought out about understand-
ing object-oriented software composition in terms of
delegation, class inheritance, contracts, roles, subjects
and aspects. The concerns space in software devel-
opment is manipulated in terms of composition and
decomposition. It is important to look into whether a
software composition model is prone to object schizophre-
nia problem so that a solution for the same for that
software composition model can be addressed. The
survey shows that different composition models such
as subjects and aspects give only partial treatment
and partial solution approaches to the notions of ob-
ject schizophrenia and object schizophrenia problem.
Even as aspect-oriented implementations do exist for
roles, there are only preliminary findings and weak
claims as regards elimination of the object schizophre-
nia problem. The glue model shows a solution ap-
proach to only broken delegation. However, it does
not address other problems that tend to arise due to
object schizophrenia.

13. REFERENCES
[1] Klaus Ostermann and Mira Mezini,

“Object-oriented composition untangled,”
OOPSLA Proceedings in ACM Sigplan Notices,
pp. 283–299, 2001.

[2] Klaus Ostermann, “Dynamically composable
collaborations with delegation layers,” in in
Proceedings of 16th European Conference on
Object-Oriented Programming, (University of
Málaga, Spain), June 2002.

[3] Lynn Andrea Stein, “Delegation is inheritance,”
OOPSLA Proceedings in ACM Sigplan Notices,
pp. 138–146, Oct. 1987.

[4] Lieberman, H., “Using prototypical objects to
implement shared behaviour in object-oriented
systems,” in Proceedings of OOPSLA, Oct. 1986.

[5] Patrick Steyaert and Wolfgang De Meuter, “A
marriage of class- and object-based inheritance
without unwanted children,” in ECOOP’95,
vol. 952, (Aarhus, Denmark), pp. 127–144,
Springer-Verlag, Aug. 1995.

[6] Daniel Bardou, “Delegation as a sharing
relation: Characterization and interpretation,”
in Position paper at the workshop on
Prototype-based Object-oriented Programming,
ECOOP’96, (Linz, Austria), 1996.

[7] Richard Helm, I.M. Holland, and D.
Gangopadhyay, “Contracts: Specifying
behavioral compositions in object-oriented
systems,” in Proceedings of
ECOOP/OOPSLA’90, vol. 1, (Ottawa),
pp. 169–180, June 1990.

[8] George Gottlob, Michael Schrefl, and Brigitte
Röck, “Extending object-oriented systems with
roles,” ACM Transactions on Information
Systems, vol. 14, pp. 268–296, July 1996.

[9] Bent Bruun Kristensen, “Subject composition
by roles,” in Proceedings of the Fourth
International Conf. on Object Oriented
Information Systems(OOIS), (Brisbane,
Australia), 1997.

[10] Mehmet Aksit, “Composition and separation of
concerns in the object-oriented model,” ACM
Computing Surveys, vol. 28A, no. 4, 1996.

[11] D. Bardou, “Roles, subjects and aspects: How
do they relate?,” July 1998. Position paper at
the Aspect Oriented Programming Workshop,
ECOOP’98, Brussels, Belgium. Extended
abstract published in ECOOP’98 Workshop
Reader, Serge Demeyer and Jan Bosch, editors,
Lecture Notes in Computer Science (LNCS),
vol. 1543, Springer, 418–419, December 1998.

[12] Chandra Sekharaiah, K. and D. Janaki Ram,
“The Dynamics of Language Understanding,” in
Language Engineering Conference, (Hyderabad,
India), pp. 197–200, IEEE CS Press, Dec. 2002.

[13] Chandra Sekharaiah, K. and D. Janaki Ram,
“Object schizophrenia problem in object role
database system design,” in Object Oriented
Information Systems (OOIS’02), (Montpellier,
France), pp. 494–506, Springer Verlag, Sept.
2002.

[14] Chandra Sekharaiah, K. and D. Janaki Ram,
“Object schizophrenia problem in modeling
is-role-of inheritance,” in Inheritance Workshop,
16th European Conference on Object-Oriented
Programming, (University of Málaga, Spain),
pp. 88–94, June 2002.

[15] K.Chandra Sekharaiah, “Modeling Objects with
Roles,” in Ph.D. Thesis, Dept. of C.S.E. IIT
Madras, India, Jan. 2003.

[16] IBM Research: Subject-oriented programming
group, “Subject-oriented programming and
design patterns,”
(http://www.research.ibm.com/sop/).

[17] Krzysztof Czarnecki, Ulrich W. Eisenecker, and
Patrick Steyaert, “Beyond objects: Generative
programming,” in Position paper, ECOOP’97
Workshop on Aspect-Oriented Programming.

[18] Bent Bruun Kristensen and Kasper Osterbye,
“A conceptual perspective on the comparison of
object-oriented programming languages,” ACM
Sigplan Notices, vol. 31, pp. 42–54, Feb. 1998.

[19] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design patterns.
Addison-Wesley, 1995.

[20] D. Parnas, “On the criteria to be used in
decomposing systems in modules,”
Communications of the ACM, vol. 15,
pp. 1053–1058, Dec. 1972.

[21] Robert Henderson and Benzamin Zorn, “A
comparison of object-oriented programming in
four modern languages,” Software-Practice and
Experience, vol. 24, pp. 1077–1095, Nov. 1994.

[22] O.L. Madsen, B. Moller-Pedersen, and K.
Nygaard, Object-oriented programming in the
Beta programming language. Addison-Wesley,
1993.

[23] B. Meyer, Eiffel: the language. Prentice Hall,
1992.

[24] S.E. Keene, Object-oriented programming in
Common LISP. Addison Wesley, 1989.

[25] Ungar, D. and R. B. Smith, “SELF: The power
of simplicity,” in Proceedings of the 2nd
Conference on Object-Oriented Programming
Systems, Languages,and Applications, (Orlando,
Florida), pp. 227–241, Oct. 1987.

[26] B. J. Cox and A. J. Novobilski, Object-oriented
programming, an evolutionary approach 2/E.
Addison Wesley, 1991.

[27] O. J. Dahl, B. Myhrhaug, and K. Nygaard,
SIMULA 67 common base language. Norwegian
Computing Center edition February, 1984.

[28] Macintosh programmer’s workbench Pascal 3.0
reference. Apple Computer, 1989.

[29] Stroustrup, B., “What is object-oriented
programming,” IEEE Software, pp. 10–20, May
1988.

[30] Ole Lehrmann Madsen, “Open issues in
object-oriented programming- A scandinavian
perspective,” Software-Practice and Experience,
vol. 25, pp. 3–43, Dec. 1995.

[31] Michael F. Kilian, “A note on type composition
and reusability,” ACM OOPS Messenger, vol. 2,
pp. 24–32, July 1991.

[32] Antero Taivalsaari, “On the notion of
inheritance,” ACM Computing Surveys, vol. 28,
pp. 438–479, Sept. 1996.

[33] Grady Booch, James Rumbaugh, and Ivar
Jacobson, The unified modeling language user
guide. Addison Wesley, 2000.

[34] Lars Kirkegaard Baekdal and Bent Bruun
Kristensen, “Aggregation from multiple
perspectives by roles,” in Proceedings of the
TOOLS Pacific ’99, (Melbourne, Australia),
1999.

[35] William Harrison and Harold Ossher,
“Subject-oriented programming (A critique of
pure objects),” in Proceedings of OOPSLA,
pp. 411–428, 1993.

[36] Bent Bruun Kristensen and Kasper Osterbye,
“Conceptual modeling and programming
languages,” vol. 29, no. 9, 1994.

[37] Harold Ossher, William Harrison, Frank
Budinsky, and Ian Simmonds, “Subject-oriented
programming : Supporting decentralized
development of objects,” in Proceedings of the
7th IBM Conference on Object Oriented
Technology, (Santa Clara, CA), pp. 570–577,
July 1994.

[38] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin, “Aspect-oriented programming,” in
Proceedings of the 11th European Conference on
Object-Oriented Programming (M. Akşit and
S. Matsuoka, eds.), vol. LNCS 1241,
pp. 220–242, Berlin, Heidelberg, and New York:
Springer-Verlag, June 1997.

[39] Elizabeth Kendall, A., “Role model designs and
implementations with aspect-oriented
programming,” in Proceedings of OOPSLA,
pp. 353–369, 1999.

[40] Elizabeth Kendall, A., “Aspect-oriented
programming for role models,” in Position
paper, Proceedings of the ECOOP’99 Workshop
on Aspect-Oriented Programming, pp. 49–55,
1999.

[41] Harold Ossher, Matthew Kaplan, William
Harrison, Alexander Katz, and Vincent Kruskal,
“Subject-oriented composition rules,” in
Proceedings of OOPSLA, pp. 235–250, 1995.

[42] Bent Bruun Kristensen and Daniel C. M. May,
“Activities: Abstractions for collective
behavior,” in Proceedings of the 10th European
Conference on Object Oriented Programming
(ECOOP’96), vol. LNCS 1098, (Linz, Austria),
pp. 472–501, 1996.

[43] Daniel Bardou and Christophe Dony, “Split
objects: A disciplined use of delegation within
objects,” in Proceedings of OOPSLA, ACM
Sigplan Notices, pp. 122–137, 1996.

[44] Trygve Reenskaug, Working with objects: The
OORAM software engineering method. Manning
PublicationsGreenwich, CT, 1995.

[45] Papazoglou, P. and B.J. Kramer, “A database
model for object dynamics,” The VLDB
Journal, vol. 6, pp. 73–96, 1997.

[46] Roel Wieringa, Wiebren DeJonge, and P.
Sprint, “Roles and dynamic subclasses: A modal
logic approach,” in Proceedings of the European
Conference on Object Oriented Programming,
pp. 32–59, 1994.

[47] Bent Bruun Kristensen, “Object-oriented
modeling with roles,” in Proceedings of the
Second International Conf. on Object Oriented
Information Systems(OOIS), (Dublin, Ireland),
pp. 57–71, Springer Verlag, 1995.

[48] Chandra Sekharaiah, K., D. Janaki Ram, and
A.V.S.K. Kumar, “Typehole model for objects
with roles in object-oriented systems,” in
Fourteenth Europeon Conference on Object
Oriented Programming (ECOOP 2000), LNCS
1964, (Sophia Antipolis, France), pp. 301–302,
Springer Verlag, June 2000.

[49] Chandra Sekharaiah, K., Arun Kumar, and D.
Janaki Ram, “A security model for object role
database systems,” in International Conference
on Information and Knowledge Engineering
(IKE’02), (Las Vegas, Nevada, USA),
pp. 381–385, June 2002.

[50] Joel Richardson and Peter Schwarz, “Aspects:
Extending objects to support multiple,
independent roles,” in Proceedings of the ACM
SIGMOD Int. Con. on Management of Data,
vol. 20, pp. 298–307, May 1991.

[51] Barbara Pernici, “Objects with roles,” in
IEEE/ACM Conference on Office Information
Systems ACM SIGOIS, vol. 1, (Cambridge,
Massachutes), pp. 205–215, Apr. 1990.

[52] Craig Chambers and Gary T. Leavens,
“Typechecking and modules for multimethods,”
ACM Transactions on Programming Languages
and Systems, vol. 17, pp. 805–843, Nov. 1995.

[53] Craig Chambers and Gary T. Leavens,
“BeCecil, A core object-oriented language with
block structure and multi-methods: Semantics
and typing,” in Proceedings of The Fourth
International Workshop on Foundations of
Object-Oriented Languages, (Paris), Jan. 1997.

[54] Rajendra K. Raj, Ewan Tempero, Henry M.
Levy, Andrew P. Black, Norman C. Hutchison,
and Eric Jul, “Emerald: A general-purpose
programming language,” Software Practice and
Experience, vol. 21, pp. 91–118, Jan. 1991.

[55] Day M.,, R.Gruber, Barbara Liskov, and A.C.
Myers, “Subtypes vs where classes: Constraining
parametric polymorphism,” SIGPLAN Notices,
vol. 30, pp. 156–168, Oct 1995.

[56] M. Franz, “The programming language lagoona
- a fresh look at object-orientation,” Software -
Concepts and Tools, vol. 18, pp. 14–26, 1997.

[57] Antonio Albano, Luca Cardelli, and Renzo
Orsini, “Galileo: A strongly-typed, interactive
conceptual language,” ACM Transactions on
Database Systems, vol. 10, pp. 230–260, June
1985.

[58] Steve Vinoski, “CORBA: Integrating diverse
applications within distributed heterogenous
environments,” in IEEE Communications,
vol. 14, Feb. 1997.

[59] Anjaneyulu, P. and D. Janaki Ram, “Seamless
integration of mobility into distributed systems
using glue components,” in Proceedings of Ninth
Annual IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management
(DSOM’98), (Delaware, USA), pp. 65–75, Oct.
1998.

[60] Janaki Ram, D. and O. Ramakrishna, “The glue
model for reuse by customization in
object-oriented systems,” in Tech. Report no
IITM-CSE-DOS-98-02 (Communicated after
first revision to Software Practice and
Experience), (IIT Madras, Chennai, India),
1998.

[61] Janaki Ram, D. and Chitra Babu, “A framework
for dynamic client-driven customization,” in
Proceedings of Object Oriented Information
Systems (OOIS), pp. 245–258, 2001.

[62] John Shilling, J. and F. Peter Sweeney, “Three
steps to views: Extending the object-oriented
paradigm,” in Proceedings of OOPSLA, vol. 24,
pp. 352–361, Oct. 1989.

[63] Hewett, Baecker, Card, Carey, Gasen, Mantei,
Perlman, Strong, and Verplank, “ACM SIGCHI

curricula for human-computer interaction, url:
http://sigchi.org/cdg/cdg2.html/2 1.”

[64] K.S.Fu, R.C.Gonzalez, and C.S.G.Lee, Robotics:
Control, Sensing, Vision, and Intelligence.
MC-GrawHill International, 1987.

