
COCALEREX: USER-ORIENTED APPROACH FOR REENGINEERING
RELATIONAL DATABASES INTO XML

CHUNYAN WANG, ANTHONY LO, REDA ALHAJJ, KEN BARKER

Advanced Database Systems and Applications Lab
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{wangch, chiul, alhajj, barker}@cpsc.ucalgary.ca

ABSTRACT

In this paper, we present COCALEREX (converting
relational to XML). It handles catalog-based by
analyzing the metadata and legacy relational databases
by first applying the reverse engineering approach
described in [2] to extract the ER (Extended Entity
Relationship) model from legacy relational databases.
This reverse engineering approach is employed also to
extract from catalog-based databases meta-data not
available in the catalog. The ER is converted to XML
schema with many-to-many and nary relationships
considered. COCALEREX has a user-friendly interface
that displays the result of each phase of the conversion
process. Experimental results are encouraging,
demonstrating the applicability and effectiveness of the
proposed approach.

Keywords: reengineering, XML schema, relational
database, conversion, user interface.

1. INTRODUCTION

XML has emerged as the standard format for publishing
and exchanging data over the Internet. Since most data
is currently stored and maintained in relational database
management systems (RDBMS), which are still
dominant, it is important to automate the process of
generating XML documents containing information
from existing databases. The Relational-to-XML
transformation involves mapping relational tables and
attributes into XML elements and attributes, creating
XML hierarchies, and processing values in an
application specific manner. As described in the
literature, researchers mostly considered transforming
relational databases that have rich corresponding
catalogs. Although a large number of the existing
relational databases are classified as legacy, the
transformation of legacy relational databases to XML
has received little attention. Legacy database systems
are characterized by old-fashioned architecture, lack of
the related documentation (missing or vague catalogs)
and non-uniformity resulting from numerous mostly
unorganized extensions.

Realizing the importance of transforming legacy
databases into XML documents, we have developed a
system, named COCALEREX (Conversion of
Catalog-based and Legacy Relational databases to
XML), which successfully handles the transformation
process for both legacy and catalog-based RDBMS. Our
approach highly benefits from our previous findings on
reverse engineering of legacy databases as detailed in
[2], which leads to successful understanding of the
design of an existing relational database. From our
experience, we realized that some commercial RDBMS
do not support the functionality to retrieve primary and
foreign keys information from their metadata. For
instance, even the latest version of MySql does not
totally support such functionality. COCALEREX can
extract all the required metadata either from the catalog
or by analyzing database content.

As the work described in this paper is mainly a
reengineering process, two basic steps are identified for
transforming relational databases into XML, namely
reverse engineering and forward engineering. The
major target of the first step is reconstructing the ER
model from the given relational database, and this
process requires knowing the metadata. For legacy
relational databases, reverse engineering is employed to
deduce information about functional dependencies, keys
and inclusion dependencies. For catalog-based
databases, COCALEREX first connects to the utilized
RDBMS by using JDBC/ODBC to obtain all the
required available metadata information; and reverse
engineering is employed here to extract information
missing from the catalog, if any. Second, the obtained
ER model is transformed into XML schema in the
forward engineering step. Our approach smoothly
handles all types of relationships allowed in the ER
model, including many-to-many and nary relationships.

COCALEREX has been developed base on the
framework described in [3]. Users may use
COCALEREX for viewing the underlying relational
data as either flat or nested XML structure. For the
latter case, users can specify the nesting sequence.
Further, users can directly view the result of each phase
during the process.

COCALEREX consists of three main components. The
first extracts the ER model for legacy databases; it is
named EELRR- Extracting ER Model from Legacy
Relational Database by Reverse Engineering Module.
The second component is for extracting the ER model
from cog-based databases; it is named EECR-
Extracting ER Model from Catalog-based Relational
Database Module. The third is dedicated for
transforming the obtained ER model into XML
structure; it is named ER2X- ER model to XML
Module. Experimental results are encouraging,
demonstrating the applicability and effectiveness of the
proposed approach.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. Section 3 describes the
reverse engineering process. Section 4 discusses the
forward engineering process. Section 5 is summary and
conclusions.

2. RELATED WORK

There exist several applications that enable the
composition of XML documents from relational data,
such as IBM DB2 XML Extender [9], SilkRoute [12],
and XPERANTO [7]. XML Extender serves as a
repository for XML documents as well as their
Document Type Definitions (DTDs), and also generates
XML documents from existing data stored in relational
databases. It is used to define the mapping of relational
tables and columns to DTD. XSLT and XPath syntax
are used to specify the transformation and the location
path. SilkRoute is described as a general, dynamic, and
efficient tool for viewing and querying relational data in
XML. It serves as middle-ware between a relational
database and an application accessing that data over the
Internet. In SilkRoute, XML views of relational
databases are defined using a relational to XML
transformation language called RXL, and then XML-
QL queries are issued against views. The query
composer combines the queries and views together, and
the combined RXL queries are then translated into the
corresponding SQL queries. In order to use SilkRoute
system, it is necessary to learn the new language RXL.
XPERANTO is middle-ware solution for publishing
XML; object-relational data can be published as XML
documents. It can be used by users who prefer to work
with a “pure XML” environment. However, the
transformation from relational schema to XML schema
is specified by human experts.

The work described in [15] requires knowing the
catalog contents of the given relational database in
order to extract the relational schema. The conversion
of Relational-to-ER-to-XML has been proposed in [13].
This reconstructs the semantic model, in the form of ER
model, from the logical schema model capturing user's
knowledge, and then transforms the ER model to the
XML document. However, many-to-many (M:N) and

nary (n≥3) relationships are not considered properly.
Finally, VXE-R [5] is an engine for transforming a
relational schema into equivalent XML schema. Then
XML queries are issued directly against the XML
schema. VXE-R is only used for a certain type of
catalog-based relational databases; it does not work for
legacy databases. Also, VXE-R does not provide a
visualize interface to users.

Figure 1: Main GUI of COCALEREX System

3. Reverse Engineering

COCALEREX is capable of handling both legacy and
catalog-based databases. So users can use the main GUI
shown in Figure 1 to specify the category of the
database to be converted into XML. For the former
category, the system calls the set of functions built
inside EELRR to extract all the possible meta-
information from the legacy database. The extracted
information is required for constructing the ER model.
For the latter category, the system connects to the
RDBMS by using JDBC/ODBC, and calls the set of
functions built inside EECR to get the catalog meta-
information necessary for constructing the ER model.
The meta-information includes candidate and foreign
keys.

3.1. Extracting the ER Model from Legacy
Relational Databases

EELRR is the most complex component of
COCALEREX. Its main purpose is to extract all the
necessary meta-information, including the foreign and
candidate/primary keys) from the given legacy
database; then it constructs the ER model. For this task,
we implemented the reverse engineering approach
proposed we already proposed in [2]. According to the
flowchart shown in Figure 2, the ER model extraction
process can be divided into six main steps; for more

details, the reader is referred to [2], which includes
details of all the algorithms utilized for the reverse
engineering process.

Figure 2: The Flow Chart of EELRR Module

1. For each table in the relational database: the
powerset of its set of attributes is the input to the
“Find Candidate Keys” algorithm, which finds all
possible candidate keys in the database.

2. Run the “Find Candidate Foreign Keys” algorithm
on the result obtained from Step 1 to find all
attributes in the Foreign Keys, which are simply
representatives of the Candidate Keys.

3. Use the result from Step 2 to construct the initial
ERD.

4. Run the “Find Cardinalities” algorithm to
determine the cardinalities of the relationships in
the initial ERD.

5. Remove the extra information (if exist) from the
initial ERD.
(a) Run the “Eliminate Symmetric References”

algorithm to eliminate all symmetric references
[2] from the initial ERD.

(b) Run the “Eliminate Transitive References”
algorithm to eliminate transitive references [2]
from the initial ERD.

(c) As a result of executing steps (a) and (b), the
optimized ERD is generated, and then
displayed using the GUI.

6. Run the “Identify Relationships” algorithm to
identify all many-to-many and nary relationships in
the database, if any.

The process outlined above is detailed more in our work
described in [3]. To illustrate this process, shown in
Figure 3 is an example ERD extracted by EELRR for
the example Company database described in [3].

3.2. Extracting ER Model from Catalog-
based Relational Database

As a requirement of EECR, COCALEREX connects to
the given catalog-based relational database by using
JDBC/ODBC. The required foreign and primary keys
information are obtained from the given RDBMS that

support getPrimaryKeys() and getImportedKeys()
functions; otherwise, the system invokes EELRR to
extract the not-supported information. The EECR
component of the reverse engineering process has been
tested for different RDBMS, including DB2, FirstSql,
MySql and Oracle.

4. FORWARD ENGINEERING

Existing approaches to deal with the conversion of
relational databases into XML have mainly
concentrated on one-to-one (1:1) and one-to-many
(1:M) Relationships; while many-to-many (M:N) and
nary (n>2) relationships have not received enough
attention. We argue that it is essential to equally
consider all types of relationships for the two cases of
having a flat and a nested XML schema. So, we
consider all types of relationships in our conversion
process as detailed in the rest of this paper.

COCALEREX can properly handle 1:1, 1:M, M:N and
nary relationships in the process of converting a given
relational database into XML. It provides some
functions that allow users to partially convert a selected
portion of a given relational database into XML schema
and produces the corresponding virtual XML document.
For example, users who want to view from Figure 3
only the three relations: EMPLOYEE, DEPARTMENT,
and DEPT_LOCATIONS converted into XML can do
so by selecting them from the ERD displayed on the
screen; and then their desired XML schema and
document(s) will be displayed on the screen after
clicking on the “Convert to XML” button shown in the
bottom of Figure 3.

The responsibility of the ER2X component of
COCALEREX is transforming the ER model of the
given database into the corresponding XML schema.
We decided to convert into XML schema and not DTD
because the former is a more comprehensive and
rigorous method for defining the content model of an
XML document. The schema itself is an XML
document, and so can be processed by the same tools
that read the XML documents it describes. The XML
schema supports rich built-in types and allows building
complex types based on the supported built-in types. It
also supports key, keyref and unique constraints, which
are important for transforming a relational schema into
XML schema.

We also consider mapping all different types of
relational schema constraints, including: primary keys
(PKs), foreign keys (FKs), null/not-null, unique, etc, to
the XML schema. Basically, the null/not-null constraint
can be easily represented by properly setting
“minOccurs” of the XML element transformed from the
relational attribute. The unique constraint can also be
represented in a straightforward manner by the unique
mechanism in the XML schema.

Figure 3: ERD Generated from Legacy Database

The ER2X component of COCALEREX by default
generates a flat structure of the XML schema. However,
users may specify a nested structure in a way to
improve the performance of querying the corresponding
XML documents. In the rest of this section, we first
introduce the conversion into flat XML schema, and
then we discuss the conversion into nested XML
schema.

4.1. ER Model to Flat XML Schema

In this section, we present the proposed process for
translating a conceptual schema (ER model) into a flat
XML schema. The main steps of the process are given
in Algorithm 4.1.

Algorithm 4.1 (ER Model to Flat XML Schema
Conversion)
Input: The ER model
Output: The corresponding flat XML schema
Step:
1. Transform each entity type, M:N or nary

relationship (we call them objects hereafter) from
the ER model into a complex-type in the XML
schema.

2. Map each attribute in an object transformed in Step
(1) into a subelement within the corresponding
complex-type.

3. Create a root element with the same name as the
relational database schema name; and insert each of
the three types of objects identified in the ER
model as in Step (1) as a subelement with the
corresponding complex-type.

4. Define the primary key for each of the three types
of objects identified in Step (1) by using the “key”
element.

5. Map in the ER model under consideration, each
link between the three types of objects identified in
Step (1) by using the “keyref” element.

EndAlgorithm

To understand the steps of Algorithm 4.1, we present
next more details of the process with supporting
examples.

Each object E in the ER model is translated in the XML
schema into an XML complex-type of the same name E.
In each complex-type E, there is only one empty
element, which includes several subelements. This is
demonstrated next where the PROJECT is translated
into a complex-type named “PROJECT_Relation”; the
empty element is called “PROJECT_Tuple”.

<xs:complexType name="PROJECT_Relation">
 <xs:sequence>
 <xs:element name="PROJECT_Tuple" type=
 "db:PROJECT_Tuple" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PROJECT_Tuple">
 <xs:sequence>

 </xs:sequence>
</xs:complexType>

The cardinality constraint in the ER model can be
explicated by associating two XML built-in attributes,
also called indicators, namely “minOccurs” and

“maxOccurs” with subelements under the XML
complex-Type. The default value for both the
“maxOccurs” and the “minOccurs” is 1. In case
specified, the value for “minOccurs” should be either 0
or 1, and the value for “maxOccurs” should be greater
than or equal to 1. If both “minOccurs” and
“maxOccurs” are omitted, then the subelement must
appear exactly once.

Each attribute Ai in E is mapped into a subelement of
the corresponding complex-type E. For example,
PROJECT is mapped into a complex-type named
“PROJECT_Tuple”, inside which there are several
subelements such as PNAME, PNUMBER,
PLOCATION, and DNUM. These are attributes of the
“PROJECT” entity. The XML schema for the
PROJECT entity is:

<xs:complexType name="PROJECT_Tuple">
 <xs:sequence>
 <xs:element name="PNAME" type="xs:string"/>
 <xs:element name="PNUMBER" type="xs:int"/>
 <xs:element name="PLOCATION" type="xs:string"/>
 <xs:element name="DNUM" type="xs:int"/>
 </xs:sequence>
</xs:complexType>

The <sequence> specification in the XML schema
captures the sequential semantics of a set of
subelements. For instance, in the <sequence> given
above, the subelements appear in the order: PNAME,
PNUMBER, PLOCATION, and DNUM. They must
appear in instance documents in the same sequential
order as they are declared here. The XML schema also
provides another constructor called <all>, which allows
elements to appear in any order, and each element must
appear once or not at all.

Each object in the ERD is mapped into the XML
schema. We first need to create a root element that
represents the entire given relational database. We
create the root element as a complex-type in the XML
schema, and give it the same name as the relational
database schema, and then insert each object as a
subelement of the root element. Next is an example
which contains the six objects DEPARTMENT,
DEPENDENT, DEPT_LOCATIONS, EMPLOYEE,
PROJECT, WORKS_ON. We give the root element the
name COMPANY:

<xs:element name="COMPANY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DEPARTMENT_Relation"
 type="db:DEPARTMENT_Relation" />
 <xs:element name="DEPENDENT_Relation"
 type="db:DEPENDENT_Relation" />
 <xs:element name="DEPT_LOCATIONS_Relation"
 type="db:DEPT_LOCATIONS_Relation" />
 <xs:element name="EMPLOYEE_Relation"

 type="db:EMPLOYEE_Relation" />
 <xs:element name="PROJECT_Relation"
 type="db:PROJECT_Relation" />
 <xs:element name="WORKS_ON_Relation"
 type="db:WORKS_ON_Relation" />
 </xs:sequence>
 </xs:complexType>
 <!-- definition of keys and keyrefs -->

</xs:element>

The elements “key” and “keyref” are used to enforce
the uniqueness and referential constraints. They are
among the great features introduced in the XML
schema. Also, we can use “key” and “keyref” to specify
the uniqueness scope and multiple attributes in creating
composite keys. Here is an example:

<xs:key name="PROJECT_PrimaryKey">
 <xs:selector xpath="db:PROJECT_Relation/db:
 PROJECT_Tuple" />
 <xs:field xpath="db:PNUMBER" />
</xs:key>
<xs:key name="WORKS_ON_PrimaryKey">
 <xs:selector xpath="db:WORKS_ON_Relation/db:
 WORKS_ON_Tuple" />
 <xs:field xpath="db:ESSN" />
 <xs:field xpath="db:PNO" />
</xs:key>
<xs:keyref name="WORKS_ON.PNO"
refer="db:PROJECT_PrimaryKey">
 <xs:selector xpath="db:WORKS_ON_Relation/db:
 WORKS_ON_Tuple" />
 <xs:field xpath="PNO" />
</xs:keyref>

Figure 4: Many-to-Many relationship

In this example, we first specify the primary key for
each object in the ER model. From the ForeignKeys
table, we have PNUMBER as the primary key of
PROJECT; ESSN and PNO together form a composite
primary key for WORKS_ON. PNO is a foreign key in
WORKS_ON, so we use “keyref” to specify the foreign
key relationship between PROJECT and WORKS_ON.

Compared to DTD, the XML schema provides a more
flexible and powerful mechanism through “key” and
“keyref”, which share the same syntax as “unique” and
also make referential constraints possible in XML
documents.

An example M:N relationship is shown in Figure 4,
where WORKS_ON is a binary relationship type.
EMPLOYEE:WORKS_ON has cardinality ratio 1:M,
which means that each employee record can be related
to more than one record in WORKS_ON; the same is
valid for the PROJECT:WORKS_ON relationship.

4.2. Transforming ER Model into Nested
XML Schema

COCALEREX is capable of producing nested XML
schema by employing Algorithm 4.2, given next in this
section. The system may derive a nested XML schema
if nesting is specified by the user as a choice, without a
particular nesting request. Also, there is an interface for
the user to specify the required nesting of different
objects from the ER model. This facility gives power to
users who are familiar with the most commonly raised
types of queries, and who may specify a nested
structure to speed up the processing of such queries.

Figure 5: Nesting Input GUI

Figure 6: EMPLOYEE, WORKS ON and PROJECT Nested XML Schema Output

Figure 7: A Sample nary relationship

Figure 8: Nested XML schema output for the example nary relationship shown in Figure 7

The nesting may be specified as a sequence of objects
enclosed inside parentheses to indicate that the other
instances (may be objects or tuples) in each tuple are
nested inside the first object. Formally: A nesting
specified as (E;E1; ;En), n ≥ 1, means that each Ei, i ≥ 1
is nested inside E. Further, each Ei may be either an
object or a tuple. This leads to a tree rooted at E and all
the other nodes/subtrees are direct children of E.

Note that the first instance inside a tuple must be an
object and each other instance may be either an object
or a tuple. For the object case, there must be a link in
the ERD between such object and the first object in the

tuple. For the tuple case, the link in the ERD must
connect the first object in the latter tuple with the first
object in the former tuple.

For better understanding of the nesting process,
consider the following illustrative cases:
1. The nesting specified using (E1;E2;E3;E4;E5) means

that each of E5, E4, E3, and E2 is nested inside E1.
This is one level tree rooted at E1 and each node Ei
(2 ≤ i ≤ 5) is at level one.

2. The nesting specified using (E1; (E2; (E3; (E4;E5))))
means that E5 is nested inside E4, E4 is nested

inside E3, E3 is nested inside E2, and E2 is nested
inside E1. This is a chain, i.e., 4 levels tree rooted at
E1 and each node Ei (2 ≤ i ≤ 5) is at level i − 1.

3. The nesting specified using (E1;(E2;E3);E4;(E5;
(E6;E7));E8), is interpreted as follows: E3 is nested
inside E2, E7 is nested inside E6 and E6 is nested
inside E5; then E2, E4, E5 and E8 are all nested
inside E1.

To illustrate the nesting process, consider the
COMPANY database where users may most of the time
write queries to retrieve information about employees
and their projects. For this case, users can specify the
nesting sequence in the Nested Input GUI as:
(EMPLOYEE, (WORKS_ON, PROJECT)).

The ER2X module takes such sequence as input, and
generates as output the XML schema in nested structure.
The element PROJECT is nested under the element
WORKS_ON; then the nested element moves under the
element EMPLOYEE to build two levels of nested
XML structure.

Algorithm 4.2 (ER Model to Nested XML Schema
Conversion)
Input: The ER model and nesting sequence as specified
by the user
// if the nesting sequence is specified as tuple then the
// system decides on the nesting sequence as outlined in
// the else part of the algorithm
Output: The nested XML schema
Steps:
If the user specified a non-empty nesting tuple) then

Let the input nesting sequence be (E1, E2); note that
this may be generalized to a tuple with n>2 instances.
E2 (whether object or tuple) is nested inside E1 as
multi-valued object.
If E2 contains a foreign key that represents the
primary key of E1 then

Remove from E2 the foreign key that represents
the primary key of E1.
If E2 contains only foreign keys then

Replace E2 inside E1 by the objects
represented by foreign keys inside E2.
For each of the objects (Ei) that replaced E2
inside E1 do

If Ei contains some instances not
participating in the relationship then

Leave a representative element of
Ei to hold its instances not
participating in the relationship.

Else (If E1 contains a foreign key that represents the
primary key of E2 then)

Remove from E1 the foreign key that represents
the primary key of E2.
Leave a representative of E2 to hold its instances
not related to instances of E1.

Else (the user has not specified the nesting sequence
and hence the system will decide on the nesting)

For objects connected by 1:1 or 1:M relationships, we
nest the object that contains the foreign key inside the
object that contains the primary key. Attributes of
each such relationship are added inside the latter
object.
For objects connected by M:N or nary relationships
do

Repeatedly nest the other object(s) involved in
the relationship inside object Ei which is
involved in the relationship and has the next
smallest number of instances not participating in
the relationship. (Attributes of each such
relationship are added inside the deepest nested
object.)
For each object Ej nested inside Ei do

If Ej contains some instances not
participating in the relationship then

Leave a representative of Ej to hold its
instances not participating in the
relationship.

EndAlgorithm

In the example shown in Figure 4, WORKS_ON has
two foreign keys: ESSN refers to EMPLOYEE and
PNO refers to PROJECT; and also WORKS_ON has an
attribute HOURS. COCALEREX allows users to
specify the objects they want to nest by using the
interface shown in Figure 5, where a user may enter the
nesting sequence as (EMPLOYEE, (WORKS_ON,
PROJECT)). After clicking on the “Start to Nest”
button, only EMPLOYEE, WORKS_ON and
PROJECT are selected. When the user clicks on
“Convert to XML” button, the XML schema output
generated by COCALEREX is displayed on the screen
as shown in Figure 6.

In the nested XML schema example above, because
WORKS_ON.ESSN is the foreign key of EMPLOYEE,
and WORKS_ON.PNO is the foreign key of PROJECT.
They are both removed by Algorithm 4.2, so only
WORKS_ON.HOURS is left. If WORKS_ON did not
contain the attribute HOURS, then it would have been
removed, which is another case. In the XML document
generated, all records in PROJECT which relate to
WORKS_ON are nested under a particular
WORKS_ON record, and all records in WORKS_ON
which relate to a particular EMPLOYEE are nested
under that EMPLOYEE record. This will form two
levels of nested XML structure.

Shown in Figure 8 is the nested XML schema for the
example nary relationship TAKES, which connects
three objects: STUDENTS, COURSES, and
PROFESSORS as shown in Figure 7. There are three
foreign keys in TAKES: SID, CID and PID, in addition
to the attribute GRADE. Assume users often query for
information related to students taking courses and their
professors. So, they may choose to nest both COURSES
and PROFESSORS under TAKES, then nest TAKES
under STUDENTS. Part of the output two levels nested
XML schema Shown in Figure 8.

Compared to the flat XML structure, the nested XML
structure in fact improves the response of certain
queries because there is no need to use the keyref to
perform additional scans to find information in other
parts of the referenced XML document. However, the
nested XML structure has data redundancy because
some records will repeat several times. Here, it is
important to emphasize that the main purpose for
facilitating nested structures is to allow the users to
construct XML document(s) most suitable for efficient
information retrieval. So, it is more appropriate to let
the users make the nesting decision.

4.3. Generating XML Documents

After the XML schema is obtained, COCALEREX can
generate the required XML document(s) from the
considered relational database. Algorithm 4.3 checks
top-down through the list of selected objects and
generates an element for each object.

Algorithm 4.3 (Generating XML Documents based
on a produced XML Schema)
Input: The XML schema and the Relational database
Output: The corresponding XML Document(s)
Steps:
Create XML document and set its namespace
declaration
Create a root element of the XML document with the
same name as the root name of the XML schema
For each relation R in the relational database do

If R is selected and does not contain any nested
relations then

Create R_Relation element for R
Let queryString = “select * from R”
ResultSet = execute(queryString)
For each tuple T in ResultSet

Create R_Tuple element for tuple T
Create an element for each attribute in R and
insert it into the R_Tuple element

Else if R is selected and contains a nested relation Rc
then

Create R_Relation element for R and
Rc_Relation for Rc
Let queryString = “select selectedAttrs from R,
Rc”
ResultSet = execute(queryString)
For each tuple T in ResultSet do

Create R_Tuple element for the tuple of R, and
Rc_Tuple element for the tuple of Rc
Create an element for each selected attribute in
R and insert it into the R_Tuple element; and
do the same for Rc

EndAlgorithm

Algorithm 4.3 can generate flat XML document(s) as
well as nested XML document(s), depending on the
processed XML schema. In Algorithm 4.3, a query is
executed to obtain all tuples that satisfy the constraints,
one element is created to store data of each tuple in the
result set. The following shows fragment of the XML
document output for the COMPANY database.

<?xml version="1.0" encoding="UTF-8"?> <test
xmlns="http://www.cpsc.ucaglary.ca/wangch/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="http://www.cpsc.ucaglary
.ca/wangch/xml test_2.xsd">
 <db:EMPLOYEE_Relation
xmlns:db="http://www.cpsc.ucaglary.ca/wangch/xml">
 <db:EMPLOYEE_Tuple>
 <db:FNAME>James</db:FNAME>
 <db:LNAME>Borg</db:LNAME>
 <db:SSN>888665555</db:SSN>
 <db:BDATE>1927-11-10</db:BDATE>
 <db:ADDRESS>450 Stone, Houston,
 TX</db:ADDRESS>
 <db:SEX>M</db:SEX>
 <db:SALARY>55000.00</db:SALARY>
 <db:SUPERSSN />
 <db:DNO>1</db:DNO>
 <db:WORKS_ON_Relation>
 <db:WORKS_ON_Tuple>
 <db:HOURS />
 <db:PROJECT_Relation>
 <db:PROJECT_Tuple>
 <db:PNAME>Reorganization</db:PNAME>
 <db:PNUMBER>20</db:PNUMBER>
 <db:PLOCATION>Houston</db:PLOCATION>
 <db:DNUM>1</db:DNUM>
 </db:PROJECT_Tuple>
 </db:PROJECT_Relation>
 </db:WORKS_ON_Tuple>
 </db:WORKS_ON_Relation>
 </db:EMPLOYEE_Tuple>

 <db:EMPLOYEE_Relation

5. SUMMARY AND CONCLUSIONS

In this paper, we introduced the architecture and main
components COCALEREX, which has been developed

as XML database engine. We presented some of the
functionalities provided by COCALEREX; users can
select the category of relational database they want to
use as either legacy or catalog-based. COCALEREX
extracts all useful information from the given relational
database to construct the ER model; and then
transforms the ER model into the corresponding XML
schema and virtual document. COCALEREX can
properly handle binary and nary relationships. It is
capable of generating flat and nested XML structure
based on users’ desire. The result of each phase in the
process is displayed on the GUI; this provides a friendly
visualization to users so that they can clearly view the
results in each phase. COCALEREX can also be used
as a tool for designers to redesign or update their
existing database systems. This way designers'
workload is considerably reduced. We argue that
COCALEREX is a useful tool for users to construct an
ER model from a given relational database and view the
corresponding XML schema and documents(s) in a
user-friendly way.

REFERENCES

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. L. Wiener, “The Lorel Query Language for
Semistructured Data,” International Journal on
Digital Libraries, Vol.1, No.1, pp.68-88, April
1997.

[2] R. Alhajj, “Extracting the Extended Entity-
Relationship Model from a legacy Relational
Database,” Information Systems, Vol.28, No.6,
pp.597-618, 2003.

[3] C. Wang, A. Lo, R. Alhajj and K. Barker,
“Converting Legacy Relational Database into XML
Database through Reverse Engineering,”
Proceedings of the International Conference on
Enterprise Information Systems, Porto, Portugal,
Apr. 2004.

[4] Lo, R. Alhajj and K. Barker, “Flexible User
Interface for Converting Relational Data into
XML,” Proceedings of the International
Conference on Flexible Query Answering Systems,
Springer-Verlag, Lyon, France, June 2004.

[5] C. Liu, M. W. Vincent, J. Liu, and M. Guo, “A
Virtual XML Database Engine for Relational
Databases,” Springer-Verlag, 2003.

[6] Bonifati and D. Lee, “Technical Survey of XML
Schema and Query Languages,” Technical report,
UCLA Computer Science Department, June 2001.

[7] M. Carey, D. Florescu, Z. Ives, Y. Lu, J.
Schanmugasundaram, E. Shekita and S.

Subramanian, “XPERATO: Publishing Object-
Relational Data as XML,” Proceedings of the
International Workshop on Web and Databases,
May 2000.

[8] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S.
Paraboschi, and L. Tanca, “XML-GL: a graphical
language for querying and restructuring XML
documents,” Computer Networks, 31(11–16),
pp.1171-1187, 1999.

[9] J. Cheng and J. Xu, “IBM DB2 XML Extender,”
IBM Silcom Valley, February, 2000.

[10] T.T. Chinenyanga and N. Kushmerik, “Expressive
retrieval from XML documents,” Proceedings of
ACM International Conference on Research and
development in Information Retrieval, New York,
pp.163-171, 2001.

[11] M. Erwig, “Xing: A Visual XML Query
Language,” Journal of Visual Languages and
Computing, Vol.14, No.1, pp.5-45, 2003.

[12] M. F. Fernandez, W. C. Tan and D. Suciu,
“SilkRoute: Trading between Relational and
XML,” Proceedings of the International
Conference on World Wide Web, May 2000.

[13] J. Fong, F. Pang and C. Bloor, “Converting
Relational Database into XML Document,”
Proceedings of the International Workshop on
Electronic Business Hubs, pp.61-65, Sep. 2001.

[14] G. Kappel, E. Kapsammer, S. Rausch-Schott and
W. Retschitzegger, “X-Ray - Towards Integrating
XML and Relational Database Systems,”
Proceedings of the International Conference on
Conceptual Modeling, pp. 339-353, Salt Lake City,
UT, Oct. 2000.

[15] D. Lee, et al, “Nesting based Relational-to-XML
Schema Translation,” Proceedings of the
International Workshop on Web and Databases,
May 2001.

[16] D. Lee, et al, “NeT and CoT: Translating
Relational Schemas to XML Schemas using
Semantic Constraints,” Proceedings of ACM CIKM,
McLean, Virginia, Nov. 2002.

[17] M. Mani, et al, “Taxonomy of XML Schema
Language using Formal Language Theory,” In
Extreme Markup Languages, Montreal, Canada,
August, 2001.

[18] J. Shanmugasundaram, et al, “Efficiently
Publishing Relational Data as XML Documents,”
VLDB Journal, Vol.10, pp.133-154, 2001.

