
ICITNS 2003 International Conference on Information Technology and Natural Sciences

RUN TIME REPAIR RULES FOR INTEGRITY MAINTENANCE
SUBSYSTEM

FERAS HANANDEH
Faculty of Computer Science and Information Technology

University Putra Malaysia, 43400 UPM, Serdang,, MALAYSIA
hfiras@hotmail.com

ABSTRACT
Run time repair system has two essential components,
which are very related to each other. When the update
operation is executed, the first component is the
detection of the erroneous state if any and the second
component is to repair this state by finding the changes
to the update operation that would repair it. Failing to
have the second component, which is the repair action
will enforce the user to manually correcting and
reentering an erroneous update operation. Our
approach will take advantage of the integrity before the
update operation, which will result on limiting the
detection only to the database state after the update
operation. Also the repair component will take
advantage of the integrity before the update operation
and integrity violation after the update operation but
before the repair. The focus of this paper is to generate
repairs for all first order constraints, and by using only
substitution with no resolution search. Multiple
constraints can be satisfied in parallel without a
sequential process with no possibility of cyclic
violation.

Keywords
Active database systems, Integrity constraints, Semantic
integrity maintenance

1. INTRODUCTION

 The reliability of information systems is a major
concern for today’s society and enterprises. The
correctness or maintaining database integrity of
databases is one of the main reliability issues.
Consequently procedures asserting correct databases
are a chief focus of research.

 Today the prime obstacles applying these procedures
are their high computational costs. Integrity
maintenance is considered one of the major application
fields of rule triggering systems. In the case of a given
integrity constraint being violated by a database
transition these systems trigger update operation
(action) to maintain database integrity.

 A relational database is a collection of relations;
each relation corresponds to a database predicate. Each
relation R is a collection of tuples. Any attempt to

update the database should be controlled by integrity
constraints. When any of these constraints is violated
by an update operation then the system should either
abort or take action to repair the erroneous update
operation. Such system is called integrity maintenance
subsystem.

 When detecting any erroneous update operation,
repairing become essential since detection without
repairing the erroneous state will never accommodate
users need to guarantee consistency, accuracy and the
integrity of their systems.

 The integrity maintenance subsystem separate the
database state into two states, the first is before the
update operation. The second state is after the update
operation, so the integrity maintenance subsystem has
to detect any new errors introduced by the update
operation and if there is any error to be repaired.

 Our approach involves algebraically modifying the
constraint definitions into derivative expressions that
return the condition for a new violation to occur. The
derived predicate is a predicate defined in terms of the
database predicates. The derived predicate, which
denotes a violation of database constraint, is considered
as a negation of the constraint.

2. RELATED WORK

 The primary tool of integrity maintenance subsystem
is the database integrity rules. The aim of integrity rules
is to capture the semantics of data. Integrity rules
provide a much more general capability to maintain
integrity than the data models since they can utilize the
full power of a logic based language. The high cost
results from using integrity rules may become as a
restriction since they often involve the execution of
complex queries against a large database.

 Automation of the various repairable systems was the
main aim for the researchers in the last decade. Partial
automation was the aim of some researchers like [1, 2, 3,
6 and 8]. They adopted the notion of entrust the final
repair to be manually designed by the users provided that
the guidelines which they have to follow for the repair
operation is clearly generated. Other approaches [5, 7

ICITNS 2003 International Conference on Information Technology and Natural Sciences

and 9] generated sufficient conditions for repair by the
user entrusting to him the final repair to be manually
designed by pruned the necessary repair, a suitable
decision making framework based on encompassing all
the actions requested to repair the erroneous state
formulated, since there is not minimal repair actions.

 Some approaches resort to impose severe restrictions
on the quantifier structure of the constraints like no
existential quantifiers followed by universal quantifiers
[1, 2 and 3].

 Expensive rollback is the repair action adopted by
many approaches [1, 2, 3, 5, 6 and 9] since executing of
the update operation first was the condition for checking
any possible integrity violations.

3. PRELIMINARIES

 For every database predicate there are three states of
the same predicate, where P is the state of relation before
the update operation, P’ (X) is the state of P after the
update operation and P''(X) is the state of P after the
repair.

Definition: Database after an update operations is
performed (P’(X)) can be defined as P′(X) ←
(P(X)∧¬∇P(X))∨Δp(X), means that when the tuple
initially exist in the relation i.e. P(X) and not deleted
from the relation i.e. ¬∇P (X) or inserted into the
relation i.e. ΔP(X) this state represents the database
relation after the update operation i.e. P′(X).

Where the following symbols used in this paper means:
∨: OR
∧: And
∆:Insert a tuple
∇: Delete a tuple
∆:Insert for repair

∇: Delete for repair
¬: Not

Definition: Database after executing a repair action
(P''(X)) can be defined as P'′(X) ←
(P′(X)∧¬∇P(X))∨ΔP(X), means that when the tuple exist
after the update operation is performed in the relation i.e.
P’(X) and not deleted for repair from the relation i.e.
¬∇P (X) or inserted for repair into the relation i.e. ΔP(X)
this state represents the database relation after the repair
i.e. P''(X).

Definition. For every intentional predicate P(X),
defined by a rule P (X) ←Q(Y), P′(X) and P′′(X) are
defined by the same rule executed using different states
of the database:
P′(X) ← Q′(Y) and P′′(X) ←Q′′(Y)

 Database transactions were defined in literature as
collections of insertions and deletions such that for each

database relation P(X), ΔP(X) and ∇P(X) are defined
respectively as insertion into or deletion from a relation
P(X).ΔP(X) can be defined as ΔP(X) ←¬P(X)∧P′(X),
which means that the tuple does not exist in the initial
predicate i.e. P(X) but exist after the update operation
i.e. P′(X). This means that the tuple is inserted into the
relation, ΔP(X). ∇P(X) can be defined as ∇P(X) ← P
(X)∧¬P′(X), which means that the tuple was exist in the
initial predicate i.e. P (X) and not exist after the update
operation i.e. P′(X) this state means that the tuple is
deleted from the relation.

 Repair update operation is executed when there is a
violation caused by database update operations and it is
considered as a collection of insertions into for repair
(i.e. ΔP) and deletions from for repair (i.e.∇P) the
database relation.

 ΔP (X) ←¬P′(X)∧P′′(X), means that the tuple does
not exist after the update operation is performed i.e.
P’(X) but exist after the repair update operation i.e.
P'′(X). This means that the tuple is inserted for repairing
some violation ΔP (X).

 ∇P(X) ←P′(X)∧¬P''(X), means that the tuple exist
after the update operation is performed i.e. P’(X) but
does not exist after the repair update operation is
performed i.e. P'′(X). This means that the tuple is
deleted for repairing some violation from the relation
∇P (X).

 Throughout this paper the same example Job Agency
database is used, as given below. This example is taken
from [9].

Person (pid, pname, placed)
Company (cid, cname, totsal)
Job (jid, jdescr)
Placement (pid, cid, jid, sal)
Application (pid, jid)
Offering (cid, jid, no_of_places)

4. MAINTENANCE PREDICATES

 Maintenance predicates directed for supporting
maintenance of integrity by linking new violations to
necessary repairs. The objective of our research is to
compute the integrity maintenance predicate Δ∇P(X) in
terms of a repair update operation, given an arbitrary
integrity constraint IC and an arbitrary update
operation. Δ∇P(X) ←¬ΔP(X)∨∇P(X), means that non-
insertion into the initial database relation i.e. ¬ΔP(X) or
if inserted, then deleted by the repair update operation
i.e. ∇P (X).∇ΔP(X) ←¬∇P(X)∨ΔP(X), means that not
deletion from the initial database relation i.e. ¬∇P(X)
or if deleted, then inserted by the repair update
operation i.e. ΔP (X).

ICITNS 2003 International Conference on Information Technology and Natural Sciences

 For every intentional predicate P, defined by a rule:
P(X) ← Q(Y), follows the rules to compute repair
actions for this intentional predicate is given in 6
intentional rules are:

1) ΔP(X) ← ΔQ(Y) ∧¬P(X)
Means that X is inserted into P i.e. ΔP(X) if Y is
inserted into Q i.e. ΔQ(Y) and X is not already in P
i.e. ¬P(X).

2) ΔP(X) ← ΔQ (Y) ∧¬P′(X)
Means that X is inserted by the repair update
operation into P i.e. ΔP(X) if Y is inserted for repair
into Q i.e. ΔQ(Y) and X is not already in P' i.e.
¬P’(X).

3) ∇P (X) ← ∇Q(Y) ∧¬P′(X)
Means that X is deleted from P i.e. ∇P(X) if Y is
deleted from Q i.e. ∇Q(Y) and X is not already in P'
i.e. ¬P’(X).

4) ∇P(X) ← ∇Q (Y) ∧¬P′′(X)
Means that X is deleted by the repair update
operation from P i.e. ∇P(X) if Y is deleted for repair
from Q i.e. ∇Q(Y) and X is not already in P'' i.e.
¬P''(X).

5) Δ∇P(X) ← Δ∇Q(Y)∨P(X)

Proof:
Δ∇P(X) ← ¬ΔP(X) ∨ ∇P(X)
¬(Δ∇P (X)) ←¬(¬ΔP (X) ∨ ∇P (X))

By negation to both sides

¬(Δ∇P (X)) ←ΔP (X) ∧¬∇P (X)
¬(Δ∇P (X)) ← ¬P (X) ∧ P’ (X) ∧ P''(X)
¬(Δ∇P (X)) ← ¬P (X)∧¬Q (Y)∧Q’ (Y)∧Q''(Y)
¬(Δ∇P (X)) ← ¬P (X)∧ΔQ (Y)∧¬∇Q (Y))
¬(Δ∇P (X)) ← ¬Δ∇Q (Y)∧¬P (X)
Δ∇P (X) ←¬(¬Δ∇Q (Y)∧¬P (X))
Δ∇P (X) ←Δ∇Q (Y)∨P (X)

6) ∇ΔP (X) ←(¬∇P (X)∨ΔQ (Y)) ∧¬P′(X)

Proof:

∇ΔP (X) ← ¬∇P (X)∨Δ P (X)
∇ΔP (X) ← ¬∇P (X)∨ΔQ (Y)∧¬P’ (X)

From the rule ΔP (X) ← ΔQ (Y) ∧¬P′(X)

∇ΔP (X) ←¬∇P (X)∨ ΔQ (Y)∧¬P’ (X)

Example:

Given
P (name) ← Person (pid, pname, placed)

where
P contains the names of all persons:

ΔP (pname) ← ΔPerson (pid, pname, placed)∧¬P
(pname)

∇P (pname) ← ∇Person (pid, pname, placed)∧¬P’
(pname)

where
P’ (pname) ← Person’ (pid, pname, placed)
From the rule P′(X) ← Q′(Y)
where
Person’ (pid, pname, placed) ← Person (pid, pname,
placed) ∧¬∇ Person (pid, pname, placed) ∨Δ Person
(pid, pname, placed)
From the rule P′(X) ← (P(X)∧¬∇P(X)) ∨ΔP(X)
∇P (pname) ← ∇Person (pid, pname,
placed)∧¬(Person (pid, pname, placed) ∧¬∇ Person
(pid, pname, placed) ∨Δ Person (pid, pname, placed))

Incremental Integrity Maintenance

 The critical predicate for incremental integrity
maintenance is Δ∇IC, which is empty maintenance for
violations indicating no new violations introduced by
the update operation or deletion by repair update
operation of all new violations of integrity introduced
by the update operation.

 Our approach computes the integrity maintenance
predicates Δ∇IC in terms of a repair update operation;
given an arbitrary constraint IC and an arbitrary update
operation. The computation can be done before the
execution of the update operation, and a repair action is
attached to the original update operation, creating a
correct and complete update operation.

Example

 Assume that IC← Application (P, J) ∧¬Offering
(c1, J, N) ∧¬Offering (c2, J, N) is the given constraint,
which states that, either company c1 or company c2
must offer the job J for applied by person P.

 ΔApplication (p1, j1) is the update operation.
Applying the rules we introduced, by substituting for
the update operation an the database predicates,

Δ∇IC← ∇Application (p1, j1) ∨ΔOffering (c1, j1, N)
∨ΔOffering (c2, j1, N)
Is the repair, which either aborts the update operation,
or forces either company c1 or company c2 to offer j1.

Example

 Assuming the current state of the database state
before the update operation is:

ICITNS 2003 International Conference on Information Technology and Natural Sciences

Offering (c1, j5, no_of_places)
Job (j5, programmer)

C1←Offering (c1, J, no_of_places) ∧Job (J, technician)
Preventing company c1 from offering technician jobs

C2←¬Offering (c1, J, no_of_places) ∧Job (J,
programmer)

Requiring company c1 to offer all programmer jobs.
Consider this update operation:
T=Δjob (j5, technician)
Update operation will violate C1 and can be repaired
by:

∇Offering (c1, j5, no_of_places), but this repair action
will violate C2, since Job (j5, programmer) is true in the
database, so the complete repair would be:
∇Offering (c1, j5, no_of_places) ∧∇Job (j5,
programmer)

 Finally either we delete Job (j5, technician) for
repair i.e. ∇Job (j5, technician) or we delete for repair
both Offering (c1, j5, no_of_places) and Job (j5,
programmer) i.e. ∇Offering (c1, j5, no_of_places) ∧∇Job
(j5, programmer)

Δ∇IC← ∇Job (j5, technician) ∨∇Offering (c1,
j5, no_of_places) ∧∇Job (j5, programmer)

5. CONCLUSION

 Increasing the semantic content of the database
model and a separate integrity maintenance subsystem
are two approaches to maintaining integrity in database
systems. The former leads to additional complexity for
the users. The later creates additional overheads for the
system. Separating integrity maintenance subsystem is
more useful in minimizing the complexity faced by the
users, since the overhead on the system can be managed
and carefully optimized. It detects errors caused by
database update operations and computes the repairs for
these errors. The computed repairs are attached to the
original erroneous update operation to create a correct
and complete update operation. Our approach generates
all minimal repairs to be presented to the user or the
system administrator to select one of them to correct the
update operation.

REFERENCES

[1] Ceri, S. and Widom, J. 1990. Deriving Production
Rules for Constraint Maintenance. In Very Large Data
Bases Conference, vol.16, pp.566-577.
[2] Ceri, S., Fraternali, P., Paraborchi, S. and Tanca, L.
1994. Automatic Generation of Production Rules for
Integrity Maintenance. ACM Transaction Database
Systems, vol.19, no.3, pp.366-421.

[3] Gertz M. and Lipeck U.W. 1993. Deriving Integrity
Maintenance Triggers From Transaction Graphs. In
Ninth IEEE Conference Data Eng. pp. 22-30.
[4] Moerkotte, G. and Lockemann, P.C. 1991. Reactive
Consistency Control in Deductive Databases. ACM
Trans. Database Systems, vol. 16, no. 4, pp. 670-702.
[5] Schewe, K.D., Thalheim, B., Schmidt, J.W. and
Wetzel, I. 1993. Integrity Enforcement in Object
Oriented Database. In Modeling Database Dynamics,
pp. 174-195.
[6] Urban, S.D. and Delcambre, L.M. 1990. Constraint
Analysis: A Design Process for Specifying Operations
on Objects. IEEE Trans. Knowledge and Database Eng.
Vol.2, no.4, pp.391-400.
[7] Urban, S.D. and Lim, B.B.L. 1993. An Intelligent
Framework for Active Support of Database Semantics.
Int'1 J. Expert Systems, vol.6, no.1, pp.1-37.
[8] Wuethrich, B. 1993. On Updates and Inconsistency
Repairing in Knowledge Bases. In IEEE Conference of
Data Eng.
[9] Wang, X.Y. 1992. The Development of a
Knowledge-Based Transaction Design Assistant. PhD
Thesis, Department of Computing Mathematics,
University of Wales College of Cardiff, Cardiff (UK).

