
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Anatomy of the Tree Based Strategy for High

Strength Interaction Testing

Mohammad F. J. Klaib

Computer Science Department

College of Computer Sciences and Engineering

Taibah University

Madina, Kingdom of Saudi Arabia

 Email: mklaib@taibahu.edu.sa

 mom_klaib@yahoo.com

Abstract—The amount of resources consumed for a complete and exhaustive testing becomes unreasonable and unaffordable. While

it is vital to assure the quality and the reliability of any system, it is impossible to do an exhaustive testing due to the huge number of

possible combinations. To bring a balance between exhaustive testing and lack of testing combinatorial interactions testing has been

adopted. Although it is stated in literature that a complete pairwise interaction testing ensures the detection of 50–97 percent of faults, it

is not sufficient to stop with pairwise testing alone for highly interactive systems. Therefore, there is a need to extend the level of testing

for a general multi way combinatorial interactions testing. This paper enhanced the previous strategies “A tree based strategy for test

data generation and cost calculation” and “3-way interaction testing using the tree strategy” to support a general multi-way combinatorial

interaction testing involving uniform and non uniform parametric values. In this strategy, two algorithms have been adopted; a tree

construction algorithm which constructs the possible test cases and an iterative cost calculation algorithm that constructs efficient multi-

way test suites which cover all parameter interactions between input components. Both algorithms are presented in details.

Keywords— Software testing, Hardware testing, Multi-way testing

I. INTRODUCTION

Testing [1] is an activity aims to evaluate the attributes or
capabilities of software or hardware products, and determines if
the products have met their requirements. Testing in general is a
very important phase of the development cycle for both software
and hardware products [2-5]. Testing helps to reveal the hidden
problems in the product, which otherwise goes unnoticed
providing a false sense of well-being. It is said to cover 40 to 50
percent of the development cost and resources [6,7]. Although
important to quality and widely deployed by programmers and
testers, testing still remains an art. A good set of test data is one
that has a high chance of uncovering previously unknown errors
at a faster pace. For a successful test run of a system, we need to
construct a good set of test data covering all interactions among
system components [34-39].

Failures of hardware and software systems are often caused
due to unexpected interactions among system components. The
failure of any system may be catastrophic that we may lose very
important data or fortunes or sometimes even lives [7,8]. The
main reason for failure is the lack of proper testing. A complete
test requires testing all possible combinations of interactions,
which can be exorbitant even for medium sized projects due to
the huge number of combinations (Combinatorial explosion
problem).

Combinatorial Explosion – All products are built with basic
elements which interact with one another by means of
predefined combination rules. As the number of classes of
elements increases, the number of interactions between the
elements also increases exponentially [9-11] which leads to the

problem of combinatorial explosion. Thus, combinatorial
explosion [21,22] occurs when a huge number of possible
combinations are produced by increasing the number of entities
or elements, which have to interact with one another for
successful functioning of a product.

To gain a better understanding of this problem, we consider
a simple example of testing a 16-1 multiplexer. A multiplexer or
mux is a device that selects one of many analog or digital input
signals and forwards the selected input to a single output line. A
multiplexer of 2n inputs has n select lines, which are used to
select which input line will be directed the output. Fig. 1 below
shows a black box of 16-1 multiplexer. In order to exhaustively
test such a multiplexer, there are 220 (i.e. 1048576) combinations
of tests that needs to be performed. If the time required for one
test to be executed is 5 minutes, then it would take nearly 10
years for a complete test to be done. Thus, the amount of
resources consumed for a complete and exhaustive testing of the
system becomes unreasonable and unaffordable [12,13]. While
it is vital to assure the quality and the reliability of the system, it
is impossible to do an exhaustive testing due to the
combinatorial explosion problem. Therefore, it is very clear that
combinatorial explosion is a serious and critical issue that all
software and hardware testers face.

Fig 1 16-1 Multiplexer

Page | 698

mailto:mklaib@taibahu.edu.sa

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Thus, to bring a balance between exhaustive testing and lack

of testing, combinatorial interaction testing [14-16] has
demonstrated to be an effective technique to achieve reduction
of test suite size, thus relieving the problem of combinatorial
explosion. Combinatorial interaction testing, samples the
systems input space and produces a set of factor-value bindings
that typically cover all possible pairs or multi-way combinations
of factor-values, thereby achieving a high-degree of coverage
and fault detection [17].

Testing all pairwise (2-way) interactions between input
components ensure the detection of 50 – 97 percent of faults [17-
19], [24-30]. Although using pairwise testing gives a good
percentage of reduction in fault coverage, empirical studies
show that pairwise testing is not sufficient enough for highly
interactive systems [23]. Therefore, there is a need to extend the
level of testing to support higher muti-way combinatorial
interactions, which requires every combination of any T
parameter values to be covered by at least one test case, where
T is referred to as the strength of coverage. Constructing a
minimum test set for multi-way combinatorial interaction is still
a NP complete problem [19,20] and there is no strategy that can
claim that it has the best generated test suite size for all cases and
systems.

Therefore, based on the above argument, this new work
extends our previous strategy “A Tree Based Strategy for Test
Data Generation and Cost Calculation” to go beyond pairwise
combinatorial interaction testing involving uniform and non-
uniform parametric values. We have two algorithms, a tree
generation algorithm which generates the test cases and an
iterative cost calculation algorithm which enables a minimum
multi-way test data generation. The remainder of this paper is
organized as follows. Section 2 presents the related work. In
Section 3, the proposed tree generation and the iterative cost
calculation strategies are illustrated and the correctness of both
strategies have been proved with an example. Section 4 provides
the conclusion.

II. RELATED WORK

There are a number of strategies proposed in literature for
test suite generation of combinatorial interaction testing. Most
of these strategies work only for pairwise combinatorial
software interaction testing and a few others have been extended
to work for T-way testing. Combinatorial interaction testing
strategies could be broadly classified into two types [31] based
on the approach that is used to solve the problem. They are:

 Algebraic strategies

 Computational strategies

 Algebraic approaches have pre-defined rules to compute
test suites directly from mathematical functions [31]. On a
contrary, computational approaches use search technique to
search the combinations space to generate the test cases until all
T-way combinations of interactions to be covered. A number of

researches have worked in this field and have adopted either the
computational or algebraic approaches.

 The classification of strategies used for combinatorial
software testing has been further extended by Grindal et al. [19,
20] into three main categories based on the randomness of the
implemented solution. They are:

 Deterministic strategies

 Non-deterministic strategies

 Compound strategies

 A deterministic strategy is one which has the property that

it produces the same test suite for every execution. A non-
deterministic strategy on the other hand has the property that for
every execution, there is always a randomly generated
combination suite to cover all the required T-way combinations.
In a compound strategy two or more combination of strategies
are used together.

 The Automatic Efficient Test Generator or AETG [9, 14]
and its variant mAETG [31] employ the computational
approach. This approach uses ‘Greedy technique’ to construct
test cases based on the criteria that every test case covers as
many uncovered combinations as possible. The AETG uses a
random search algorithm and hence the test cases are generated
in a highly non-deterministic fashion [22]. Other variants of
AETG use the Genetic Algorithm, Ant Colony Algorithm [20].

 In Genetic algorithm [20] an initial population of
individuals (test cases) are created and then the fitness of the
created individuals is calculated. Then the individual selection
methods are applied to discard the unfit individuals. The genetic
operators such as crossover and mutation are applied to the
selected individuals and this continues until we evolve a set of
best individuals or the stopping criteria is attained. Thus this
approach follows a non deterministic methodology similar to the
Ant Colony Algorithm [20] in which each path from start to end
point is associated with a candidate solution. The candidate
solution is the amount of pheromone deposited on each edge of
the path followed by an ant, when it reaches the end point. When
an ant has to choose among the different edges, it would choose
the edge with a large amount of pheromone with higher
probability thus leading to better results. In some cases, these
algorithms give optimal solution than original AETG.

 The In-Parameter-Order [25] or IPO Strategy for pairwise
testing starts constructing the test cases by considering the first
two parameters, then uses a horizontal growth strategy which
extends to cover the third, fourth, fifth etc. until all the
parameters are considered. Further it adopts a vertical growth
strategy which helps in covering all the pairs that are not
covered, until all the pairs in the covering array are covered.
Thus this approach generates the test cases in a deterministic
fashion. Covering one parameter at a time gives a lower order of
complexity to this strategy than AETG. The IPOG [8, 16]
strategy extends IPO, so that IPOG can generate test suite
supporting T-way combinatorial interactions. The IRPS Strategy
[33] uses the computational approach and so generates all pairs
and stores them in a linked list and then searches the list to arrive
at the best set of test cases in a deterministic fashion.

Page | 699

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

 The G2Way [13] uses a computational and deterministic
strategy. It adopts a backtracking strategy to generate the test
cases. The main algorithms that form the G2Way strategy
consist of the parser algorithm, the 2-way combination
generation algorithm, the backtracking algorithm, and the
executor algorithm. The parser algorithm will load the parameter
and values to be used by the 2-way combination generation

algorithm which generates the 2-way covering array. Exploiting
the result generated by the combination generation algorithm,
the backtracking algorithm generates the 2-way test sets in two
phases. In the first phase, the sets generated by the combination
generation algorithm are merged together to form complete test
suites. In the second phase, all the test sets in the generated test
suite are checked to ensure that all the combinations in the
covering array are covered. GTWay adopts the same strategies
as that of G2Way but generates test suites for general and high
T-way combinatorial interaction strengths.

The TConfig [28] uses a deterministic approach to construct
test suites for T-way testing. It uses a recursive algorithm for
pairwise interaction testing and a version of IPO for T-way
testing. TConfig was mainly developed for pairwise interaction
test suite generation by applying the theory of orthogonal Latin
squares from balanced statistical experiments. Jenny [29] is a
tool similar to AETG, which first covers single features (one
way interaction), then pairs (2-way interaction) of features, then
triples (3-way interaction), and so forth up to the n-tuples
requested by the user. During each pass it checks whether the
existing tests cover all tuples, and if not, make a list of uncovered
tuples and add more tests until all tuples are covered. It tries to
find test cases that obey the restrictions and cover a lot of new
tuples. Any tuple that it can't cover no matter how hard it tries
without disobeying some restriction, it says it can't cover it, and

adds it to the list of restrictions. Thus it uses a computational and
deterministic approach for test suite generation.

WHITCH is IBM’s Intelligent Test Case Handler. With the
given coverage properties it uses combinatorial algorithms to
construct test suites over large parameter spaces. TVG [30] is a
free tool that is built based on model based techniques. It
combines both behavior and data modelling techniques. The

behavior modelling allows the testers to capture important high
level scenarios to test. A data model is then created at a level of
sophistication according to the importance of each test scenario.

Other researchers have adopted heuristic search techniques
[32] such as Hill climbing, Simulated Annealing, Tabu search,
Great Flood etc. All of these search strategies have the same goal
as to maximize the number of tuples covered in a test. It initially
uses greedy algorithm to choose each test and then it is modified
using local search. These Heuristic search techniques predict the
known test set in advance in contrast to AETG and IPO which
builds the test set from the scratch. However, there is no
guarantee that the test set produced by Heuristic techniques are
the most optimum. The AETG or IPO takes longer time to
complete when compared to the Heuristic techniques. Although
some work has been done in the past by researchers, test suite
generation for combinatorial interaction testing still remains a
research area and NP complete problem that needs exploration.

III. THE PROPOSED STRATEGY

The proposed strategy starts by constructing the test-tree
based on the input parameters and values. Then it constructs the
covering array, which includes all possible multi-way
combinations of input variables. In order to construct the test-

Fig. 2 Test-Tree Construction

Page | 700

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

tree it considers one parameter at a time until all the values of all
the parameters are considered. To illustrate the concept consider
a simple system with parameters and values as shown below:

Parameter A has two values A1 and A2

Parameter B has one value B1

Parameter C has three values C1, C2 and C3

Parameter D has two values D1 and D2

We have given the illustration for minimum test suite
construction of 2-way and 3-way combinatorial interactions
using our algorithm, for the example in Fig. 2 above, which
depicts the system mentioned. The tree generation algorithm
starts by constructing the test-tree. It uses the values of the first
parameter to construct the base branches of the test-tree. Then it
uses all the values of the second parameter for the next level and
then the third and so on. Thus, the tree is constructed iteratively
until all the parameters are considered. As a result we get all
possible test cases generated for all the parameters by
considering all its values.

Fig. 2 above shows how the test-tree would be constructed.
The test cases generated by the test-tree are stored in the list T
in a sequential order i.e. T1(A1,B1,C1,D1), T2(A1,B1,C1,D2),
T3(A1,B1,C2,D1), T4(A1,B1,C2,D2), T5(A1,B1,C3,D1),
T6(A1,B1,C3,D2), T7(A2,B1,C1,D1), T8(A2,B1,C1,D2),
T9(A2,B1,C2,D1), T10(A2,B1,C2,D2), T11(A2,B1,C3,D1)
and T12 (A2,B1,C3,D2).

The algorithm then constructs the covering array, for all
possible 2-way combinations of input variables. Table 1 shows
the covering array for pairwise combinations i.e. [A & B], [A &
C], [A & D], [B & C], [B & D] and [C & D]. The covering array
for the above example has 23 pairwise interactions which have
to be covered by any test suite generated, to enable a complete
pairwise interaction testing of the system.

Once the test-tree construction is over we have all the test
cases generated. The next step generates the covering array, after
which the cost array corresponding to the number of test cases
(or leaf nodes) is created and initialised to some high value.
Then, the cost calculation begins. The algorithm first calculates
the maximum cost or maximum number of pairs that can be

covered by any test case for the given set of parameters and
values. Then it iterates to calculate the cost of each and every
leaf node which represents the test cases, in a sequential order.
The cost of any leaf node or test case is equal to the number of
pairs that it covers in the covering array.

TABLE 1. PAIRWISE INTERACTION COVERING ARRAY

A with B A with C A with D B with C B with D C with D

A1,B1 A1,C1 A1, D1 B1,C1 B1, D1 C1, D1

A2,B1 A1,C2 A1, D2 B1,C2 B1, D2 C1, D2

 A1,C3 A2, D1 B1,C3 C2, D1
 A2,C1 A2, D2 C2, D2

 A2,C2 C3, D1

 A2,C3 C3, D2

Once it reaches a leaf node with the maximum cost, it deletes
this leaf node from the list of leaf nodes generated by the test-
tree i.e. T and includes this node or test case into the new list T’
which holds all the test cases that are to be included in the test
suite. It also deletes all the pairs that this test case has covered
from the covering array. In the above example, when the first
iteration begins, the first leaf node (A1,B1,C1,D1) will be
deleted from T and added to T’ since it has a cost equals the
maximum cost 6 and the six pairs covered by it ([A1,B1],
[A1,C1], [A1,D1], [B1,C1], [B1,D1] and [C1,D1]) will be
deleted from the covering array. Thus, the first leaf node (or test
case) generated by the test-tree will always have the maximum
cost and is said to be included in T’ by default for any system.

The algorithm will then continue calculating the cost of all
the leaf nodes in a sequential order and includes the ones having
the maximum cost. If all the pairs in the covering array are
covered then the algorithm stops else it goes to the second
iteration. In the second iteration, the maximum cost value
(Wmax) will be decreased by one and the next set of best test
cases (i.e. test cases that can cover the new Wmax number of the
covering array. Thus, the algorithm continues until all the pairs
in the covering array are covered. For the above example all the
test cases which are included in the test suite are identified in
four iterations and there are six such test cases.

Table 2 shows how the cost calculation algorithm works
iteratively to generate the test suite. Table 2 also shows the order
in which the various test cases are actually included in the test
suite. Thus, all the 23 pairs generated for covering all pairwise

TABLE2. GENERATED TEST SUITE FOR PAIRWISE COMBINATORIAL INTERACTION

Test Case No. Test Case Iteration
Max

Weight
Covered pairs

T1 A1,B1,C1,D1 1 6
[A1,B1][A1,C1][A1,D1]
[B1,C1][B1,D1][C1,D1]

T10 A2,B1,C2,D2 1 6
[A2,B1][A2,C2][A2,D2]

[B1,C2][B1,D2][C2,D2]

T6 A1,B1,C3,D2 2 4
[A1,C3][A1,D2]

[B1,C3][C3,D2]

T11 A2,B1,C3,D1 3 3 [A2,C3] [A2,D1] [C3,D1]
T3 A1,B1,C2,D1 4 2 [A1,C2] [C2,D1]

T8 A2,B1,C1,D2 4 2 [A2,C1] [C1,D2]

Page | 701

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

interactions as shown in Table 1, has been covered by the test
cases generated by our algorithm as shown in the fifth column
of the Table2. Thus this proves the correctness of our strategy in
generating pairwise test suite. We have also proved that our
algorithm is efficient in achieving a good reduction in the
number of test cases. The exhaustive number of test cases is 12
and we have generated 6 test cases which covers all the pairs in
the covering array thus achieving a 50% reduction in this case.

After the pairwise test suite is generated, we move to the next
iteration where we generate the test suite for 3-way
combinatorial interactions and so on and so forth until (n-1) way
combinatorial interaction test suite is generated. To illustrate the
3-way test suite generation, again the whole process starts by
constructing the 3-way covering array and the iterative cost
calculation of the test cases in a sequential order as explained
before. Table 3 shows the covering array for 3-way combination

i.e. [A, B, C], [A, B, D], [A, C, D] and [B, C, D], for the example
in Fig. 2. The covering array for the above example has 28
combinations of 3-ways interactions which have to be covered
in the final test suite. Table 4 shows how the cost calculation
algorithm works iteratively to generate the test suite. It also
shows the order in which the various test cases are actually
included in the test suite. All the 28 3-way combinations in the
covering array have been covered by our algorithm. Thus, the
correctness of our strategy for 3-way interaction coverage has
been proved.

A. Test—Tr ee Construction Algorithm

The tree generation strategy thus provides the following
advantages:

 A systematic method whereby all possible test cases are
generated in order.

 The above procedure works well for both parameters with
uniform and non-uniform values. Therefore all parameters
can have different or same values as any real time system to
be tested would have.

TABLE3. 3-WAY INTERACTION COVERING ARRAY

A, B, C A, B, D A, C, D B, C, D

A1, B1, C1 A1, B1, D1 A1, C1, D1 B1,C1, D1
A1, B1,C2 A1, B1,D2 A1, C1, D2 B1,C1, D2

A1, B1,C3 A2, B1,D1 A1, C2, D1 B1,C2, D1

A2, B1,C1 A2, B1,D2 A1, C2, D2 B1,C2, D2
A2, B1,C2 A1, C3, D1 B1,C3, D1

A2, B1,C3 A1, C3, D2 B1,C3, D2

 A2, C1, D1
 A2, C1, D2

 A2, C2, D1

 A2, C2, D2
 A2, C3, D1

 A2, C3, D2

TABLE4. GENERATED TEST SUITE FOR 3-WAY COMBINATORIAL INTERACTION

Test Case

No.
Test Case Iteration

Max

Weight
Covered pairs

T1 A1,B1,C1,D1 1 4 [A1,B1,C1][A1,B1,D1][A1,C1,D1][B1,C1,D1]

T4 A1,B1,C2,D2 1 4 [A1,B1,C2][A1,B1,D2][A1,C2,D2][B1,C2,D2]
T8 A2,B1,C1,D2 1 4 [A2,B1,C1][A2,B1,D2][A2,C1,D2][B1,C1,D2]

T9 A2,B1,C2,D1 1 4 [A2,B1,C2][A2,B1,D1][A2,C2,D1][B1,C2,D1]

T5 A1,B1,C3,D1 2 3 [A1,B1,C3][A1,C3,D1][B1,C3,D1]
T12 A2,B1,C3,D2 2 3 [A2,B1,C3][A2,C3,D2][B1,C3,D2]

T2 A1,B1,C1,D2 3 1 [A1,C1,D2]

T3 A1,B1,C2,D1 3 1 [A1,C2,D1]
T6 A1,B1,C3,D2 3 1 [A1,C3,D2]

T7 A2,B1,C1,D1 3 1 [A2,C1,D1]

T10 A2,B1,C2,D2 3 1 [A2,C2,D2]
T11 A2,B1,C3,D1 3 1 [A2,C3,D1]

Page | 702

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

 The algorithm generates only a set of leaf nodes at every
stage, although it appears as if the entire tree gets generated
in order to minimise the space requirements. Therefore we
only have a list of leaf nodes (or test cases) when the
algorithm ends.

The example tree shown in Fig. 2 explains how the test cases
are constructed manually. In reality we may need only the leaf
nodes and all the intermediate nodes are not used. Therefore in
order to increase the efficiency and to minimise memory
allocation, we have constructed the tree shown in Fig. 2 using
the proposed tree generation algorithm, which constructs the tree
by minimising the number of nodes and by giving importance to
only the leaf nodes at every stage.

Therefore, at each stage or iteration we look at the leaf nodes
of the tree and generate the next level nodes by considering all
the values of the current parameter to generate the new set of
nodes. The new set of leaf nodes from an already existing set is
calculated using a replication strategy. If the existing set of leaf
nodes is Esoln, new set of leaf nodes is Nsoln and the number of
values of the parameter under consideration is n. Then,

Nsoln = Esoln * n (1)

Assume there are 6 leaf nodes in existing set (i.e. Esoln= 6),
and the next parameter to be considered has 2 values (i.e. n=2).
Then based on Equation 1 the new list of nodes will have 12 new
leaf nodes as a result (i.e. Nsoln=12). Therefore at every stage
of tree construction, the algorithm considers each and every
existing leaf node separately and calculates the number of times
this particular node needs to be replicated in order to get the new
set of leaf nodes with the formulae given below:

 The number of values of pi – 1

(2)

Where pi – is the ith parameter under consideration for

constructing the new set of leaf nodes and i=1,2,….N – the
number of parameters.

In Figure 2, consider the existing nodes (A1, B1) and (A2,
B1). To construct the next level of nodes the parameter under
consideration is C which has values C1, C2 and C3. Therefore,
the node (A1, B1) needs to be replicated twice. Now we will

have three (A1, B1) nodes to which C1 is added to the first, C2
is added to the second and C3 is added to the third and then the
two replicated nodes are included in the list of leaf nodes after
the original node and before the node (A2, B1). The same is done
to (A2, B1). It is replicated twice and hence we have three of it
(one original and two replicated nodes). Now C1 is added to the
first (original node), C2 is added to the second (replicated node)
and C3 is added to the third (replicated node). Thus we have (A2,
B1, C1), (A2, B1, C2) and (A2, B1, C3). The same process is

Fig. 3 Test Tree Construction Algorithm

Strategy Tree generation

Begin

 for the first parameter p1

 T = {(v1), (v2)……(vj) / v1, v2 and vj are values of p1 and are sequentially connected}

 If n=1 then stop;

 f or the remaining parameters

 For parameter pi, i = 2,3,……n

 do

 Begin
 For each Test (v1, v2,……, vj) in T do

 Begin

Replicate the Test as many times as (the number of values of pi – 1)

 Add all the replicated nodes sequentially after the current original test node and before the other Test nodes

 For each value in pi do
 Begin

Append the original with v1 and all the replicated tests with (v2, v3……vi-1, vi) Where vi is a value of pi and each of which is considered in order

 End

 End

 End

End

Page | 703

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

done to construct the test-tree until all the parameters are
considered. Thus, once the list of leaf nodes is generated by
considering all the values of all the parameters, we proceed to
the next strategy of iterative cost calculation to construct the test
suite.

B. Iterative Cost Calculation Strategy

In Figure 4, the outer loop iterates N-2 times through the list
of test cases to generate N-2 test suites, i.e. 2-way, 3-way, 4-way
etc. until (N-1) way. For every T-way (i.e. 2-way, 3-way, 4-way
etc. until (N-1) way) test suite to be generated, the inner loop of
the algorithm iterates until all the combinations of the
corresponding T-way covering array are covered. During each
iteration, all the test cases with the maximum cost (Wmax) will
be included in the test suite. Thus the algorithm guarantees
identifying a minimum set of test cases for parameters with
uniform and non-uniform values.

IV. CONCLUSION

In this paper we extend and improve our previous strategy, “A

Tree Based Strategy for Test Data Generation and Cost

Calculation” to support higher testing strength interactions. The

proposed strategy is based on two algorithms. A tree

construction algorithm which constructs the possible test cases

and an iterative cost calculation algorithm that constructs

efficient multi-way test suites which cover all possible

combinatorial interactions between input components. The

correctness of the proposed strategy has been proved in Tables

2 and 4.

REFERENCES

[1] C. Kaner, "Exploratory Testing," in Proc. of the Quality Assurance

Institute Worldwide Annual Software Testing Conference, Orlando, FL,
2006.

[2] R. Bryce, C. J. Colbourn, and M. B. Cohen, "A Framework of Greedy
Methods for Constructing Interaction Tests," in Proc. of the 27th
International Conference on Software Engineering, St. Louis, MO, USA,
2005, pp. 146-155.

[3] F. F. Tsui and O. Karam, Essentials of Software Engineering.
Massachusetts, USA: Jones and Bartlett Publishers, 2007.

[4] L. G. Hernandez, J. T Jimenez, N. R Valdez, J. B. Rios, "A Post-
optimization Strategy for Combinatorial Testing: Test Suite Reduction
through the Identification of Wild Cards and Merge of Rows", in
Advances in Computational Intelligence Lecture Notes in Computer
Science vol. 7630, 2013pp 127-138.

[5] J. Zhou, J. Liu, J. Wu, and G. Zhong, "A Latent Implementation Error

Detection Method for Software Validation", Journal of Applied
Mathematics. 2013pp 1-10.

[6] B. Beizer, Software Testing Techniques, 2 ed. NY: Thomson Computer
Press, 1990.

[7] M.F.J. Klaib, K.Z. Zamli, N.A.M. Isa, M.I. Younis, "G2Way A
Backtracking Strategy for Pairwise Test Data Generation" Software
Engineering Conference, 2008. APSEC 08, 2008, pp. 463 – 470.

[8] K. Z. Zamli, M. F.J. Klaib, M. I. Younis, N. A. M. Isa, R. Abdullah,
"Design and implementation of a t-way test data generation strategy with

Fig. 4 Cost Calculation Algorithm

Strategy T-Way Test Suite Generation by Iterative Cost Calculation

Begin
 Temp = T

 For i= 2 to N-1 do

 Begin

 Generate i-way covering array for the given parameters.

 Create a cost array corresponding to the T list.

 Initialise each element in the cost array to infinity (highest value).
 Let T’ be an empty set.

 Wmax = N!/((i!)*((N-i)!)) // N – is the number of parameters

 While (covering array is not empty) do
 Begin

 For each Test Tj in T do // j =1, 2,…n where there are n test cases in T

 Begin

 Mark all i-way combinations that Tj covers in the covering array

 Cost[Tj] = The number of i-way combinations covered in the covering array

 If (Cost[Tj] = = Wmax)
 Begin

 T’ = T’ U Tj

 Delete Tj from T and its corresponding cost from the cost array
 Delete all the marked pairs from the covering array

 End

 Unmark all i-way combinations marked in the covering array
 End

 Wmax--;

 End
 Store the minimum i-way Test set T’ that is generated

 T = Temp

 End

End

Page | 704

http://www.sciencedirect.com/science/article/pii/S002002551100003X
http://www.sciencedirect.com/science/article/pii/S002002551100003X
http://www.sciencedirect.com/science/article/pii/S002002551100003X
http://www.sciencedirect.com/science/article/pii/S002002551100003X
http://www.sciencedirect.com/science/article/pii/S002002551100003X

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0120 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

automated execution tool support". Journal of Information Sciences. vol
181(9), 2011, pp. 1741–1758.

[9] S. Khatun, K. F. Rabbi, C. Y. Yaakub and M. F. J Klaib, "A Random
Search Based Effective Algorithm for Pairwise Test Data Generation" in
proc. of IEEE International Conference on Electrical Control and
Computer Engineering 2011, Kuantan, Malaysia, 2011,pp 293 - 297.

[10] X. Qu and M. B. Cohen. " A study in prioritization for higher strength
combinatorial testing". The 2nd International Workshop on
Combinatorial Testing, 2013.

[11] T. Nanba, T. Tsuchiya, and T. Kikuno. "Using satisfiability solving for
pairwise testing in the presence of constraints". IEICE Transactions, vol
95(9), 2012, pp.1501–1505.

[12] D. K. R. Chaudhuri and T. Zhu, "A Recursive Method for Construction
of Designs," Discrete Mathematics - Elsevier, vol. 106, 1992, pp. 399-
406.

[13] M. F. J. Klaib, K. Z. Zamli, N. A. M. Isa, M. I. Younis, and R. Abdullah,
"G2Way – A Backtracking Strategy for Pairwise Test Data Generation,"
in Proc. of the 15th IEEE Asia-Pacific Software Engineering Conf.,
Beijing, China, 2008, pp. 463-470.

[14] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester. "Test suite
prioritization by cost-based combinatorial interaction coverage".
International Journal of Systems Assurance Engineering and
Management, vol 2(2) , 2011, pp.126–134.

[15] J. Petke, S. Yoo, M. B. Cohen, M. Harman, "Efficiency and early fault
detection with lower and higher strength combinatorial interaction
testing", in Proc.ESEC/FSE 2013 Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pp. 26-36, USA, 2013.

[16] S. Varshney, M. Mehrotra. Search based software test data generation for
structural testing: a perspective, in ACM SIGSOFT Software Engineering
Notes archive, vol 38 (4), NY, USA , 2013, pp. 1-6.

[17] M. B. Cohen, J. Snyder, and G. Rothermel, "Testing Across
Configurations: Implications for Combinatorial Testing," in Proc. of the
2nd Workshop on Advances in Model Based Software Testing, Raleigh,
North Carolina, USA, 2006, pp. 1-9.

[18] C. J. Colbourn, M. B. Cohen, and R. C. Turban, "A Deterministic Density
Algorithm for Pairwise Interaction Coverage," in Proc. of the IASTED
Intl. Conference on Software Engineerin, Innsbruck, Austria, 2004, pp.
345-352.

[19] K. C. Tai and Y. Lei, "A Test Generation Strategy for Pairwise Testing,"
IEEE Transactions on Software Engineering, vol. 28, 2002, pp. 109-111.

[20] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using Artificial Life Techniques
to Generate Test Cases for Combinatorial Testing," in Proc. of the 28th
Annual Intl. Computer Software and Applications Conf.
(COMPSAC’04), Hong Kong, 2004, pp. 72-77.

[21] Mats Grindal, “Handling Combinatorial Explosion in Software Testing”,
Linkoping Studies in Science and Technology, Dissertation No. 1073,
Sweden, 2007

[22] K. Z. Zamli, N. A. M. Isa, M. F. J. Klaib, Z. H. C. Soh and C. Z. Zulkifli,
"On Combinatorial Explosion Problem for Software Configuration
Testing," in Proc. of the International Robotics, Vision, Information and
Signal Processing Conference (ROVISP2007), Penang, Malaysia, 2007.

[23] R. Kuhn, R. Kacker, Y. Lei, “Combinatorial Software Testing,” IEEE
Transactions on Software Technologies, August 2009, pp. 94-96.

[24] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, "The Automatic
Efficient Test Generator (AETG) System," in Proc. of the 5th
International Symposium on Software Reliability Engineering, Monterey,
CA, USA, 1994, pp. 303-309.

[25] Y. Lei and K. C. Tai, "In-Parameter-Order: A Test Generation Strategy
for Pairwise Testing," in Proc. of the 3rd IEEE Intl. High-Assurance
Systems Engineering Symp., Washington, DC, USA, 1998, pp. 254-261.

[26] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPOD:
Efficient Test Generation for Multi-Way Software Testing,” Journal of
Software Testing, Verification, and Reliability, vol. 18, 2009, pp. 125-
148.

[27] J. Bach, "Allpairs Test Case Generation Tool," Available from:
http://tejasconsulting.com/open-testware/feature/allpairs.html

[28] "TConfig," Available from: http://www.site.uottawa.ca/~awilliam/.

[29] "Jenny," Available from: http://www.burtleburtle.net/bob/math/.

[30] "TVG," Available from: http://sourceforge.net/projects/tvg.

[31] M. B. Cohen, "Designing Test Suites for Software Interaction Testing,"
PhD in Computer Science. New Zealand: University of Auckland, 2004.

[32] M. Grindal, J. Offutt, and S. F. Andler, "Combination Testing Strategies:
a Survey," Software Testing Verification and Reliability, vol. 15, 2005,
pp. 167-200.

[33] M. Grindal, B. Lindstrom, J. Offutty, S. F. Andler, “An Evaluation of
Combination Strategies for Test Case Selection”, Technical Report HS-
IDA-TR-03-001, Department of Computer Science, University of
Skövde, 2003.

[34] D.R. Kuhn, R.N. Kacker and Y. Lei, Combinatorial Coverage as an
Aspect of Test Quality, the Journal of Defense Software
Engineering,2014.

[35] D.R. Kuhn, R.N. Kacker and Y. Lei, Measuring and Specifying
Combinatorial Coverage of Test Input Configurations, Innovations in
Systems and Software Engineering: a NASA journal, 2014.

[36] J. Torres-Jimenez, I. Izquierdo-Marquez, Survey of Covering
Arrays, 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2013), Timisoara,
Romania, 23-26, 2013, pp. 20-27.

[37] R.N. Kacker, D.R. Kuhn, Y. Lei, and J.F. Lawrence, Combinatorial
Testing for Software: an Adaptation of Design of
Experiments,Measurement, vol. 46, no. 9, 2013, pp. 3745-3752.

[38] X. Niu, C. Nie, Y. Lei, A.T.S. Chan, Identifying Failure-Inducing
Combinations Using Tuple Relationships, 2nd International Workshop on
Combinatorial Testing (IWCT 2013), in Proceedings of the Sixth IEEE
International Conference on Software, Testing, Verification and
Validation (ICST 2013), Luxembourg, March 18-22, 2013, pp. 271-280.

[39] M.N. Borazjany, L.S.G. Ghandehari, Y. Lei, R.N. Kacker and D.R.
Kuhn,An Input Space Modeling Methodology for Combinatorial
Testing, 2nd International Workshop on Combinatorial Testing (IWCT
2013), in Proceedings of the Sixth IEEE International Conference on
Software, Testing, Verification and Validation (ICST 2013),
Luxembourg, March 18-22, 2013, pp. 372-381.

Page | 705

http://www.sciencedirect.com/science/journal/00200255/181/9
http://www.sciencedirect.com/science/journal/00200255/181/9
http://tejasconsulting.com/open-testware/feature/allpairs.html
http://www.site.uottawa.ca/~awilliam/
http://www.burtleburtle.net/bob/math/
http://sourceforge.net/projects/tvg

	Software Engineering
	CR-ICIT15224
	CR-ICIT15236
	CR-ICIT15254
	CR-ICIT15283
	CR-ICIT15455
	CR-ICIT15467
	CR-ICIT15536
	CR-ICIT15580

