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Abstract—The amount of resources consumed for a complete and exhaustive testing becomes unreasonable and unaffordable. While 

it is vital to assure the quality and the reliability of any system, it is impossible to do an exhaustive testing due to the huge number of 

possible combinations. To bring a balance between exhaustive testing and lack of testing combinatorial interactions testing has been 

adopted. Although it is stated in literature that a complete pairwise interaction testing ensures the detection of 50–97 percent of faults, it 

is not sufficient to stop with pairwise testing alone for highly interactive systems. Therefore, there is a need to extend the level of testing 

for a general multi way combinatorial interactions testing. This paper enhanced the previous strategies  “A tree based strategy for test 

data generation and cost calculation”  and “3-way interaction testing using the tree strategy” to support a general multi-way combinatorial 

interaction testing involving uniform and non uniform parametric values. In this strategy, two algorithms have been adopted; a tree 

construction algorithm which constructs the possible test cases and an iterative cost calculation algorithm that constructs efficient multi-

way test suites which cover all parameter interactions between input components. Both algorithms are presented in details. 

Keywords— Software testing, Hardware testing, Multi-way testing 

I.  INTRODUCTION 

Testing [1] is an activity aims to evaluate the attributes or 
capabilities of software or hardware products, and determines if 
the products have met their requirements. Testing in general is a 
very important phase of the development cycle for both software 
and hardware products [2-5]. Testing helps to reveal the hidden 
problems in the product, which otherwise goes unnoticed 
providing a false sense of well-being. It is said to cover 40 to 50 
percent of the development cost and resources [6,7]. Although 
important to quality and widely deployed by programmers and 
testers, testing still remains an art. A good set of test data is one 
that has a high chance of uncovering previously unknown errors 
at a faster pace. For a successful test run of a system, we need to 
construct a good set of test data covering all interactions among 
system components [34-39].   

Failures of hardware and software systems are often caused 
due to unexpected interactions among system components. The 
failure of any system may be catastrophic that we may lose very 
important data or fortunes or sometimes even lives [7,8]. The 
main reason for failure is the lack of proper testing. A complete 
test requires testing all possible combinations of interactions, 
which can be exorbitant even for medium sized projects due to 
the huge number of combinations (Combinatorial explosion 
problem).  

Combinatorial Explosion – All products are built with basic 
elements which interact with one another by means of 
predefined combination rules. As the number of classes of 
elements increases, the number of interactions between the 
elements also increases exponentially [9-11] which leads to the 

problem of combinatorial explosion. Thus, combinatorial 
explosion [21,22] occurs when a huge number of possible 
combinations are produced by increasing the number of entities 
or elements, which have to interact with one another for 
successful functioning of a product.  

To gain a better understanding of this problem, we consider 
a simple example of testing a 16-1 multiplexer. A multiplexer or 
mux is a device that selects one of many analog or digital input 
signals and forwards the selected input to a single output line. A 
multiplexer of 2n inputs has n select lines, which are used to 
select which input line will be directed the output. Fig. 1 below 
shows a black box of 16-1 multiplexer. In order to exhaustively 
test such a multiplexer, there are 220 (i.e. 1048576) combinations 
of tests that needs to be performed. If the time required for one 
test to be executed is 5 minutes, then it would take nearly 10 
years for a complete test to be done. Thus, the amount of 
resources consumed for a complete and exhaustive testing of the 
system becomes unreasonable and unaffordable [12,13]. While 
it is vital to assure the quality and the reliability of the system, it 
is impossible to do an exhaustive testing due to the 
combinatorial explosion problem. Therefore, it is very clear that 
combinatorial explosion is a serious and critical issue that all 
software and hardware testers face.  

 

 
Fig 1 16-1 Multiplexer 
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Thus, to bring a balance between exhaustive testing and lack 

of testing, combinatorial interaction testing [14-16] has 
demonstrated to be an effective technique to achieve reduction 
of test suite size, thus relieving the problem of combinatorial 
explosion. Combinatorial interaction testing, samples the 
systems input space and produces a set of factor-value bindings 
that typically cover all possible pairs or multi-way combinations 
of factor-values, thereby achieving a high-degree of coverage 
and fault detection [17]. 

Testing all pairwise (2-way) interactions between input 
components ensure the detection of 50 – 97 percent of faults [17-
19], [24-30]. Although using pairwise testing gives a good 
percentage of reduction in fault coverage, empirical studies 
show that pairwise testing is not sufficient enough for highly 
interactive systems [23]. Therefore, there is a need to extend the 
level of testing to support higher muti-way combinatorial 
interactions, which requires every combination of any T 
parameter values to be covered by at least one test case, where 
T is referred to as the strength of coverage. Constructing a 
minimum test set for multi-way combinatorial interaction is still 
a NP complete problem [19,20] and there is no strategy that can 
claim that it has the best generated test suite size for all cases and 
systems.  

Therefore, based on the above argument, this new work 
extends our previous strategy “A Tree Based Strategy for Test 
Data Generation and Cost Calculation” to go beyond pairwise 
combinatorial interaction testing involving uniform and non-
uniform parametric values. We have two algorithms, a tree 
generation algorithm which generates the test cases and an 
iterative cost calculation algorithm which enables a minimum 
multi-way test data generation. The remainder of this paper is 
organized as follows. Section 2 presents the related work. In 
Section 3, the proposed tree generation and the iterative cost 
calculation strategies are illustrated and the correctness of both 
strategies have been proved with an example. Section 4 provides 
the conclusion. 

  

II. RELATED WORK 

There are a number of strategies proposed in literature for 
test suite generation of combinatorial interaction testing. Most 
of these strategies work only for pairwise combinatorial 
software interaction testing and a few others have been extended 
to work for T-way testing. Combinatorial interaction testing 
strategies could be broadly classified into two types [31] based 
on the approach that is used to solve the problem. They are: 

 Algebraic strategies 

 Computational strategies 
 

   Algebraic approaches have pre-defined rules to compute 
test suites directly from mathematical functions [31]. On a 
contrary, computational approaches use search technique to 
search the combinations space to generate the test cases until all 
T-way combinations of interactions to be covered. A number of 

researches have worked in this field and have adopted either the 
computational or algebraic approaches.  

   The classification of strategies used for combinatorial 
software testing has been further extended by Grindal et al. [19, 
20] into three main categories based on the randomness of the 
implemented solution. They are: 

 Deterministic strategies 

 Non-deterministic strategies  

 Compound strategies 

 
   A deterministic strategy is one which has the property that 

it produces the same test suite for every execution. A non-
deterministic strategy on the other hand has the property that for 
every execution, there is always a randomly generated 
combination suite to cover all the required T-way combinations. 
In a compound strategy two or more combination of strategies 
are used together. 

   The Automatic Efficient Test Generator or AETG [9, 14] 
and its variant mAETG [31] employ the computational 
approach. This approach uses ‘Greedy technique’ to construct 
test cases based on the criteria that every test case covers as 
many uncovered combinations as possible. The AETG uses a 
random search algorithm and hence the test cases are generated 
in a highly non-deterministic fashion [22]. Other variants of 
AETG use the Genetic Algorithm, Ant Colony Algorithm [20].  

   In Genetic algorithm [20] an initial population of 
individuals (test cases) are created and then the fitness of the 
created individuals is calculated. Then the individual selection 
methods are applied to discard the unfit individuals. The genetic 
operators such as crossover and mutation are applied to the 
selected individuals and this continues until we evolve a set of 
best individuals or the stopping criteria is attained. Thus this 
approach follows a non deterministic methodology similar to the 
Ant Colony Algorithm [20] in which each path from start to end 
point is associated with a candidate solution. The candidate 
solution is the amount of pheromone deposited on each edge of 
the path followed by an ant, when it reaches the end point. When 
an ant has to choose among the different edges, it would choose 
the edge with a large amount of pheromone with higher 
probability thus leading to better results. In some cases, these 
algorithms give optimal solution than original AETG. 

   The In-Parameter-Order [25] or IPO Strategy for pairwise 
testing starts constructing the test cases by considering the first 
two parameters, then uses a horizontal growth strategy which 
extends to cover the third, fourth, fifth etc. until all the 
parameters are considered. Further it adopts a vertical growth 
strategy which helps in covering all the pairs that are not 
covered, until all the pairs in the covering array are covered. 
Thus this approach generates the test cases in a deterministic 
fashion. Covering one parameter at a time gives a lower order of 
complexity to this strategy than AETG. The IPOG [8, 16] 
strategy extends IPO, so that IPOG can generate test suite 
supporting T-way combinatorial interactions. The IRPS Strategy 
[33] uses the computational approach and so generates all pairs 
and stores them in a linked list and then searches the list to arrive 
at the best set of test cases in a deterministic fashion.  
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   The G2Way [13] uses a computational and deterministic 
strategy. It adopts a backtracking strategy to generate the test 
cases. The main algorithms that form the G2Way strategy 
consist of the parser algorithm, the 2-way combination 
generation algorithm, the backtracking algorithm, and the 
executor algorithm. The parser algorithm will load the parameter 
and values to be used by the 2-way combination generation 

algorithm which generates the 2-way covering array. Exploiting 
the result generated by the combination generation algorithm, 
the backtracking algorithm generates the 2-way test sets in two 
phases. In the first phase, the sets generated by the combination 
generation algorithm are merged together to form complete test 
suites.  In the second phase, all the test sets in the generated test 
suite are checked to ensure that all the combinations in the 
covering array are covered. GTWay adopts the same strategies 
as that of G2Way but generates test suites for general and high 
T-way combinatorial interaction strengths. 

The TConfig [28] uses a deterministic approach to construct 
test suites for T-way testing. It uses a recursive algorithm for 
pairwise interaction testing and a version of IPO for T-way 
testing. TConfig was mainly developed for pairwise interaction 
test suite generation by applying the theory of orthogonal Latin 
squares from balanced statistical experiments. Jenny [29] is a 
tool similar to AETG, which first covers single features (one 
way interaction), then pairs (2-way interaction) of features, then 
triples (3-way interaction), and so forth up to the     n-tuples 
requested by the user. During each pass it checks whether the 
existing tests cover all tuples, and if not, make a list of uncovered 
tuples and add more tests until all tuples are covered. It tries to 
find test cases that obey the restrictions and cover a lot of new 
tuples. Any tuple that it can't cover no matter how hard it tries 
without disobeying some restriction, it says it can't cover it, and 

adds it to the list of restrictions. Thus it uses a computational and 
deterministic approach for test suite generation.  

WHITCH is IBM’s Intelligent Test Case Handler. With the 
given coverage properties it uses combinatorial algorithms to 
construct test suites over large parameter spaces. TVG [30] is a 
free tool that is built based on model based techniques. It 
combines both behavior and data modelling techniques. The 

behavior modelling allows the testers to capture important high 
level scenarios to test. A data model is then created at a level of 
sophistication according to the importance of each test scenario. 

Other researchers have adopted heuristic search techniques 
[32] such as Hill climbing, Simulated Annealing, Tabu search, 
Great Flood etc. All of these search strategies have the same goal 
as to maximize the number of tuples covered in a test. It initially 
uses greedy algorithm to choose each test and then it is modified 
using local search. These Heuristic search techniques predict the 
known test set in advance in contrast to AETG and IPO which 
builds the test set from the scratch. However, there is no 
guarantee that the test set produced by Heuristic techniques are 
the most optimum. The AETG or IPO takes longer time to 
complete when compared to the Heuristic techniques. Although 
some work has been done in the past by researchers, test suite 
generation for combinatorial interaction testing still remains a 
research area and NP complete problem that needs exploration.  

 

III. THE PROPOSED STRATEGY 

The proposed strategy starts by constructing the test-tree 
based on the input parameters and values. Then it constructs the 
covering array, which includes all possible multi-way 
combinations of input variables. In order to construct the test-

 

 
Fig. 2 Test-Tree Construction 
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tree it considers one parameter at a time until all the values of all 
the parameters are considered. To illustrate the concept consider 
a simple system with parameters and values as shown below: 

Parameter A has two values A1 and A2 

Parameter B has one value B1  

Parameter C has three values C1, C2 and C3 

Parameter D has two values D1 and D2 

 

We have given the illustration for minimum test suite 
construction of 2-way and 3-way combinatorial interactions 
using our algorithm, for the example in Fig. 2 above, which 
depicts the system mentioned. The tree generation algorithm 
starts by constructing the test-tree. It uses the values of the first 
parameter to construct the base branches of the test-tree. Then it 
uses all the values of the second parameter for the next level and 
then the third and so on. Thus, the tree is constructed iteratively 
until all the parameters are considered. As a result we get all 
possible test cases generated for all the parameters by 
considering all its values.  

Fig. 2 above shows how the test-tree would be constructed. 
The test cases generated by the test-tree are stored in the list T 
in a sequential order i.e. T1(A1,B1,C1,D1), T2(A1,B1,C1,D2), 
T3(A1,B1,C2,D1), T4(A1,B1,C2,D2), T5(A1,B1,C3,D1), 
T6(A1,B1,C3,D2), T7(A2,B1,C1,D1), T8(A2,B1,C1,D2), 
T9(A2,B1,C2,D1),  T10(A2,B1,C2,D2), T11(A2,B1,C3,D1) 
and T12 (A2,B1,C3,D2). 

The algorithm then constructs the covering array, for all 
possible 2-way combinations of input variables. Table 1 shows 
the covering array for pairwise combinations i.e. [A & B], [A & 
C], [A & D], [B & C], [B & D] and [C & D]. The covering array 
for the above example has 23 pairwise interactions which have 
to be covered by any test suite generated, to enable a complete 
pairwise interaction testing of the system. 

Once the test-tree construction is over we have all the test 
cases generated. The next step generates the covering array, after 
which the cost array corresponding to the number of test cases 
(or leaf nodes) is created and initialised to some high value. 
Then, the cost calculation begins. The algorithm first calculates 
the maximum cost or maximum number of pairs that can be 

covered by any test case for the given set of parameters and 
values. Then it iterates to calculate the cost of each and every 
leaf node which represents the test cases, in a sequential order. 
The cost of any leaf node or test case is equal to the number of 
pairs that it covers in the covering array.  

TABLE 1.  PAIRWISE INTERACTION COVERING ARRAY 

A with B A with C A with D B with C B with D C with D 

A1,B1 A1,C1 A1, D1 B1,C1 B1, D1 C1, D1 

A2,B1 A1,C2 A1, D2 B1,C2 B1, D2 C1, D2 

 A1,C3 A2, D1 B1,C3  C2, D1 
 A2,C1 A2, D2   C2, D2 

 A2,C2    C3, D1 

 A2,C3    C3, D2 

Once it reaches a leaf node with the maximum cost, it deletes 
this leaf node from the list of leaf nodes generated by the test-
tree i.e. T and includes this node or test case into the new list T’ 
which holds all the test cases that are to be included in the test 
suite. It also deletes all the pairs that this test case has covered 
from the covering array. In the above example, when the first 
iteration begins, the first leaf node (A1,B1,C1,D1) will be 
deleted from T and added to T’ since it has a cost equals the 
maximum cost 6 and the six pairs covered by it ([A1,B1], 
[A1,C1], [A1,D1], [B1,C1], [B1,D1] and [C1,D1]) will be 
deleted from the covering array. Thus, the first leaf node (or test 
case) generated by the test-tree will always have the maximum 
cost and is said to be included in T’ by default for any system. 

The algorithm will then continue calculating the cost of all 
the leaf nodes in a sequential order and includes the ones having 
the maximum cost. If all the pairs in the covering array are 
covered then the algorithm stops else it goes to the second 
iteration. In the second iteration, the maximum cost value 
(Wmax) will be decreased by one and the next set of best test 
cases (i.e. test cases that can cover the new Wmax number of the 
covering array. Thus, the algorithm continues until all the pairs 
in the covering array are covered. For the above example all the 
test cases which are included in the test suite are identified in 
four iterations and there are six such test cases.  

Table 2 shows how the cost calculation algorithm works 
iteratively to generate the test suite. Table 2 also shows the order 
in which the various test cases are actually included in the test 
suite. Thus, all the 23 pairs generated for covering all pairwise 

TABLE2.   GENERATED TEST SUITE FOR PAIRWISE COMBINATORIAL INTERACTION 

Test Case No. Test Case Iteration 
Max 

Weight 
Covered pairs 

T1 A1,B1,C1,D1 1 6 
[A1,B1][A1,C1][A1,D1] 
[B1,C1][B1,D1][C1,D1] 

T10 A2,B1,C2,D2 1 6 
[A2,B1][A2,C2][A2,D2] 

[B1,C2][B1,D2][C2,D2] 

T6 A1,B1,C3,D2 2 4 
[A1,C3][A1,D2] 

[B1,C3][C3,D2] 

T11 A2,B1,C3,D1 3 3 [A2,C3] [A2,D1] [C3,D1] 
T3 A1,B1,C2,D1 4 2 [A1,C2] [C2,D1] 

T8 A2,B1,C1,D2 4 2 [A2,C1] [C1,D2] 
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interactions as shown in Table 1, has been covered by the test 
cases generated by our algorithm as shown in the fifth column 
of the Table2. Thus this proves the correctness of our strategy in 
generating pairwise test suite. We have also proved that our 
algorithm is efficient in achieving a good reduction in the 
number of test cases. The exhaustive number of test cases is 12 
and we have generated 6 test cases which covers all the pairs in 
the covering array thus achieving a 50% reduction in this case. 

 

 

 

 

 

 

 

After the pairwise test suite is generated, we move to the next 
iteration where we generate the test suite for 3-way 
combinatorial interactions and so on and so forth until (n-1) way 
combinatorial interaction test suite is generated. To illustrate the 
3-way test suite generation, again the whole process starts by 
constructing the 3-way covering array and the iterative cost 
calculation of the test cases in a sequential order as explained 
before. Table 3 shows the covering array for 3-way combination 

i.e. [A, B, C], [A, B, D], [A, C, D] and [B, C, D], for the example 
in Fig. 2. The covering array for the above example has 28 
combinations of 3-ways interactions which have to be covered 
in the final test suite. Table 4 shows how the cost calculation 
algorithm works iteratively to generate the test suite. It also 
shows the order in which the various test cases are actually 
included in the test suite. All the 28 3-way combinations in the 
covering array have been covered by our algorithm. Thus, the 
correctness of our strategy for 3-way interaction coverage has 
been proved. 

A. Test—Tr ee Construction Algorithm  

The tree generation strategy thus provides the following 
advantages: 

 A systematic method whereby all possible test cases are 
generated in order. 

 

 The above procedure works well for both parameters with 
uniform and non-uniform values. Therefore all parameters 
can have different or same values as any real time system to 
be tested would have. 

TABLE3.  3-WAY INTERACTION COVERING ARRAY 

A, B, C A, B, D A, C, D B, C, D 

A1, B1, C1 A1, B1, D1 A1, C1, D1 B1,C1, D1 
A1, B1,C2 A1, B1,D2 A1, C1, D2 B1,C1, D2 

A1, B1,C3 A2, B1,D1 A1, C2, D1 B1,C2, D1 

A2, B1,C1 A2, B1,D2 A1, C2, D2 B1,C2, D2 
A2, B1,C2  A1, C3, D1 B1,C3, D1 

A2, B1,C3  A1, C3, D2 B1,C3, D2 

  A2, C1, D1  
  A2, C1, D2  

  A2, C2, D1  

  A2, C2, D2  
  A2, C3, D1  

  A2, C3, D2  

 

TABLE4.   GENERATED TEST SUITE FOR 3-WAY COMBINATORIAL INTERACTION 

Test Case 

No. 
Test Case Iteration 

Max 

Weight 
Covered pairs 

T1 A1,B1,C1,D1 1 4 [A1,B1,C1][A1,B1,D1][A1,C1,D1][B1,C1,D1] 

T4 A1,B1,C2,D2 1 4 [A1,B1,C2][A1,B1,D2][A1,C2,D2][B1,C2,D2] 
T8 A2,B1,C1,D2 1 4 [A2,B1,C1][A2,B1,D2][A2,C1,D2][B1,C1,D2] 

T9 A2,B1,C2,D1 1 4 [A2,B1,C2][A2,B1,D1][A2,C2,D1][B1,C2,D1] 

T5 A1,B1,C3,D1 2 3 [A1,B1,C3][A1,C3,D1][B1,C3,D1] 
T12 A2,B1,C3,D2 2 3 [A2,B1,C3][A2,C3,D2][B1,C3,D2] 

T2 A1,B1,C1,D2 3 1 [A1,C1,D2] 

T3 A1,B1,C2,D1 3 1 [A1,C2,D1] 
T6 A1,B1,C3,D2 3 1 [A1,C3,D2] 

T7 A2,B1,C1,D1 3 1 [A2,C1,D1] 

T10 A2,B1,C2,D2 3 1 [A2,C2,D2] 
T11 A2,B1,C3,D1 3 1 [A2,C3,D1] 
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 The algorithm generates only a set of leaf nodes at every 
stage, although it appears as if the entire tree gets generated 
in order to minimise the space requirements. Therefore we 
only have a list of leaf nodes (or test cases) when the 
algorithm ends.  

The example tree shown in Fig. 2 explains how the test cases 
are constructed manually. In reality we may need only the leaf 
nodes and all the intermediate nodes are not used. Therefore in 
order to increase the efficiency and to minimise memory 
allocation, we have constructed the tree shown in Fig. 2 using 
the proposed tree generation algorithm, which constructs the tree 
by minimising the number of nodes and by giving importance to 
only the leaf nodes at every stage.  

 

 

 

 

 

 

Therefore, at each stage or iteration we look at the leaf nodes 
of the tree and generate the next level nodes by considering all 
the values of the current parameter to generate the new set of 
nodes. The new set of leaf nodes from an already existing set is 
calculated using a replication strategy. If the existing set of leaf 
nodes is Esoln, new set of leaf nodes is Nsoln and the number of 
values of the parameter under consideration is n. Then,  

Nsoln =  Esoln * n (1) 

Assume there are 6 leaf nodes in existing set (i.e. Esoln= 6), 
and the next parameter to be considered has 2 values (i.e. n=2). 
Then based on Equation 1 the new list of nodes will have 12 new 
leaf nodes as a result (i.e. Nsoln=12). Therefore at every stage 
of tree construction, the algorithm considers each and every 
existing leaf node separately and calculates the number of times 
this particular node needs to be replicated in order to get the new 
set of leaf nodes with the formulae given below: 

                The number of values of pi – 1 

 

(2) 

 
Where pi – is the ith parameter under consideration for 

constructing the new set of leaf nodes and i=1,2,….N – the 
number of parameters.  

In Figure 2, consider the existing nodes (A1, B1) and (A2, 
B1). To construct the next level of nodes the parameter under 
consideration is C which has values C1, C2 and C3. Therefore, 
the node (A1, B1) needs to be replicated twice. Now we will 

have three (A1, B1) nodes to which C1 is added to the first, C2 
is added to the second and C3 is added to the third and then the 
two replicated nodes are included in the list of leaf nodes after 
the original node and before the node (A2, B1). The same is done 
to (A2, B1). It is replicated twice and hence we have three of it 
(one original and two replicated nodes). Now C1 is added to the 
first (original node), C2 is added to the second (replicated node) 
and C3 is added to the third (replicated node). Thus we have (A2, 
B1, C1), (A2, B1, C2) and (A2, B1, C3).  The same process is 

 
Fig. 3 Test Tree Construction Algorithm 

 

  
Strategy Tree generation 

 

Begin 

  

 for the first parameter p1 

 
     T = {(v1), (v2)……(vj) / v1, v2 and vj are  values of p1 and are sequentially connected}        

                                                                                                                   

     If n=1 then stop; 
 

     f or the remaining parameters 

 
         For parameter pi, i = 2,3,……n             

   do 

    Begin 
        For each Test (v1, v2,……, vj) in T do 

         Begin 

 
Replicate the Test as many times as (the number of values of pi – 1) 

  Add all the replicated nodes sequentially after the current original test node and before the other Test nodes 

                                   For each value in pi do 
                   Begin 

Append the original with v1 and all the replicated tests with (v2, v3……vi-1, vi) Where vi is a value of pi and each of which is considered in order  

 
           End 

               End 

     End 
 

End 
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done to construct the test-tree until all the parameters are 
considered. Thus, once the list of leaf nodes is generated by 
considering all the values of all the parameters, we proceed to 
the next strategy of iterative cost calculation to construct the test 
suite. 

B. Iterative Cost Calculation Strategy 

In Figure 4, the outer loop iterates N-2 times through the list 
of test cases to generate N-2 test suites, i.e. 2-way, 3-way, 4-way 
etc. until (N-1) way. For every T-way (i.e. 2-way, 3-way, 4-way 
etc. until (N-1) way) test suite to be generated, the inner loop of 
the algorithm iterates until all the combinations of the 
corresponding T-way covering array are covered. During each 
iteration, all the test cases with the maximum cost (Wmax) will 
be included in the test suite. Thus the algorithm guarantees 
identifying a minimum set of test cases for parameters with 
uniform and non-uniform values. 

 

IV. CONCLUSION 

In this paper we extend and improve our previous strategy, “A 

Tree Based Strategy for Test Data Generation and Cost 

Calculation” to support higher testing strength interactions. The 

proposed strategy is based on two algorithms. A tree 

construction algorithm which constructs the possible test cases 

and an iterative cost calculation algorithm that constructs 

efficient multi-way test suites which cover all possible 

combinatorial interactions between input components. The 

correctness of the proposed strategy has been proved  in Tables 

2 and 4.  
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Strategy T-Way Test Suite Generation by Iterative Cost Calculation 

 

Begin 
     Temp = T 
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