
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0119 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

A Domain-Specific Language for Service Level

Agreement Specification

Renata Vaderna, Željko Vuković, Dušan Okanović, Igor Dejanović

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

{vrenata, zeljkov, oki, igord}@uns.ac.rs

Abstract—In order to perform continuous monitoring, SLA document between interested parties has to be signed. These documents

should be in machine readable format in order to automate monitoring process. On the other hand, it would be beneficial if it is human

readable, too. This way, it is easier to perform configuration and maintenance of monitoring subsystem. Building up on our previous

work, in this paper we present DProfLang. DProfLang is a domain specific language for defining SLAs, that are both human and

machine readable.

Keywords—SLA, continuous monitoring, Domain-Specific Languages

I. INTRODUCTION

Requirements that certain software has to fulfill are usually
agreed between interested parties before the start of
implementation. There are two types of requirements:
functional and non-functional. Ensuring that software fulfills
functional requirement means that it will "do what it is
expected to do." On the other hand, implementation of non-
functional requirements means that the software will "do what
is expected, but in a certain way." It is important to stress that
while performance measurements can be performed during the
development phase, it is only under production workload that
we can retrieve realistic software performance data. There are
often bugs that take a lot of time to manifest themselves [1],
and this kind of time is not available during development. In
contrast to profiling and debugging, when performing
continuous monitoring we measure application performance
parameters under production workload.

There is a wide array of nonfunctional requirements and
metrics that can be used to quantify them. Some commonly
used are response time, availability, security, robustness,
memory footprint, CPU time. These parameters are usually
referred to as software performance and are specified in an
additional document that follows the initial agreement between
the parties. This document is called Service Level Agreement
(SLA). It can contain functional requirements, ways of
measuring their fulfillment, referent values, ways of processing
these values, and whom to contact if something goes wrong,
either with the obtained values or the measuring process itself.

In our previous works [2, 3], we have described the DProf
system for adaptive continuous monitoring. It is based on the
Kieker monitoring framework [4], and it monitors application
performance using monitoring probes. These probes are
inserted into software using AspectJ or some other tool [5], and
collect monitoring data, while the application is running.
Adaptation of the monitoring process allows for reduction of

monitoring overhead. This is done by turning monitoring off in
the call tree [6] branches that show no discrepancy between the
obtained values and values specified in SLA.

SLA for the DProf system is an XML document based on
the DProfSLA XML schema [2]. Since XML is a machine
readable format, but not well suited for human use [20], in this
paper we propose a new language - DProfLang - for
monitoring goals definition. The domain specific language that
we propose in this paper has the advantage of being both
human and machine readable, thus allowing easier maintenance
of monitoring configuration, while being well suited for
monitoring automation.

The remainder of this paper is as follows. Chapter 2 shows
XML schema that we currently use. In chapter 3, grammar of
the new language is shown. Chapter 4 shows how to translate a
document from DProfSLA format into DProfLang. Chapter 5
presents related work, while in the last section we draw
conclusions and outline for the future work.

II. DPROFSLA

Root element of DProfSLA XML schema is shown in Fig.
1. It has three subelements:

Fig. 1. Root element of DProfSLA XML schema

Page | 693

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0119 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Parties element is simple and is used to designate interested
parties and their roles in the execution of the agreement.

Timing element specifies the agreement's time constraints -
the start and the end of the monitoring process, and the
frequency of checkups.

Trace element (of CallTreeNode type - Fig. 2) is used to
specify which part of the application is monitored and how the
obtained data is processed. In essence, every trace element
relates to one node in a call tree, i.e. a method call.

For designating call tree nodes we use attribute name in
CallTreeNodeType and syntax shown in [2]. For the call tree in
Fig. 3, we have the DProfSLA document from Listing 1.

Fig. 2. Call tree node representation in DProfSLA XML schema

A node is represented with class and method name,
followed by names of methods that are invoked from it. In this
example, we monitor execution times, calculate averages, and
compare those values to the specified upper threshold.

Fig. 3. An example of call tree

Listing 1. DProfSLA XML for the example shown in Fig. 3.

As stated in the introductory chapter, the use of XML
provides the possibility of automation of the monitoring
process, since XML is machine readable. However, the use of
DSL would allow human readability, while retaining machine
readability.

III. DPROFLANG LANGUAGE GRAMMAR

DProfLang DSL is implemented using textX [7] meta-
language and library for DSL development in Python
programming language. From a single language description
(grammar) textX builds a parser and a meta-model (i.e. abstract
syntax) for the language.

textX grammar consists of a set of rules which define each
language construct and will be translated to Python classes
during Abstract Syntax Tree (AST) construction. Each rule
also defines the syntax of the language element.

In Listing 2 a part of DProfLang grammar is presented.
From this grammar textX will create the meta-model presented
in Fig. 4. BASETYPE hierarchy is a part of the built-in textX
type system.

Listing 2. A part of the DProfLang grammar in textX

Page | 694

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0119 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The DProfModel rule is the root of the meta-model.
Instances of these classes have the following attributes:

 name – is the name of the SLA agreement,

 description – is an optional description given as a string,

 parties – is a list of the involved parties,

 timing – is an interval specifying when the monitoring
will be applied,

 call_node – is the root of the call tree node hierarchy.

CallNode rule defines a node in a call tree node hierarchy
and specifies monitoring parameters such as: used metric,
repeats and outlier percentage, nominal value, upper and lower
threshold. This rule uses composite pattern, as each node can
contain other nodes which are specified by the assignment
nodes*=CallNode. textX assignment operator '*=' will match
zero or more right-hand-side rules and each instance will be
appended to the left-hand-side attribute.

Listing 3. An example of SLA specification written in DProfLang

DProfLang meta-model instance is a Pyton object which is
capable of parsing and instantiating DProfLang models written
as DSL textual specifications.

Listing 3 shows an example of a DProfLang agreement of
the DProfSLA document from Listing 1. It is obvious that the
readability and comprehensibility is vastly improved with the
DSL approach.

A. Transformation From DProfSLA to DProfLang

In order to integrate the new language with our previous
work, we have developed two code generators. The first

generator loads DProfSLA document in the original XML
format and outputs the agreement in the new DSL format. The
second one does the reverse job - it parses the agreements in
DProfLang format and provides XML based DProfSLA
document.

For code generation, Jinja2 template engine [8] for Python
has been used. A template engine is a piece of software that
combines a data model with a template specification to produce
a textual output. In our case data model is based on DProfLang
meta-model. Two templates have been used: DProfSLA XML
template and DProfLang DSL template. Instantiating data
model from DProfLang DSL is supported through textX, since
it automatically constructs the model from the grammar. In
order to support XML we had to develop a procedure that
builds data model out of DProfSLA XML.

IV. RELATED WORK

SLAs must be defined in machine-readable format to allow
automatic service level management. Tebbani et al. [9] have
already shown that only a few formal SLA specification
languages exist. Usually, SLAs are written in some informal
language, which is not acceptable for automation of the
process. Therefore, authors propose Generalized Service Level
Agreement language - GSLA. A GSLA document is a contract
between interested parties that is designed to create a
measurable common understanding of each party’s role. The
role is a set of rules which defines the service level
expectations and obligations the party has. To specify GSLA in
machine readable format, GXLA XML schema has been

Fig. 4. DProfLang textX meta-model

Page | 695

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0119 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

proposed. Sections of GXLA documents are as follows.
Schedule section contains temporal parameters of the contract.
Party section models involved parties. Service package is an
abstraction that is used to describe the services and previously
mentioned roles. By using GXLA the service management
process can be automated.

For web service SLAs, WSLA [10] can be used. It is also
XML-based. Similarly to GSLA/GXLA, WSLA documents
define the involved parties, metrics, measuring techniques,
responsibilities, and courses of action. The authors state that
every SLA language, such as WSLA, should contain 1)
information regarding the agreeing parties and their roles, 2)
SLA parameters and a measurement specification, as well as 3)
obligations for each party.

SLAng [11] is a language for specifying SLAs based on the
Meta Object Facility [12]. It can use different languages to
describe constraints, e.g., utilizing OCL [13] or HUTN [14].

The WS-Agreement specification language [15] has been
approved by the Open Grid Forum. It defines a language that
can be used by service providers to offer services and
resources, and by clients to create an agreement with that
provider.

Paschke et al. [16] propose to categorize SLA metrics in
order to support the design and implementation of SLAs that
can be monitored and enforced automatically. Standard
elements of each SLA are categorized as: technical (service
descriptions, service objects, metrics, and actions),
organizational (roles, monitoring parameters, reporting, and
change management), and legal (legal obligations, payment,
additional rights, etc.).

According to this categorization, our DProfLang documents
are operation-level documents intended to be used in-house. By
versatility categorization, they belong to standard agreements.
As was the case with DProfSLA schema documents, we do not
need all of the features of the described schemas. DProfLang is
specifically designed to be used with the DProf system. Our
documents provide a subset of the elements defined by GXLA
or WSLA. A transformation of SLA documents between
DProfLang and the mentioned schemas could, for example, be
performed using appropriate generators.

Aside from XML, an SLA can be specified using domain
specific languages. Most of them are AOP based, like DiSL
[17], Josh [18] or Scope [19]. The problem with using AOP is
that they are very platform specific. The use of a true DSL for
SLA specification allows for writing of human readable
documents that can be translated into instrumentation for any
platform.

V. CONCLUSION

In this paper we have shown a new language for
instrumentation specification. The advantage of this approach
over the use of XML is that the SLA documents written with
DProfLang are human readable. This allows for easier
maintenance of monitoring system and better overall control
over monitoring process. In contrast to the use of AOP and

AOP-like tools, our approach is platform independent.
Whichever the underlying platform might be, DProfLang SLA
document will be translated into instrumentation for the
underlying platform.

DProfLang is implemented in textX meta-language which
enables easy language grammar and meta-model modifications
thus facilitating its evolution. To enable integration with our
pre-existing XML based solution we have also implemented a
translator from XML to the new DSL and vice versa.

Our future work will focus on development of
instrumentation generators for different platforms. As DProf
and Kieker use AspectJ instrumentation, our first step is to
develop instrumentation generators for AspectJ. After that, our
work will include generators for DiSL and .NET AOP
frameworks.

ACKNOWLEDGMENT

The research presented in this paper was supported by the
Ministry of Science and Technological Development of the
Republic of Serbia, grant III-44010, Title: Intelligent Systems
for Software Product Development and Business Support based
on Models.

REFERENCES

[1] M. Grottke, K. S. Trivedi. “Fighting Bugs: Remove, Retry, Replicate,

Rejuvenate,” IEEE Computer, v.40, n. 2, 2007, pp. 107-109.

[2] D. Okanović, A. Van Hoorn, Z. Konjović, M. Vidaković, “SLA-Driven
Adaptive Monitoring of Distributed Applications for Performance
Problem Localization,” Computer Science and Information Systems,
vol. 10, no. 1, 2013, pp. 25-50.

[3] D. Okanović, A. van Hoorn, Z. Konjović, M. Vidaković, “Towards
Adaptive Monitoring of Java EE Applications”, Proceedings of the 5th
International Conference on Information Technology - ICIT. Amman,
Jordan, 2011, CD.

[4] A. van Hoorn, W. Hasselbring, J. Waller, “Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis,”
Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), Boston, USA, 2012, pp. 247-
248.

[5] D. Okanović, M. Vidaković, “Evaluation of Alternative Instrumentation
Frameworks,” Symposium on Software Performance: Joint
Descartes/Kieker/Palladio Days, Stuttgart, Germany, 2014, pp. 83-90.

[6] W. Binder, J. Hulaas, P. Moret, “Advanced Java Bytecode
Instrumentation,” 5th International Symposium on Principles and
Practice of Programming in Java, Lisboa, Portugal, 2007, p. 135-144.

[7] textX [Online] https://github.com/igordejanovic/textX (January 2015)

[8] Jinja2 [Online] http://jinja.pocoo.org/docs/dev/ (January 2015)

[9] B. Tebbani, I. Aib, “GXLA a Language for the Specification of Service
Level Agreements,” Lecture Notes in Computer Science, v. 4195.
Springer-Verlag, Berlin Heidelberg New York, 2006, p. 201-214.

[10] A. Keller, H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,” Journal of
Network and Systems Management, vol. 11, no. 1, 2003, pp. 57-81.

[11] D. Lamanna, J. Skene, W. Emmerich, “SLAng: A Language for
Defining Service Level Agreements,” Proceedings of the 9th IEEE
Workshop on Future Trends of Distributed Computer Systems (FTDCS
'03), IEEE Computer Society, San Juan, Puerto Rico, 2003, pp. 100-107.

[12] Meta Object Facility (MOF) 2.0 Core Specification. OMG. [Online]
Available: http://www.omg.org/spec/MOF/2.0 (current September 2011)

Page | 696

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0119 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

[13] Object Constraint Language (OCL) 2.0. OMG. [Online] Available:
http://www.omg.org/spec/MOF/2.0 (January 2015)

[14] Human Usable Textual Notation (HUTN) Specification. OMG. [Online]
Available: http://www.omg.org/spec/HUTN/index.htm (January 2015)

[15] N. Oldham, K. Verma, A. Sheth, F. Hakimpour, “Semantic WS-
agreement partner selection,” 15th International Conference on World
Wide Web. ACM, Edinburgh, Scotland, UK, 2006, pp. 697-706.

[16] A. Paschke, E. Schnappinger-Gerull, “A Categorization Scheme for
SLA Metrics,” Multi-Conference Information Systems (MKWI 2006),
Passau, Germany, 2006, pp. 25-40.

[17] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, Z. Qi, “DiSL:
a Domain Specific Language for Bytecode Instrumentation,” 11th
Annual International Conference on Aspect-Oriented Software
Development (AOSD '12), 2012, pp. 239-250.

[18] S. Chiba, K. Nakagawa, “Josh: an Open AspectJ-Like Language, ”.
AOSD’04, ACM, 2004, pp. 102–111.

[19] T. Aotani, H. Masuhara, “Scope: an AspectJ Compiler for Supporting
User-Defined Analysis-Based Pointcuts,” AOSD’07, ACM, 2007, pp.
161–172.

[20] T. Parr, “Humans should not have to grok XML; Answers to the
question 'When shouldn't you use XML?'”, IBM DeveloperWorks, 2001

Page | 697

	Software Engineering
	CR-ICIT15224
	CR-ICIT15236
	CR-ICIT15254
	CR-ICIT15283
	CR-ICIT15455
	CR-ICIT15467
	CR-ICIT15536
	CR-ICIT15580

