
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Smart OptiSelect Preference Based Innovative

Framework for User-in-the-Loop Feature Selection

in Software Product Lines

Ahmed Eid El Yamany

College of Computing and Information Technology

Arab Academy for Science, Technology, and Maritime Transport

Cairo, Egypt

Ahmedeid100@gmail.com

Mohamed Shaheen Elgamel

College of Computing and Information Technology

Arab Academy for Science, Technology, and Maritime Transport

Alexandria, Egypt

cshaheen@hotmail.com

Abstract—Smart OptiSelect is a multi-objective evolutionary optimization and a machine learning based framework for software

product lines feature selection. It serves in the direction of filling the gap between software product lines search based feature selection

optimization and real life utilization by stakeholders. OptiSelect enables system analysts and project managers to select best features to

implement to meet their dynamic and always changing objectives by offering plenty of multi-objective optimized solutions that complies

with these objectives. Smart OptiSelect created the availability for providing various versions of result sets based on user experience in

a more comprehensive working flow. Smart OptiSelect is enabled to interactively figure out user’s preferences and help to reach more

convenient solutions that should best draw out the user’s desires and express his organization goals.

Keywords— User-in-the-loop (UIL); Software Product Lines; Feature Models; Optimal Feature Selection; Multi-objective Optimization;

Search-Based Software Engineering; Machine Learning; Pareto Front; Non-Dominant Solutions

I. INTRODUCTION

Smart OptiSelect is a continuous result of research
experiments that investigated the best ways to empower the
user in the process of feature model configuration. Two targets
are achieved through this version: 1) Narrowing the gap
between product lines search based optimization and real life
cases to provide real utilizations to software stakeholders. 2)
Provide a preference based framework which can understand
the user’s needs and provide effective suggestions based on
them.

Smart OptiSelect is an interactive framework. Users are
enabled to dynamically load feature models, apply adjustments
to feature attributes, set objectives and desirable thresholds,
and interact by selecting preferred solution among optimization
cycles.

Smart OptiSelect is a continuing effort of the previously
proposed Opti-Select [1] through enhancing the workflow
using machine-learning techniques to intelligently extend
preferences, hybrid multi-objective optimization, and adding
new features as setting user’s objective thresholds.

The optimization process takes place in an incremental
form. After each round of optimization, the user is provided
with a concise presentation of the multiple solutions thus make
up the Pareto Front, allowing the user to mark their preferred
ones to focus on producing related solutions in the following
iterations.

This work discusses the features and the workflow steps of
Smart OptiSelect. An overview of the used algorithms and
techniques and how they work together to achieve the user’s
goals is provided. The rest of the paper is organized as follows;
Section II illustrates Smart OptiSelect workflow steps, points
of interactions with the user, and processing stages. Section III
describes the algorithms and methodologies, why they are
selected, and how they orchestrated to work within Smart
OptiSelect. Section IV displays a survey comparing users’
satisfaction with the results of different techniques. Section V
summarizes the proposed framework’s contributions to achieve
a preference based User-in-the-Loop solutions for search based
product lines features optimization. It also covers an overview
of some future directions and plans.

Page | 657

mailto:Ahmedeid100@gmail.com

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

II. SMART OPTISELECT WORKFLOW

Smart OptiSelect point of strength lays in the ability to
bring together most empowered multiobjective optimization
algorithms proven to produce best search based product lines
features optimization results [2]. This is done side by side with

machine learning techniques in one single interface frame work
giving the user the widest capability to be a part of the
optimization process itself as shown in Fig. 1. This framework
takes place through a tuned process to fit users’ interactions.

Page | 658

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Start

End

Hybrid Result

IBEA Result

NSGAII Result

Load Feature Model
Stored

Attributed
Features

IBEA Optimization

Include Results in
Preferred user

solutions?

 Naïve Bayes suggest more results

Union IBEA and NSGAII results and rank the result

NSGAII Optimization

IBEA Optimization using preferences as initials

NSGAII Optimization using preferences as initials

Objectives Configuration

Features Attributes Management

Union IBEA and NSGAII results and rank the result

User Selects Preferences

More Iteration?

NO

Train C4.5 Classifier

Include Naïve Bayes Suggestions

Filter using C4.5 Classifier

First Iteratio
n

Se
co

n
d

+ Iteratio
n

s
In

itializatio
n

Double
Preferences

?
YES

Double Offspring Preferences

NO

YES

Display Results

User Selects Preferences

NO

YES

Fig. 1. Smart OptiSelect workflow diagram

Page | 659

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

A. Loading and Saving Attributed Features.

The Simple XML Feature Model (SXFM) format was
defined by the SPLOT website [3]. Smart OptiSelect
implemented a module for dynamically reading and saving
feature models in SXFM formats to decrease the time of
changing the test model though configuration file or through
hard coded instructions.

In Order to provide the user a capability for managing and
saving changes over features’ attributes. The proposed
framework introduced an attributed feature model file format
as shown in Fig. 2. It can attach a dynamic series of attributes
to each feature in the model.

B. Objective Configuration

Smart OptiSelect has a predefined set of quality attributes
for enabling the user to dynamically set optimization objectives
and targets. Objectives targets are enabled through setting
threshold for each objective as shown in Fig. 3.

The user is allowed to specify objectives being optimized
prior to any optimization runs or between runs. This gives the
user the power to use a desired solution set resulting from some
objectives optimization at specific time as an offspring for a
specific objective optimization.

Fig. 2. Saved faeature attributes format sample

During the optimization process, each solutions is
dynamically evaluated based on the current objectives’ settings
by calculating their related attributes values.

C. Feature Attributes Management

Based on the selected objectives, the users are allowed to
edit the corresponding attributes for each feature and define if a
certain feature is forced to appear in all solutions or even to be
excluded from all solutions as shown in Fig. 4.

Feature attributes management window is designed to be
smart enough to help the user manage consequences of forcing
existence and discarding existence of features by generating
and applying corrective actions based on the behaviors of the
user. It checks for user’s opinion if more than one corrective
option is available as shown in Fig. 5.

D. Multiobjective Optimization

Based on previous researches [4], IBEA [5] has been
proven to perform better than the rest of the multiobjective
algorithms in optimizing multiobjective problems related to
product lines models and feature selection optimization as it
pays most attention to user indicators without violating domain
constraints. NSGA-II [6] came next in overall result quality.

Smart OptiSelect made advantage of both algorithms and
provided innovative hybrid technique based on running both
IBEA and NSGA-II separately within limited time. Then the
results of both algorithms are merged employing Pareto front
ranking [7].

Fig. 3. Configuration sample of the objectives being optimized

ID,Desired,Excluded,UsedBefore,Cost,Defffects,Usability

web_portal,true,false,false,10.0,10,10

basic,true,false,true,16.0,3,50

html,true,false,false,20.0,3,0

Page | 660

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 4. Feature attributes management window

Fig. 5. Attributes management corrective actions list sample

E. User Preference Selection

Smart OptiSelect users are enabled to select a subset of the
solutions from the total result set as preferred solutions as
shown in Fig. 6. Selected preference are used as an initial
offspring population for the next optimization cycles to force
the optimization cycle to focus around the selected solutions
along with the repeating cycles.

The proposed framework tries to enrich the population for
the next iteration based on user selections at the current
iteration. It uses any of the machine learning techniques to
classify the rest of the non-selected and undisplayed solutions
and see if they match the user current selections. Naïve Bayes
[8] has been employed as one of the classification techniques.
The user is then asked if he wants to add the suggested
solutions to be considered in next iterations as shown in Fig. 7.

F. Iterating and Machine Learning

Smart OptiSelect uses final user preferred decisions
selected from total result set to build and train a c4.5 classifier
that aims to figure out user’s preferences [9] to be used to filter
result sets through next iterations.

Application repeats optimization cycle and apply user
thresholds preferences filters and display different results to
user to indicate if there are similar solutions to selected ones
should be also selected by user.

G. Displaying Result

 Smart OptiSelect provides four types of results to be
displayed to the user after each iteration for comparative
purposes: IBEA Result – NSGAII Result – Hybrid Result –
C4.5 Filtered results.

Fig. 6. Solution resultset sample enables the user to select preferred solutions

Fig. 7. A sample of Naïve Bayes suggestions to the user

 Each result is displayed in a window detailing solution’s
objective values and solution features details.

III. ALGORITHMS USED, H OW AND WHY?

Smart OptiSelect uses hybrid of Multiobjective
optimization and machine learning algorithms to achieve
effective User-In-the-Loop preference based framework.

A. IBEA

Indicator-based evolutionary algorithm (IBEA) is a multi-
objective evolutionary algorithm that can be combined with
arbitrary indicators. In contrast to existing algorithms, IBEA
can be adapted to the preferences of the user and, moreover
does not require any additional diversity preservation
mechanism; such as fitness sharing to be used. IBEA calculates
domination value (i.e. amount of dominance) based on
indicator (e.g. hypervolume). It favors objectives, i.e. user
preferences.

A comparison among various multi-objective search-based
software engineering methods was performed by A. Sayyad et
al. [10]. It has shown that IBEA performs much better in
product line feature optimization than methods in widespread
use especially with increased number of optimization
objectives. IBEA works best since it makes most use of user
preference knowledge. It also generates far more products
without violations of domain constraints.

To adopt IBEA, jMetal [11] IBEA library was used by
Smart OptiSelect through formatting feature model trees
attributes into indexed formats ready for the evaluation process.
Then, it passes problem to IBEA in a binary-encoded-problem
format. IBEA generates selected/non-selected features list for
each decision based on the optimization of features selection
using hyper volume indicator.

Page | 661

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

B. NSGAII

NSGA-II [12] is a multi-objective evolutionary algorithm
which uses a non-dominated sorting for optimizing multi-
objective problems. It is able to find high spread solutions in all
problems. It pays special attention towards creating a diverse
Pareto-optimal front within low computational requirements,
elitist approach, and parameter-less sharing approach.

NSGA-II Calculates distance to the closest point for each
objective. The fitness is the product of these distances. It favors
higher fitness, i.e. more isolated points. It favors absolute
domination and more spread out solutions.

NSGA-II came second after IBEA in optimizing product
lines feature models [10] achieving better spread and hyper
volume rather than rest of multi-objective evolutionary
algorithms.

JMetal [11] NSGA-II library was used by Smart OptiSelect
as following:

 Feature model attributes tree is reformatted into an
indexed array to speed up evaluation processes.

 Problem is passed to NSGA-II as a binary-encoded
problem using selected/non-selected features for each
decision.

 NSGA-II generates optimized solution set based on
maximizing the spread of features attributes.

C. Hybrid Optimization

Smart OptiSelect runs both optimization algorithms
independently for a fixed amount of time rather than fixed
amount of evaluations to control the performance and to
guarantee each of optimization algorithms is not waiting for
other. Then both algorithms solutions are merged, ranked and
filtered.

For achieving this merging process, employing Pareto front
ranking [13] gave a way to extract non-dominated solutions
with highest ranks from multiobjective optimization hybrid
solutions.

After each phase of the optimization process, solutions
generated by both algorithms are plotted on the fitness space as
shown in Fig. 8. J Metal Library [14] is used to sort, filter and
extract first rank of Pareto front optimum solutions.

D. Naïve Bayes

Naïve Bayes [15] classifier is selected for providing
suggestions to the user based on his preferred solutions selected
from totals solutions result set.

The Naive Bayes algorithm is a simple probabilistic
classifier that calculates a set of probabilities by counting the
frequency and combinations of values in a given data set.

The probability of a specific feature in the data appears as a
member in the set of probabilities derived by calculating the
frequency of each feature value within a class of a training data

set. The training dataset used to train a classifier algorithm by
using known values to predict future, unknown values.

Although Naïve Bayes performed consistently worse than
C4.5 [16], it remained true to its reputation and
sufficient enough for being used for providing suggestions to
the user for following reasons:

 Its probabilistic nature depending on counting
frequency and combination given in training set suited
well the problem in hand as training dataset is the same
of test dataset.

 It can build models from extremely small feature sets
[17].

 Its simplicity and fairly competitive performance make
it the best alternative.

Fig. 8. Hybrid ranked non-dominant optimization solutions.

Smart OptiSelect used Naïve Bayes through following
implementation: Given a set of r decision vectors D = {d1, …,
dr}, classified along a two C classes, C={c1,c2} for representing
Selected/Non-Selected classes, Bayesian classifiers estimate
the probabilities of each class ck given a decision dj as:

𝑃(𝑐𝑘|𝑑𝑗) = (𝑃(𝑐𝑘)𝑃 (𝑑 j | 𝑐𝑘)) / 𝑃(𝑑 j) (1)

In eq. 1, 𝑃(𝑑 j) is the probability that a randomly picked
decision has vector 𝑑𝑗 as its representation, and 𝑃(𝑐𝑘) the
probability that a randomly picked decision belongs to ck.

𝑃 (𝑑 j | 𝑐𝑘) is the product of the probabilities of each
feature that appears in the decision. So, 𝑃 (𝑑 j | 𝑐𝑘) may be
estimated as:

𝑃 (𝑑 j | 𝑐𝑘) = ∏ ||

1

T

i
 𝑃 (Fij | 𝑐𝑘) (2)

Where, 𝑑 j = (f1𝑗, …, f|𝑇|𝑗).

For classifying datasets, Weka library implementation was
adopted by OptiSelect. Weka is a data mining library contains
many machine leaning algorithms [18].

Smart OptiSelect uses Weka Naïve Bayes library through
the following steps:

Page | 662

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

1) For each decision, the application checks each feature
in it and format it into binary map represents presence
and absence of that feature.

2) Training Naïve Bayes using every decision and its
corresponding category (Selected/Non-Selected).

3) While testing a decision, algorithm calculates the
probability of each feature of the test decision.

4) The test decision is classified into Selected/Non-
Selected categories on the basis of probability.

E. C4.5

C4.5 [19] is adopted by Smart OptiSelect to build user
preferences decision tree based on user’s preferred solutions.
This decision tree evolves along optimization increments and is
used to determine the user preferences. During each framework
cycle, the results from the optimization process are filtered
using the C4.5 built preference decision tree during previous
cycles.

 C4.5 may perform slightly worse than Support Vector
Machine and Random Forest algorithms in terms of output
quality, yet it is the most convenient to be used by Smart
OptiSelect for its superiority in building models from
extremely small feature sets [17].

C4.5 is based on inductive logic programming methods,
constructing a decision tree based on a training set of data and
using an entropy measure to determine which features of the
training cases are important to populate the leaves of the tree.

The algorithm first identifies the dominant attribute of the
training set and sets it as the root of the tree. Second, it creates
a leaf for each of the possible values the root can take. Then,
for each of the leaves it repeats the process using the training
set data classified by this leaf. The core function of the
algorithm is determining the most appropriate attribute to best
partition the data into various classes.

Smart OptiSelect uses C4.5 through the following steps:

1) After each iteration, C4.5 is trained to build decision
tree using user selected preferred decisions as a
training set using two classes (Selected/Non-Selected).

2) After finishing each next optimization cycle, each
decision is tested using the C4.5 built decision tree to
calculate decisions belonging to the user’s preferences
class, resulting in a filtered solution result set.

F. Mechanism Design Methodologies

Feature management conflict control: During the phase of
feature attributes’ management, the user is allowed to configure
forcing and excluding specific features. This type of
management may violate feature model mandatory constraint
or cross tree constraints.

The pseudo code shown in Fig. 9 illustrates how the
application deals with such probable conflicts.

Pre-optimization indexing: Performance and memory
management are essential especially when searching large
feature model trees attached with dynamic multi-objective
attributes. A sorted index array is introduced to hold references
for tree features nodes as shown in Fig. 10.

Fig. 9. Feature management consecuences control pseudo code

Fig. 10. Features Indexed List

Features tree is traversed using depth first algorithm once
prior to optimization iteration to generate a sorted index array.
This Index provides O (1) direct access to features properties
and attributes. Hence, evaluation processes and search
performance are optimized by avoiding tree repetitive search
and tree diving recursion overhead which costs O (N). Thus,
attributes are demoralized to a binary array.

Tree mutation probability: Based on the knowledge of
SPLOT feature model tree structure, Tree mutation using
special tree mutation probability parameter is used [20]. It aims
to prevent mutations which violates feature model constraints
and performs mutations with paying respect to feature model
tree structure and constraints as shown in Fig. 11.

Usually, in the experiments, we set tree mutation
probability to 0 to prevent tree structure and constraints
violation while mutation. We also experimented raising the tree
mutation probability parameter to %20 which resulted in more
diversity in results but less correct solutions due to correctness
thresholds.

IF control is exclusion/forcing THEN

Get all successors/parents affected nods
FOR each _node in affected nods

 If _ node exclusion/forcing causes conflict

 THEN
 Get all corrective alternatives

 If corrective alternative count > 1 THEN

 Notify the user
 ELSE

 Perform corrective action

 END IF
 END IF

END FOR

END IF

Page | 663

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Fig. 11. Tree mutation procedure pseudo code

IV. USERS SATISFACTION RESULTS

Smart OptiSelect can display four result sets formats of
solutions:

 IBEA optimization Result

 NSGAII optimization Result

 Hybrid Pareto front optimization result

 C4.5 preferences filtered result

A survey has been created among 20 specialized software
project managers, software architects and system analysts.
Each of them has run through the framework for five iterations
then was asked to express his satisfaction with different
versions of output. User satisfaction is expressed in terms of
solutions richness and its relevance to the scope. Each user was
only allowed to select one result set as the best result set based
on his satisfaction for each iteration round. We calculated
average satisfaction for each number of iterations round.
Sometimes, one result version achieved much higher
satisfaction than others. Other times, more than one result were
nearly equaled as shown in Table 1.

TABLE I. SYSTEM OUTPUTS USERS SATISFACTION

0
 I

te
ra

ti
o
n

1
 I

te
ra

ti
o
n

2
 I

te
ra

ti
o
n

s

3
+

 I
te

ra
ti

o
n

s

IBEA Result

NSGAII Result

Hybrid Result

C4.5 Result

The results have shown that:

IBEA results we generally more satisfying than NSGAII
results because they made more attentions to users’ objectives.

Hybrid results attracted attention as it displayed interesting
decision solutions added from NSGA-II.

During the first iterations, Users were more satisfied with
IBEA and hybrid results as they have more decisions displayed
than filtered result sets by C4.5.

Starting from second iteration, most of users - who paid an
interest in certain solutions’ features - found that the C4.5
results were more convenient to their needs.

V. RELATED WORK DISCUSSIONS AND COMPARISON

Botterweck G. [21] feature configuration tool S2T2
Configurator integrates a visual interactive representation of
the feature model and a formal reasoning engine that calculates
consequences of the user’s actions and provides formal
explanations. Still it didn’t provide a multi-objective support
nor incremental configuration.

FAMA [22] is a framework for the automated analysis of
feature models integrating some of the most commonly used
logic representations and solvers proposed for automated
analyses of feature models.

The Feature Model Plugin (FMP) [23] is implemented as an
Eclipse plug–in. It supports configuration based on feature
diagrams. But it does not have the analysis of FMs among its
main goals. It does not support attributed feature models.

CaptainFeature is a feature modelling tool using the FODA
notation to render and configure feature diagrams. It does not
support the automated analysis of FMs.

\ [24] is a lightweight yet expressive language for structural
modeling: feature modeling and configuration, class and
object modeling.

TABLE II. SUMMARY OF FEATURE CONFIGURATION PROPOSAL

F
ea

tu
re

 M
o
d

el

R
ep

re
se

n
ta

ti
o

n

It
er

at
iv

e

C
o

n
fi

g
u

ra
ti

o
n

M
u

lt
i-

O
b

je
ct

iv
e

O
p

ti
m

iz
at

io
n

H
y

b
ri

d
 O

p
ti

m
iz

at
io

n

F
ea

tu
re

s
A

u
to

m
at

ed

A
n

al
y

si
s

A
tt

ri
b

u
te

d
 F

ea
tu

re

M
o

d
el

M
ac

h
in

e
L

ea
rn

in
g

B
as

ed
 P

re
fe

re
n

ce
s

S2T2

FAMA

FMP

CaptainFeature

Clafer

FOR each bit in the decision string
 IF rand (0, 1) < mutation_probability THEN

 IF Deselecting root feature OR Deselecting a mandatory child
feature whose parent is selected, or Group cardinality is violated AND
rand (0,1) < tree_mutation_probibility

THEN
 Do not mutate
ELSE

 Flip this bit
 IF selecting (turning on) a feature THEN
 Turn on children (a minimum skeleton)
 Else IF deselecting (turning off) a feature THEN
 Turn off all children
 END IF
 END IF
END IF

END FOR

Page | 664

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Opti-Select

Smart

OptiSelect

VI. CONCLUSION AND FUTUTRE WORK

Smart OptiSelect pays more attention to user preferences by
recoding his selections and training the framework
incrementally to narrow the results around selected decisions
and solutions.

Smart OptiSelect is considered an innovative framework as
it is the first in the field of product-lines-search-based-
optimization to adopt and purpose the following techniques and
algorithms, as well as merging their outputs together
consistently in one frame work application:

 Incremental optimization: The user can run feature-
selection optimization process in increments allowing the
user to adjust both the objectives and attributes in the
middle of the optimization process, and to set preferred
solutions.

 Hybrid Optimization: The Innovative technique utilizing
the superiority of IBEA and NSGA-II [25] [26] in the field
of search-based-product-line-optimization, as well as
merging and filtering their results using Pareto front
ranking.

 Utilization of machine learning techniques such as Naïve
Bayes and C4.5 for their capability to build classifiers and
decision trees to produce preference-based-solutions
inspired by the user’s selections among optimization
increments.

Through our continuous research and development, our
future steps will be:

 Using machine learning techniques to train classifiers to
learn the user’s objectives classification and
categorization. This may vary as a simple objective or a
certain relation between some features rather than his
preferred features.

 Utilization of newly proposed 10-WS-C4.5-TDM-NB-
TDMR [27] for user’s preferences classification problem.

 Examining scalability of the results obtained with larger
feature models, such as the Linux kernel feature model
(part of LVAT repository [28]) composed of 6888
features.

ACKNOWLEDGMENT

Our thanks to Dr. Abdel Salam Sayyad, Dr. Tim Menzis
and to Dr. Hany Ammar from West Virginia University for
their valuable advices and providing access to benchmarks.

REFERENCES

[1] Yamany, El, Ahmed Eid, Mohamed Shaheen, and Abdel Salam Sayyad.
"OPTI-SELECT: an interactive tool for user-in-the-loop feature
selection in software product lines." In Proceedings of the 18th
International Software Product Line Conference: Companion Volume
for Workshops, Demonstrations and Tools-Volume 2, pp. 126-129.
ACM, 2014.

[2] Sayyad, Abdel Salam, Tim Menzies, and Hany Ammar. "On the value of
user preferences in search-based software engineering: A case study in
software product lines." In Software Engineering (ICSE), 2013 35th
International Conference on, pp. 492-501. IEEE, 2013.

[3] Mendonca, Marcilio, Moises Branco, and Donald Cowan. "SPLOT:
software product lines online tools." In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming
systems languages and applications, pp. 761-762. ACM, 2009.

[4] Sayyad, Abdel Salam, Joseph Ingram, Tim Menzies, and Hany Ammar.
"Optimum feature selection in software product lines: Let your model
and values guide your search." In Combining Modelling and Search-
Based Software Engineering (CMSBSE), 2013 1st International
Workshop on, pp. 22-27. IEEE, 2013.

[5] Zitzler, Eckart, and Simon Künzli. "Indicator-based selection in
multiobjective search." In Parallel Problem Solving from Nature-PPSN
VIII, pp. 832-842. Springer Berlin Heidelberg, 2004.

[6] Sadeghi, Javad, Saeid Sadeghi, and Seyed Taghi Akhavan Niaki. "A
hybrid vendor managed inventory and redundancy allocation
optimization problem in supply chain management: An NSGA-II with
tuned parameters." Computers & Operations Research 41 (2014): 53-64.

[7] Kumar, Rajeev, and Peter Rockett. "Improved sampling of the Pareto-
front in multiobjective genetic optimizations by steady-state evolution: a
Pareto converging genetic algorithm." Evolutionary computation 10, no.
3 (2002): 283-314.

[8] Ting, S. L., W. H. Ip, and Albert HC Tsang. "Is Naive Bayes a good
classifier for document classification?." International Journal of
Software Engineering and Its Applications 5, no. 3 (2011): 37.

[9] Quinlan, J. Ross. "Improved use of continuous attributes in C4.5." arXiv
preprint cs/9603103 (1996).

[10] Sayyad, Abdel Salam. "Evolutionary Search Techniques with Strong
Heuristics for Multi-Objective Feature Selection in Software Product
Lines." PhD diss., WEST VIRGINIA UNIVERSITY, 2014.

[11] Nebro, Antonio J., and Juan J. Durillo. "jMetal 4.5 User Manual."
(2014).

[12] Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan.
"A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II." Lecture notes in computer science
1917 (2000): 849-858.

[13] Bosman, Peter AN. "On gradients and hybrid evolutionary algorithms
for real-valued multiobjective optimization." Evolutionary Computation,
IEEE Transactions on 16, no. 1 (2012): 51-69.

[14] Matjelo, Naleli Jubert, Fred Nicolls, and Neil Muller. "Evaluation of
Optimal Control-based Deformable Registration Model." In New Trends
in Networking, Computing, E-learning, Systems Sciences, and
Engineering, pp. 117-124. Springer International Publishing, 2015.

[15] Zhang, Harry. "The optimality of naive Bayes." AA 1, no. 2 (2004): 3.

[16] Dimitoglou, George, James A. Adams, and Carol M. Jim. "Comparison
of the C4. 5 and a Naive Bayes Classifier for the Prediction of Lung
Cancer Survivability." arXiv preprint arXiv:1206.1121 (2012).

[17] Vatolkin, Igor, Mike Preuß, and Günter Rudolph. "Multi-objective
feature selection in music genre and style recognition tasks." In
Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 411-418. ACM, 2011.

[18] Sharma, Narendra, Aman Bajpai, and Mr Ratnesh Litoriya. "Comparison
the various clustering algorithms of weka tools." facilities 4 (2012): 7.

[19] Ruggieri, Salvatore. "Efficient C4.5 [classification algorithm]."
Knowledge and Data Engineering, IEEE Transactions on 14, no. 2
(2002): 438-444.

Page | 665

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0114 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

[20] Linsbauer, Lukas, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
"Feature Model Synthesis with Genetic Programming." In Search-Based
Software Engineering, pp. 153-167. Springer International Publishing,
2014.

[21] Botterweck, Goetz, Mikolas Janota, and Denny Schneeweiss. "A Design
of a Configurable Feature Model Configurator." VaMoS 29 (2009): 165-
168.

[22] Benavides, David, Sergio Segura, Pablo Trinidad, and Antonio Ruiz
Cortés. "FAMA: Tooling a Framework for the Automated Analysis of
Feature Models." VaMoS 2007 (2007): 01.

[23] Czarnecki, Krzysztof, and Chang Hwan Peter Kim. "Cardinality-based
feature modeling and constraints: A progress report." In International
Workshop on Software Factories, pp. 16-20. 2005.

[24] Antkiewicz, Michał, Kacper Bąk, Alexandr Murashkin, Rafael
Olaechea, Jia Hui Jimmy Liang, and Krzysztof Czarnecki. "Clafer tools
for product line engineering." In Proceedings of the 17th International
Software Product Line Conference co-located workshops, pp. 130-135.
ACM, 2013.

[25] Peddabachigari, Sandhya, Ajith Abraham, Crina Grosan, and Johnson
Thomas. "Modeling intrusion detection system using hybrid intelligent
systems." Journal of network and computer applications 30, no. 1
(2007): 114-132.

[26] Purshouse, Robin C., Kalyanmoy Deb, Maszatul M. Mansor, Sanaz
Mostaghim, and Rui Wang. "A review of hybrid evolutionary multiple
criteria decision making methods." COIN Report,(2014005), January
(2014).

[27] Molano, Viviana, Carlos Cobos, Martha Mendoza, Enrique Herrera-
Viedma, and Milos Manic. "Feature Selection Based on Sampling and
C4.5 Algorithm to Improve the Quality of Text Classification Using
Naïve Bayes." In Human-Inspired Computing and Its Applications, pp.
80-91. Springer International Publishing, 2014.

[28] She, Steven, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. "The Variability Model of The Linux Kernel."
VaMoS 10 (2010): 45-51.

Page | 666

	Software Engineering
	CR-ICIT15224
	CR-ICIT15236
	CR-ICIT15254
	CR-ICIT15283
	CR-ICIT15455
	CR-ICIT15467
	CR-ICIT15536
	CR-ICIT15580

