
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Anatomy of the Parallel Tree Based Strategy for

High Strength Interaction Testing

Mohammad F. J. Klaib

Computer Science Department

College of Computer Sciences and Engineering

Taibah University

Madina, Kingdom of Saudi Arabia

 Email: mklaib@taibahu.edu.sa

 mom_klaib@yahoo.com

Abstract—Software and hardware testers concentrate on how to minimize the time involved in testing at the same time to ensure that

the system is also tested well and made acceptable. This paper has enhanced and explained in details our previous strategy “A Tree Based

Strategy for Test Data Generation and Cost Calculation for Pairwise Combinatorial Interaction Testing” to work effectively in parallel

and to go beyond pairwise testing. The proposed strategy can now support a parallel 2-way and general multi-way combinatorial

interaction test data generation based on two algorithms; a parallel tree generation algorithm which generates the test cases and a parallel

T-way cost calculation algorithm which is used in constructing test suites with minimum number of test cases. Both strategies have been

explained here in details.

Keywords— Parallel algorithms, Software testing, Hardware testing, Multi-way testing

I. INTRODUCTION

A well-tested product or service is necessity to ensure

customer's satisfaction. However, exhaustive testing is

unaffordable due to combinatorial explosion problem.

Combinatorial explosion in testing may occur for configurable

systems. When systems under test have many configuration

parameters, each with several possible values, testing each

configuration is sometimes infeasible.

Combinatorial interaction testing has been one of the

methods used to minimize the size and the time involved in

testing [28-32], at the same time to ensure that the system is also

tested well and made acceptable. The combinatorial interaction

testing approach can reduce the number of test cases by

systematically selecting a subset from an exhaustive testing

combination based on the strength of parameter interaction [9-

14, 23,27]. Basic combinatorial interaction testing which is

called pairwise or 2-way testing [4-8] provides a systematic

approach to identify and isolate faults since many faults are

caused by unexpected 2-way interactions among system

factors. Empirical investigations have concluded that from 50

to 97 percent of software faults [1, 6, 9, 15, 24- 26] could be

identified by pairwise combinatorial interaction testing.

However, what about the remaining faults? Especially, in case

of highly interactive systems which have a number of

interactions with higher strength. How many failures could be

triggered only by an unusual interaction involving more than

two parameters? Investigations have found that many faults

were caused by a single parameter, a smaller proportion

resulted from an interaction between two parameter values, and

progressively fewer were triggered by 3-6 way interactions

[3,18- 22].

Therefore, to ensure a high quality testing of complex

applications, it is necessary to generate test suites for higher

degree T-way interactions. T-way testing [3, 18, 19, 20, 21, 22]

requires every combination of any T parameter values to be

covered by at least one test, where T is referred to as the strength

of coverage. If all faults in a system can be triggered by a

combination of T or fewer parameters, then testing all T-way

combinations of parameters can provide high confidence that

nearly all faults have been discovered. A number of studies

have shown combinatorial methods to be highly effective for

software and hardware testing.

Large and/or computationally expensive optimization

problems sometimes require parallel or high-performance

computing systems. Parallel algorithms have been applied to

problems such as weather and climate modelling,

bioinformatics analysis, logistics and transportation, and

engineering design. Furthermore, commercial applications are

driving development of effective parallel software [16, 17, 22,

26] for large-scale applications such as data mining and

computational medicine. In the simplest sense, parallel

computing involves the simultaneous use of multiple computer

resources to solve a computational problem.

In this paper we have enhanced our previous strategy “A Tree

Based Strategy for Test Data Generation and Cost Calculation”

[24, 25, 26] to work in parallel and to go beyond pairwise (2-

way) testing. The proposed strategy can now support a parallel

and general T-way combinatorial test data generation involving

uniform and non uniform parametric values. The proposed

strategy is based on two algorithms; a parallel tree based test

data generation algorithm which generates all the test cases, and

a parallel T-way cost calculation algorithm which is applied to

construct T-way test suites with minimum number of test cases.

Page | 643

mailto:mklaib@taibahu.edu.sa

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

The remainder of this paper is organized as follows. Section 2

explains the parallel tree generation and the proposed iterative

T-way cost calculation strategy with an example. Section 3

gives parallel tree generation algorithms for test case generation

and explains its advantages. Section 4 presents the parallel,

iterative, T-way cost calculation algorithm for T-way test suites

generation, with its working explained. Finally, Section 5 gives

the conclusion.

II. THE PROPOSED STRATEGY

 The proposed strategy constructs the tree based on the

parameters and values given. It constructs every branch of the

tree in parallel. The number of branches the tree has depends on

the number of values of the first parameter i.e. if the first

parameter has 3 values then the tree also would have 3 branches.

Therefore every branch construction starts by getting one value

of the first parameter i.e. branch T1 gets the first value, T2 gets

the second value and so on. After the base branches are

constructed one child thread is assigned to every branch and the

further construction takes place in a parallel manner. Each of

the branches considers all values of all the other parameters

two, three,…..N where N is the total number of parameters. All

the branches consider the values of the parameters in the same

order. The following simple system with parameters and values,

illustrates the concept as shown below:

 Parameter A has two values A1 and A2

 Parameter B has one value B1

 Parameter C has three values C1, C2 and C3

 Parameter D has two values D1 and D2

We have given the illustration for minimum test suite

construction of 2-way and 3-way combinatorial interactions

testing using our algorithm, for the system mentioned. The

algorithm starts constructing the test-tree by considering the

first parameter. As the first parameter has two values the tree is

said to have two main branches with the first branch using A1

and the second branch using A2. Then each of the branches is

constructed in parallel by considering all the values of the

second parameter, then the third and fourth and so on. When the

branches are fully constructed the leaf nodes gives all the test

cases that has to be considered for cost calculation. Since all of

the branches are constructed in parallel there is a significant

reduction in time. Fig. 1 shows the test tree for the system

below.

Fig. 1 above shows how the test-tree would be constructed.

The test cases generated by the first branch are stored in the lists

T1 and the test cases generated by the second branch are stored

in T2 respectively. i.e. (A1,B1,C1,D1), (A1,B1,C1,D2),

(A1,B1,C2,D1), (A1,B1,C2,D2), (A1,B1,C3,D1),

(A1,B1,C3,D2) are stored in T1, and (A2,B1,C1,D1),

(A2,B1,C1,D2), (A2,B1,C2,D1), (A2,B1,C2,D2),

(A2,B1,C3,D1) and (A2,B1,C3,D2) are stored in T2.

Once the parallel tree construction is over we are ready

with all the test cases to start the parallel iterative cost

calculation. In this strategy the cost of the leaf nodes in each of

the lists are calculated in parallel in order to reduce the

execution time. The cost of a particular test case is the

maximum number of T-way combinations that it can cover

from the covering array. At First, the algorithm starts by

constructing the covering array, for all possible T-way

combinations of input variables, if T equals 2 i.e. [A & B], [A

& C], [A & D], [B & C], [B & D] and [C & D]. The covering

array for the above example has 23 pairwise interactions as

shown in Table 1, which has to be covered by any test suite

generated, to enable a complete pairwise interaction testing of

the system.

Once the covering array is generated the algorithm starts to

include all tree branches. which might definitely give the
maximum Wmax cost into the test suite. Then these test cases
are deleted from the tree branches lists T1 and T2, and the
corresponding pairs covered by it in the covering array are also
deleted. In the third step, the main thread in the algorithm
invokes a number of child threads equal to the number of values
of the first parameter and calculates the cost of all the test cases

Fig. 1 Test-Tree Construction

Page | 644

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

in each of the branches in a parallel fashion. Each child thread
stores all the test cases with the Wmax value from its
corresponding branch into a separate sub-list. The child thread
that finishes calculating the cost of all the test cases in its branch
first locks the covering array. This thread then looks into its sub-
list and includes the test cases stored in it into the test suite only
after confirming that the test case definitely has the maximum
cost or Wmax value. Then the test cases included in the test suite
are deleted from the tree branches list and sub-list, and the
corresponding pairs that these cover are deleted from the
covering array.

TABLE 1. PAIRWISE COVERING ARRAY.

A with B A with C
A with

D
B with C

B with

D

C with

D

A1,B1 A1,C1 A1, D1 B1,C1 B1, D1 C1, D1

A2,B1 A1,C2 A1, D2 B1,C2 B1, D2 C1, D2
 A1,C3 A2, D1 B1,C3 C2, D1

 A2,C1 A2, D2 C2, D2

 A2,C2 C3, D1
 A2,C3 C3, D2

The other threads wait in a queue until the execution of the

first thread is over, after which these threads resume their

execution in the order in which they are queued. These threads

on resumption re-evaluate the test cases in their sub-list to

confirm that these test cases have the Wmax value before

including these into the test suite. Thus in the first iteration all

the test cases with the maximum Wmax value from all the

branches are included in the test suite. Now the Wmax value is

decremented by one and the same parallel execution of all the

threads continue until all the pairs in the covering array are

covered. For the above example all the test cases which are

included in the test suite are identified in four iterations and

there are six such test cases. Table 2 shows how the cost

calculation works iteratively to generate the test suite. The same

test suite gets generated if a sequential execution of the above

algorithm takes place.

As the pairwise test suite is generated, we can generate the

test suite for 3-way combinatorial interactions and so on the

forth until (n-1) way combinatorial interaction test suites are

generated. To illustrate the 3-way test suite generation, again

the whole process starts by constructing the 3-way covering

array and the iterative, parallel cost calculation of the test cases

in the various branches as explained before. Table 3 shows the

covering array for 3-way combination i.e. [A, B, C], [A, B, D],

[A, C, D] and [B, C, D], for the example in Fig. 1. The covering

array for the above example has 28 3-way interactions which

have to be covered by any test suite generated, to enable a

complete 3-way interaction testing of the system. Table 4 shows

how the cost calculation works iteratively to generate the test

suite. Table 4 also shows the order in which the various test

cases are actually included in the test suite.

 TABLE 3 3-WAY INTERACTION COVERING ARRAY.

A, B, C A, B, D A, C, D B, C, D

A1, B1, C1 A1, B1, D1 A1, C1, D1 B1,C1, D1
A1, B1,C2 A1, B1,D2 A1, C1, D2 B1,C1, D2

A1, B1,C3 A2, B1,D1 A1, C2, D1 B1,C2, D1

A2, B1,C1 A2, B1,D2 A1, C2, D2 B1,C2, D2

A2, B1,C2 A1, C3, D1 B1,C3, D1

A2, B1,C3 A1, C3, D2 B1,C3, D2

 A2, C1, D1
 A2, C1, D2

 A2, C2, D1

 A2, C2, D2

 A2, C3, D1

 A2, C3, D2

Page | 645

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

III. PARALLEL TREE GENERATION ALGORITHMS FOR TEST

CASE GENERATION

A. Tree Generation Algorithm for Main Thread

 TABLE 2. GENERATED TEST SUITE FOR PAIRWISE COMBINATORIAL INTERACTION.

Test Case No. Test Case Iteration/Child Thread No.
Max

Weight
Covered pairs

T1 A1,B1,C1,D1 1/1 6
[A1,B1][A1,C1][A1,D1]
[B1,C1][B1,D1][C1,D1]

T10 A2,B1,C2,D2 ½ 6
[A2,B1][A2,C2][A2,D2]

[B1,C2][B1,D2][C2,D2]

T6 A1,B1,C3,D2 2/1 4
[A1,C3][A1,D2]

[B1,C3][C3,D2]

T11 A2,B1,C3,D1 3/2 3 [A2,C3] [A2,D1] [C3,D1]
T3 A1,B1,C2,D1 4//1 2 [A1,C2] [C2,D1]

T8 A2,B1,C1,D2 4/2 2 [A2,C1] [C1,D2]

TABLE 4 GENERATED TEST SUITE FOR 3-WAY COMBINATORIAL INTERACTION.

Test Case

No.
Test Case

Iteration/ Child Thread

No.

Max

Weight
Covered pairs

T1 A1,B1,C1,D1 1/1 4 [A1,B1,C1][A1,B1,D1][A1,C1,D1][B1,C1,D1]

T4 A1,B1,C2,D2 1/1 4 [A1,B1,C2][A1,B1,D2][A1,C2,D2][B1,C2,D2]

T8 A2,B1,C1,D2 ½ 4 [A2,B1,C1][A2,B1,D2][A2,C1,D2][B1,C1,D2]
T9 A2,B1,C2,D1 ½ 4 [A2,B1,C2][A2,B1,D1][A2,C2,D1][B1,C2,D1]

T5 A1,B1,C3,D1 2/1 3 [A1,B1,C3][A1,C3,D1][B1,C3,D1]

T12 A2,B1,C3,D2 2/1 3 [A2,B1,C3][A2,C3,D2][B1,C3,D2]
T2 A1,B1,C1,D2 3/1 1 [A1,C1,D2]

T3 A1,B1,C2,D1 3/1 1 [A1,C2,D1]

T6 A1,B1,C3,D2 3/1 1 [A1,C3,D2]
T7 A2,B1,C1,D1 3/2 1 [A2,C1,D1]

T10 A2,B1,C2,D2 3/2 1 [A2,C2,D2]
T11 A2,B1,C3,D1 3/2 1 [A2,C3,D1]

Input: A set of parameters and the values of the corresponding parameters

Output: Lists of test cases. Each list holds the Fig. 4 Cost Calculation Algorithm

Test cases generated by the tree in one particular branch of that tree.

Begin

 X = number of values of first parameter p1

 {For the first parameter p1}

 Ti=Vi, where i=1,2,3,……..,X/ parameter p1 has X values

If N=1 then stop and exit;

Create X threads with unique thread ids. Assign each Ti to a separate child thread and execute all the child threads in

parallel

Wait for the termination of all the threads to get the results from all the branches.

End

Page | 646

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

B. Tree generation Algorithm for Child Thread

The tree generation algorithm thus provides the following

advantages:

1. A systematic method whereby all possible test cases

are generated in order.

2. The above procedure works fine with the parameters

having any number of values. Therefore all parameters

can have different or same values as any real time

system to be tested would have.

3. The procedure appears to generate the full tree by

using all the values of the parameters but at every

iteration only a set of leaf nodes are left thus having a

list of leaf nodes (or test cases) when the procedure

ends.

4. Since the test cases in every branch are generated in

parallel by the child threads there is significant

reduction in time.

 The example tree shown in Fig. 1 explains how the test

cases are constructed manually. In reality we may need only the

leaf nodes and all the intermediate nodes are not used.

Therefore in order to increase the efficiency of the

implementation we have constructed the same tree as in Fig. 1

using the proposed parallel tree generation algorithm. This

proposed algorithm constructs the tree by minimising the

number of nodes. Minimisation of the number of nodes is

achieved by giving importance only to the leaf nodes at every

stage. The main thread just constructs the base branches of the

tree each of which consists of one value of the first parameter

in an order in which the input was made. Therefore, in the

example above there are only two base branches and the value

A1 is assigned to branch T1 and A2 to T2. Then the main

algorithm invokes a number of unique child threads to handle

each of the branches separately. At each stage or iteration each

of the child threads look at the leaf nodes of their corresponding

branches and generate the next level nodes by considering all

the values of the current parameter, to generate the new set of

nodes. The new set of leaf nodes from an already existing set is

calculated using a replication strategy. The existing set of leaf

nodes be Esoln, new set of leaf nodes be Nsoln and the number

of values of the parameter under consideration be n. Then,

Begin

 {For the remaining parameters the execution takes place in parallel}

 For parameters Pj, j=2,3,………N do

 Where N is the total number of parameters

 Begin

 For each Test (Vi1, Vi2,………….Vim) in Ti do

Where i = 1,2,…..X, X is the number of values of parameter p1and m is the maximum number of test cases in list Ti

at that Time

 Begin

 Replicate the Test as many times as (the number of values of Pj – 1)

Add all the replicated nodes sequentially after the current original test node and before the other test nodes in Ti

For each value in Pj do

Begin

Append the original node with V1 and all the replicated tests with (V2, V3,……..Vy-1, Vy) where Vy is a

value of Pj and each of which is considered in order.

End

 End

 End

End

Page | 647

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

 Let there be 4 leaf nodes in a branch and the next

parameter to be considered has 2 values. Then the new list of

nodes for that branch will have 8 new leaf nodes as a result. The

algorithm considers every leaf node separately and calculates

the number of times this particular node needs to be replicated

with the formulae given below:

Where pj – is the jth parameter under consideration for

constructing the new set of leaf nodes and j=1, 2,….N – the

number of parameters. In the Fig. 1 that is shown above

consider the leaf nodes (A1, B1) of list or branch T1 and (A2,

B1) of branch T2. To construct the next level of leaf nodes the

parameter under consideration is C, which has values C1, C2

and C3. Therefore, the node (A1, B1) needs to be replicated

twice. Now we will have three (A1, B1) nodes to which C1 is

added to the first, C2 is added to the second and C3 is added to

the third and then the replicated nodes are included in the list of

leaf nodes after the original node. The same is done to (A2, B1).

It is replicated twice and hence we have three of it (one original

and two replicated nodes). Now C1 is added to the first (original

node), C2 is added to the second (replicated node) and C3 is

added to the third (replicated node). Thus we have (A2, B1, C1),

(A2, B1, C2) and (A2, B1, C3). If there are more parameters

the same is continued until all the parameters are considered.

Thus, once the lists of leaf nodes are generated we go to the next

strategy of iterative and parallel cost calculation to construct the

test suite.

IV. TEST SUITE GENERATION BY ITERATIVE AND PARALLEL

COST CALCULATION STRATEGY

 The main thread includes the base test cases which would

definitely have a maximum cost value and then invokes a

number of unique child threads which operate in parallel on

each of the branches lists. The main thread iterates N-2 times

thus generating N-2 test suites. In the first iteration, i=2, the

child threads iterate through the lists of test cases until all the

pairs of the 2-way covering array are covered. Then the

minimum 2-way test suite generated is stored and the next

iteration begins. Now, i=3 and the child threads iterates again

through the lists of test cases until all the 3-way combinations

of the 3-way covering array are covered and then the 3-way test

suite generated is stored. Thus this is continued until i= N-1. At

each iteration, all the test cases with the maximum cost (Wmax)

for that particular iteration are included in the test suite. Thus

the algorithm guarantees identifying minimum test suites for

parameters with same as well as different number of values.

Page | 648

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

A. Strategy T-way Test Suite Generation by Iterative and

Parallel Cost Calculation (Main Thread)

Input: Lists of test cases. Each list holds the test cases generated by the tree in one particular branch of that tree.

Output: T-way test suites with minimum number of test cases

Begin

Tempb = Tb (where b is the number of lists of test cases)

X = number of values of parameter p1

B=min (Value(p1), Value(p2), …….Value(pn)

For i = 2 to N-1 do

Begin

Generate the i-way covering array for the given parameters.

Wmax = N!/((i!)*((N-i)!)) // N – is the number of parameters

Let T’ be an empty set where i-way test suites are stored.

For a = 1 to B do

Begin

 Testa = concatenate the ath values of all the parameters to form a test case.

End

For each Testa do

Begin

 Delete all the T-way combinations that Testa covers in the covering array

 Delete Testa from the Ti Lists

 T’ = Testa

End

Creates a set of temporary lists Yi corresponding to the Ti lists, where i= 1,2,…..X, X is the number of values of parameter p1

or the number of lists.

Create X threads with unique thread ids. Assign every child thread Thi with one Ti lists, the corresponding Yi lists, i value and

Wmax value, and execute all the child threads in parallel.

Wait for the termination of all the child threads.

Store the i-way test suite generated in the list T’

Tb = Tempb

End

End

Page | 649

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

B. Strategy T-way Test Suite Generation by Iterative and

 Begin

While (covering array is not empty) do

Begin

 For each Test Tij in Ti do

 Where i=1,2,…….X, X – is the number of lists and j=1,2,….n where there are n test cases in Ti at that time

Begin

 Cost[Tij]= The number of T-way combinations covered by it in the covering array

 If (Cost[Tij]==Wmax)

 Begin

 Yi = Tij

 End

End

{Whichever thread completes its execution first locks the covering array and updates all its test cases with Wmax values from Yi to the

Test suite T’ and deletes all the corresponding T-way combinations of those test cases included in T’ from the covering array. The

other threads on completing execution enters a queue and does its updation in that queued order by locking and unlocking the covering

array after the first thread releases its lock on the covering array }

For each Yi do (lock the covering array and make updation)

Begin

 If (Yi != empty)

 Begin

 For each Test Tij in Yi do

Begin

Count= The number of T-way combinations covered by it in the covering array

 If (Count ==Wmax)

 Begin

 T’ = T’ U Tij

 Delete all the T-way combinations that Tij covers in the covering array

 Delete Tij from the lists Ti

 End

 Delete Tij from the lists Yi

 End

 End

 (unlock the covering array)

 End

 Wait until all child threads finishes updating

 Wmax=Wmax-1

End

End

Page | 650

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0112 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Parallel Cost Calculation (Child Thread)

V. CONCLUSION

In this paper we have explained in details the parallel tree

based test data generation and parallel iterative cost calculation

strategy for multi-way combinatorial interaction testing and the

correctness of the proposed strategy has been proved in section

3 (Tables 1, 2, 3 and 4).

REFERENCES

[1] M. F. J. Klaib, K. Z. Zamli, N. A. M. Isa, M. I. Younis, R. Abdullah,
"G2Way – A Backtracking Strategy for Pairwise Test Data Generation",
in the 15th IEEE Asia-Pacific Software Engineering Conference, Beijing,
China, 2008, pp. 463-470.

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton, "The AETG
System: An Approach to Testing Based on Combinatorial Design", in
IEEE Transactions on Software Engineering, vol. 23, 1997, pp. 437-444.

[3] Y. Lei, R. Kacker, D. Kuhn, V. Okun, J. Lawrence, "IPOG/IPOD:
Efficient Test Generation for Multi-Way Software Testing", in Journal of
Software Testing, Verification, and Reliability, vol. 18, 2009, pp.125-148.

[4] M. B. Cohen, "Designing Test Suites for Software Interaction Testing",
in Computer Science, University of Auckland, Ph.D, New Zealand, 2004.

[5] D. M. Cohen, S. R. Dalal, A. Kajla, G. C. Patton, "The Automatic
Efficient Test Generator (AETG) System", in the 5th International
Symposium on Software Reliability Engineering, Monterey, CA, USA,
1994, pp. 303-309.

[6] Y. Lei, K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for
Pairwise Testing", in the 3rd IEEE International. High-Assurance
Systems Engineering Symp, Washington, DC, USA, 1998, pp. 254-261.

[7] T. Shiba, T. Tsuchiya, T. Kikuno, "Using Artificial Life Techniques to
Generate Test Cases for Combinatorial Testing", in the 28th Annual
International Computer Software and Applications Conf.
(COMPSAC’04), Hong Kong, 2004, pp. 72-77.

[8] K. C. Tai, Y. Lei, " A Test Generation Strategy for Pairwise Testing", in
IEEE Transactions on Software Engineering, vol. 28, 2002, pp. 109-111.

[9] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, B. M. Horowitz, "Model Based Testing in Practice", in the
International Conf. on Software Engineering (ICSE), 1999, pp. 285–294.

[10] D. R. Kuhn, M. J. Reilly, "An Investigation of the Applicability of Design
of Experiments to Software Testing", in the 27th NASA/IEEE Software
Engineering Workshop, 2002, pp. 69-80.

[11] D. R. Kuhn, V. Okum, "Pseudo-Exhaustive Testing for Software", in: the
30th Annual IEEE/NASA Software Engineering Workshop (SEW '06),
2006, pp. 25-27.

[12] D. R. Kuhn, D. R. Wallace, A. M. Gallo, "Software Fault Interactions and
Implications for Software Testing", in IEEE Transactions on Software
Engineering vol. 30, June 2004, pp. 418-421.

[13] J. Yan, J. Zhang, "A Backtracking Search Tool for Constructing
Combinatorial Test Suites",in Journal of Systems and Software - Elsevier,
vol. 81, October 2008 pp. 1681-1693.

[14] R. Bryce, C. J. Colbourn, "Prioritized Interaction Testing for Pairwise
Coverage with Seeding and Avoids", in Information and Software
Technology Journal (IST, Elsevier), vol. 48, October 2006, p. 960-970.

[15] D. R. Kuhn, Y. Lei, R. Kacker, "Practical Combinatorial Testing: Beyond
Pairwise", in IT Professional- IEEE Computer Society vol. 10, May 2008,
pp. 19-23.

[16] D. A. Bader, W. E. Hart, C. A. Phillips, "Parallel Algorithm Design for
branch and bound", in Tutorials on Emerging Methodologies and
Applications in Operations Research. Mathematics and Statistics, vol. 76.
Springer, New York , 2005 pp. 5.1- 5.44.

[17] R. Setia, A. Nedunchezhian, S. Balachandran, "A New Parallel
Algorithm for Minimum Spanning Tree Problem". in the 16th Annual
IEEE International Conference on High Performance Computing. Cochin,
India, 2009, pp 1-25.

[18] Kamal Z. Zamli, Mohammad F.J. Klaib, Mohammed I. Younis, Nor
Ashidi Mat Isa, and Rusli Abdullah,"Design and implementation of a t-
way test data generation strategy with automated execution tool support"
Information Sciences, vol 181,issue 9, May 201,pp 1741-1758.

[19] Mohammad F. J. Klaib, Sangeetha Muthuraman, A.Noraziah, "A Tree
Based Strategy for Interaction Testing", in The 5th International
Conference on Information Technology 2011 (ICIT2011), AL-Zaytoonah
University of Jordan, Faculty of Science & Information Technology,
Jordan, , May, 2011, pp 1-5.

[20] Y. Lei, R Kacker, D. R Kuhn, V Okun,J. Lawrence, IPOG/IPOG-D:
efficient test generation for multi-way combinatorial testing, Software
Testing, Verification and Reliability, vol 18, Issue 3, September 2008 pp
125–148.

[21] Z. Hisham C. Soh, M.. I Younis, S.Abdullah, K. Zamli, "Distributed t-
way Test Suite Generation Algorithm for Combinatorial Interaction
Testing", in the International conference on IT to Celebrate
S.Charmonman’s 72nd Birthday (Charm09), Thailand, March 2009, pp.
431-437

[22] M. I. Younis, K. Z. Zamli, "MC-MIPOG: A Parallel t-Way Test
Generation Strategy for Multicore Systems",in ETRI Journal,vol. 32, no.
1, February 2010 pp. 73-83..

[23] M. Grindal, B. Lindstrom, J. Offutty, S. F. Andler, "An Evaluation of
Combination Strategies for Test Case Selection". Technical Report HS-
IDA-TR-03-001, Department of Computer Science, University of
Skövde, 2003.

[24] M. F. Klaib, S. Muthuraman, N. Ahmad, and R. Sidek, "Tree Based Test
Case Generation and Cost Calculation Strategy for Uniform Parametric
Pairwise Testing",in Journal of Computer Science, Journal of Computer
Science, 6 (4), 2010,pp: 425-430.

[25] M. F. J Klaib, S. Muthuraman, N. Ahmad, and R. Sidek, "A Tree Based
Strategy for Test Data Generation and Cost Calculation for Uniform and
Non-Uniform Parametric Values", in International Symposium on
Frontier of Computer Science, Engineering and Applications
(CSEA2010), Bradford, UK, 2010,pp 1376 - 1383.

[26] M. F. J Klaib, S. Muthuraman, N. Ahmad, and R. Sidek, "A Parallel Tree
Based Strategy for Test Data Generation and Cost Calculation for
Pairwise Combinatorial Interaction Testing", in The Second International
Conference on Networked Digital Technologies (NDT2010) Charles
University in Prague, Czech Republic: Springer, 2010, pp 509-522.

[27] D.R. Kuhn, R.N. Kacker and Y. Lei, "Combinatorial Coverage as an
Aspect of Test Quality", Journal of Defense Software Engineering,2014.

[28] D.R. Kuhn, R.N. Kacker and Y. Lei, "Measuring and Specifying
Combinatorial Coverage of Test Input Configurations", Innovations in
Systems and Software Engineering: a NASA journal, 2014, pp1-15.

[29] J. Torres-Jimenez, I. Izquierdo-Marquez, "Survey of Covering Arrays", in
the 15th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2013), Timisoara, Romania, 23-26,
2013, pp. 20-27.

[30] R.N. Kacker, D.R. Kuhn, Y. Lei, and J.F. Lawrence, "Combinatorial
Testing for Software, an Adaptation of Design of
Experiments”,Measurement, vol. 46, no. 9, 2013, pp. 3745-3752.

[31] X. Niu, C. Nie, Y. Lei, A.T.S. Chan, "Identifying Failure-Inducing
Combinations Using Tuple Relationships", in the 6th IEEE International
Conference on Software, Testing, Verification and Validation (ICST
2013), Luxembourg, March 18-22, 2013, pp. 271-280.

[32] M.N. Borazjany, L.S.G. Ghandehari, Y. Lei, R.N. Kacker and D.R. Kuhn,
"An Input Space Modeling Methodology for Combinatorial Testing", in
the 6th IEEE International Conference on Software, Testing, Verification
and Validation (ICST 2013), Luxembourg, March 18-22, 2013, pp. 372-
381.

Page | 651

http://www.springerlink.com/content/m17512/?p=9ac7c1413c1d4ba395a7814bd2f47cbb&pi=0
http://www.springerlink.com/content/m17512/?p=9ac7c1413c1d4ba395a7814bd2f47cbb&pi=0
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235643%232011%23998189990%232941735%23FLA%23&_cdi=5643&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=be05be88998f4d6e1f0a15948adbd0e6
http://onlinelibrary.wiley.com/doi/10.1002/stvr.v18:3/issuetoc

	Parallel
	CR-ICIT15489
	CR-ICIT15574
	CR-ICIT15576

