
ICIT 2015 The 7th International Conference on Information Technology 
doi:10.15849/icit.2015.0110 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)  

An Effective Parallel FDTD Algorithm For 

Modeling 3D Frequency-Dependent 

Electromagnetic Applications 
 

Omar Ramadan, Muhammed Salamah and Ahmad Salh 

Computer Engineering Department 

Eastern Mediterranean University 

GaziMagusa, Mersin 10, Turkey 

omar.ramadan@emu.edu.tr; muhammed.salamah@emu.edu.tr ; asdwifi@googlemail.com  

 

 
Abstract—Full-wave parallel finite difference time domain (FDTD) algorithm is presented for modeling open region dispersive 

electromagnetic applications. The algorithm is based on spatial partitioning of the problem geometry into adjacent non-overlapping 

sub-domains using two-dimensional topology. The inter-processor communication among the neighboring processors is carried out by 

using the message passing interface (MPI) library. The performance of the proposed parallel system, which is composed of 16 PCs 

interconnected through 100Mbps Ethernet, was illustrated for a point source radiating in three dimensional Lorentz dispersive domain 

and it has been found that the proposed algorithm not only speed up computations but also increases the maximum solvable problem 

size. 
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I.  INTRODUCTION 

     In the last decade, the finite difference time domain 

(FDTD) method [1] has been widely used for solving many 

electromagnetic problems [2]. This is due to its simplicity and 

direct applicability to Maxwell’s curl equations. Nevertheless, 

when the FDTD method is used for modeling open region 

problems, efficient absorbing boundary conditions (ABCs) are 

needed to truncate the computational domains. The perfectly 

matched layer (PML) [3]-[6] has been shown to be one of the 

most effective FDTD ABCs. This ABCs surrounds the FDTD 

computational domain with a lossy layer that absorbs outgoing 

waves with minimal reflections. 

    To model large problems using the FDTD method, intensive 

computational time and memory storage are needed. Hence, 

parallelizing the FDTD method has been shown to be one of 

the latest challenges in the FDTD research. In last few years, 

different parallel PML-FDTD algorithms, based on the 

message passing interface (MPI) library [7], have been 

successfully introduced [8]-[14]. Nevertheless, these 

algorithms are suitable only for non-dispersive 

electromagnetic applications. In [15], dispersive parallel scalar 

wave equation FDTD algorithm has been presented. This 

approach, however, is valid only for source free applications 

only. 

     In this paper, full-wave parallel PML-FDTD algorithm is 

presented for modeling open region dispersive 

electromagnetic problems. The algorithm is based on spatial 

partitioning of the problem geometry into adjacent non-

overlapping sub-domains using two-dimensional (2-D) 

topology and the inter-processor communication among the 

neighboring processors is carried out by using the MPI library.            

The performance of the proposed parallel system, which is 

composed of 16 PCs interconnected through 100Mbps 

ethernet, was illustrated for a point source radiating in three 

dimensional Lorentz dispersive domain and it has been 

observed that the parallel algorithm not only speed up 

computations but also increases the maximum solvable 

problem size. The paper is organized as follows. In Section II, 

the basic formulations of the FDTD and the APML ABCs 

approaches are presented. In Section II, the proposed parallel 

strategy is described. Numerical example to show the validity 

of the proposed parallel algorithm is included in Section III. 

Finally, summary and conclusions are included in Section IV. 

II. THEORY 

A. Basic Formulations 

Considering an isotropic, homogeneous and dispersive 

computational domain, the frequency domain Maxwell’s curl 

equations can be written as  

𝑗𝜔𝜀0𝜀𝑟(𝜔)𝐄(𝐫, 𝜔) = ∇ × 𝐇(𝐫, 𝜔) (1) 
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𝑗𝜔𝜇0𝐇(𝐫, 𝜔) = −∇ × 𝐄(𝐫,𝜔) (2) 

where 𝐄 and 𝐇 are, respectively, the electric and the magnetic 

field vectors, and 𝜀𝑟(𝜔) is the relative permittivity of the 

domain which can be written as  

𝜀𝑟(𝜔) =
∑𝑀

𝑚=0 𝑎𝑚(𝑗𝜔)𝑚

∑𝑀
𝑚=0 𝑏𝑚(𝑗𝜔)𝑚

 (3) 

where 𝑎𝑚 and 𝑏𝑚, (𝑚 = 0, 1, ⋯, 𝑀), are the coefficients of 

the rational polynomials and 𝑀 is the maximum order of the 

dispersive domain. To discretize (1) and (2), consider, as an 

example, the 𝐸𝑧-field component of (1), i.e.,  

𝑗𝜔𝜀0𝜀𝑟(𝜔)𝐸𝑧 =
∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
 (4) 

Equation (4) can be written as  

𝑗𝜔𝜀0𝐷𝑧 =
∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
 (5) 

where 𝐷𝑧 is related to 𝐸𝑧 through the constitutive relation:  

𝐷𝑧 = 𝜀𝑟(𝜔)𝐸𝑧 =
∑𝑀

𝑚=0 𝑎𝑚(𝑗𝜔)𝑚

∑𝑀
𝑚=0 𝑏𝑚(𝑗𝜔)𝑚

𝐸𝑧 (6) 

Using the inverse Fourier transform relation, 𝑗𝜔 ⇒ ∂/ ∂𝑡, and 

employing the FDTD time and space discretizations [1], (5) 

can be written in the discrete time domain as  

𝐷𝑧𝑖,𝑗,𝑘+1/2

𝑛+1 = 𝐷𝑧𝑖,𝑗,𝑘+1/2

𝑛 +
Δ𝑡

Δ𝜀0

[𝐻𝑦𝑖+1/2,𝑗,𝑘+1/2

𝑛+1/2 − 𝐻𝑦𝑖−1/2,𝑗,𝑘+1/2

𝑛+1/2  

       −𝐻𝑥𝑖,𝑗+1/2,𝑘+1/2

𝑛+1/2
+ 𝐻𝑥𝑖,𝑗−1/2,𝑘+1/2

𝑛+1/2
]         (7) 

where Δ = Δ𝑥 = Δ𝑦 is the space cell size. Equation (6) can be 

easily written in the discrete time domain easily by using the 

Bilinear transformation relation [16] 

𝑗𝜔 ⇒
2

Δ𝑡

1−𝒵−1

1+𝒵−1       (8) 

where 𝒵−1 is the 𝒵-transform variable which corresponds to a 

single delay element in the discrete time domain. To this end, 

(6) can be written in the 𝒵-domain as  

𝐷𝑧(𝒵) =
∑𝑀

𝑚=0 𝑐𝑚𝒵(1−𝑚)

∑𝑀
𝑚=0 𝑑𝑚𝒵(1−𝑚) 𝐸𝑧(𝒵) (9) 

where 𝑐𝑚 and 𝑑𝑚, (𝑚 = 0, 1, ⋯, 𝑀), are related to 𝑎𝑚 and 𝑏𝑚 

and the time step Δ𝑡. Using the 𝒵-transform relation  

𝒵−𝑚𝐺(𝒵) → 𝐺𝑛−𝑚 (10) 

 (9) can be written directly in the discrete time form as  

𝐸𝑧𝑖,𝑗,𝑘+1/2

𝑛+1 =
𝑑0

𝑐0
𝐷𝑧𝑖,𝑗,𝑘+1/2

𝑛+1 + Ψ 𝑖,𝑗.𝑘+1/2

𝑛  (11) 

 where  

 Ψ 𝑖,𝑗.𝑘+1/2

𝑛 =
1

𝑐0

∑𝑀
𝑚=1 (𝑑𝑚𝐷𝑧𝑖,𝑗.𝑘+1/2

𝑛+(1−𝑚) − 𝑐𝑚𝐸𝑧𝑖,𝑗.𝑘+1/2

𝑛+(1−𝑚))

 (12) 

 Similar equations can be obtained for the other field 

components. 

B. Absorbing Boundary Conditions 

Using the anisotropic PML (APML) formulations of [5], (1) 

and (2) can be written in the APML region at the domain 

boundaries as  

𝑗𝜔𝜀0𝜀𝑟(𝜔)𝜀(𝐫, 𝜔)𝐄(𝐫,𝜔) = ∇ × 𝐇(𝐫, 𝜔) (13) 

 𝑗𝜔𝜇0𝜇(𝐫,𝜔)𝐇(𝐫, 𝜔) = −∇ × 𝐄(𝐫, 𝜔) (14) 

where 𝜀(𝐫, 𝜔) and 𝜇(𝐫, 𝜔) are, respectively, the APML 

permittivity and permeability diagonal tensors defined as [5]  

𝜀(𝐫, 𝜔) = 𝜇(𝐫, 𝜔) =

[
 
 
 
 
𝑆𝑦𝑆𝑧

𝑆𝑥

𝑆𝑥𝑆𝑧

𝑆𝑦

𝑆𝑥𝑆𝑦

𝑆𝑧 ]
 
 
 
 

 (15) 

 with 𝑆𝜂(𝜂 = 𝑥, 𝑦, or 𝑧) are given by 

𝑆𝜂 = 1 +
𝜎𝜂

𝑗𝜔𝜀𝑜
 (16) 

where 𝜎𝜂 is the APML conductivity profile along the 

𝜂 −coordinate designed to absorb the outgoing waves with 

minimal reflections [3]. To discretize (13) and (14), consider, 

as an example, the 𝐸𝑧-field component of (13):  

𝑗𝜔𝜀0𝜀𝑟(𝜔)
(1+

𝜎𝑦

𝑗𝜔𝜀0
)(1+

𝜎𝑥
𝑗𝜔𝜀0

)

(1+
𝜎𝑧

𝑗𝜔𝜀0
)

𝐸𝑧 =
∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
 (17) 

 equation (17) can be re-arranged as  

𝑗𝜔𝜀0 (1 +
𝜎𝑥

𝑗𝜔𝜀0
)𝐺𝑧 =

∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
 (18) 

 where 𝐺𝑧 is given by  

𝐺𝑧 =
(1+

𝜎𝑦

𝑗𝜔𝜀0
)

(1+
𝜎𝑧

𝑗𝜔𝜀0
)
𝐷𝑧 (19) 

and 𝐷𝑧 is related to 𝐸𝑧 through (6). Using the inverse Fourier 

transform relation, 𝑗𝜔 ⇒ ∂/ ∂𝑡, (18) and (19) can be written in 

the time domain as  
∂𝐺𝑧

∂𝑡
+

𝜎𝑥

𝜀0
𝐺𝑧 =

1

𝜀0
(

∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
) (20) 

 and  
∂𝐺𝑧

∂𝑡
+

𝜎𝑧

𝜀0
𝐺𝑧 =

∂𝐷𝑧

∂𝑡
+

𝜎𝑦

𝜀0
𝐷𝑧 (21) 

 Using the FDTD algorithm [2], (20) and (21) can be written 

in the discrete time domain as  

𝐺𝑧𝑖,𝑗,𝑘+1/2

𝑛+1 =
𝛼𝑥𝑖

−

𝛼𝑥𝑖
+

𝐺𝑧𝑖,𝑗,𝑘+1/2

𝑛 +
Δ𝑡

𝛼𝑥𝑖
+Δ𝜀0

[𝐻𝑦𝑖+1/2,𝑗,𝑘+1/2

𝑛+1/2
− 𝐻𝑦𝑖−1/2,𝑗,𝑘+1/2

𝑛+1/2  

 −𝐻𝑥𝑖,𝑗+1/2,𝑘+1/2

𝑛+1/2
+ 𝐻𝑥𝑖,𝑗−1/2,𝑘+1/2

𝑛+1/2
]                               (22) 

           𝐷𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 =
𝛼𝑦𝑗

−

𝛼𝑦𝑗
+ 𝐷𝑧

𝑖,𝑗,𝑘+
1
2

𝑛 +

𝛼𝑧
𝑘+

1
2

+

𝛼𝑦𝑗
+ [𝐺𝑧

𝑖,𝑗,𝑘+
1
2

𝑛+1  

                                        −
𝛼𝑧𝑘+1/2

−

𝛼𝑧𝑘+1/2
  + 𝐺𝑧𝑖,𝑗,𝑘+1/2

𝑛 ]                           (23) 

 where 𝛼𝜂𝑚

± , (for 𝜂 = 𝑥, 𝑦, or 𝑧), is given by  

𝛼𝜂𝑚

± = 1 ± Δ𝑡𝜎𝜂 𝑚
/2𝜀𝑜 (24) 

After computing 𝐺𝑧𝑖,𝑗,𝑘+1/2

𝑛+1 , and 𝐷𝑧𝑖,𝑗,𝑘+1/2

𝑛+1  from (22) and (23), 

respectively, 𝐸𝑧𝑖,𝑗,𝑘+1/2

𝑛+1  can be obtained from (11) and (12). It is 

important to note that (22) and (23) can also be applied in the 

inner FDTD computational domain by setting the APML 

conductivity profiles (𝜎𝜂(𝜂 = 𝑥, 𝑦, 𝑧) ) to zero. Similar 

expressions can be obtained for the other field components.  

C. Parallelization Strategy 

In the presented parallel algorithm, the computational domain 

is spatially partitioned into adjacent non-overlapping sub-

domains using 2-D topology, in which the computational 

domain is divided into sub-domains along two directions. Fig. 
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1 shows a typical 2-D decomposition when 4 processors are 

used. To update the field components at the sub-domain 

boundaries, data from the neighboring sub-domains are 

needed. In this paper, the inter-processor communication 

among the neighboring processors is carried out by using the 

MPI library [7]. Fig. 2 shows the data need to be exchanged 

between neighboring sub-domains. For the communication 

purpose, ghost layers located at the edges of the sub-domains 

are used as shown in Fig. 2. It is important to note that as the 

APML field equations involve the same number of inter-

processor communication operations as the conventional 

FDTD equations, as can be seen from (7), (22), and (23), the 

APML finite-difference equations can be used for the total 

computation domain by properly choosing the APML 

parameters. This makes the parallel FDTD algorithm easier to 

implement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.1: Computational domain partitioning using 2-D topology. Shaded and 

gray layers represent ghost layers and internal edges at the sub-domains, 

respectively. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Communications at the boundaries of a sub-domain for the 2-D 

topology. 

 

Finally, the steps for the proposed parallel algorithm can be 

summarized as: 

1. MPI initialization. 

2. Reading of simulation parameters. 

3. Creation of the 2-D topology. 

4. At each time step perform the following: 

4.1 Exchange H-fields with the neighbor sub-

domains by using the MPI library functions. 

4.2 Update the E-fields and other auxiliary variables 

in each sub-domain. 

4.3 Exchange E-fields with the neighbor sub-

domains by using the MPI library functions. 

4.4 Update the H-fields in each sub-domain.  

5. MPI finalization.  

TABLE  I: FDTD PARALLEL SYSTEM CHARACTERISTICS. 

 

 
Fig. 3: Total simulation time and communication time of the proposed parallel 
algorithm 

 

III. SIMULASTION STUDY 

The performance of the proposed parallel algorithm was 

studied for a three dimensional radiation problem. In this 

study, a 𝑧 −polarized modulated Gaussian pulse with a carrier 

frequency of 20 PHz was excited at the center of 240Δ ×
240Δ × 40Δ computational domain, where Δ = Δ𝑥 = Δ𝑦 =
Δ𝑧 = 1 × 10−10𝑚. The computational domain was entirely 

composed of linear Lorentz material (𝑀 = 2) with a dielectric 

permittivity given by  

𝜀𝑟(𝜔) = 𝜀∞ +
Δ𝜀𝜔0

2

𝜔0
2+𝑗2𝛿𝜔−𝜔2

 (25) 

where 𝜀∞ = 𝜀𝑟(∞) = 1.0, Δ𝜀 = 𝜀𝑠 − 𝜀∞, with 𝜀𝑠 = 𝜀𝑟(0) =

2.25, 𝜔0 = 4 × 1016𝑟𝑎𝑑/𝑠 is the resonance radial frequency, 

and 𝛿 = 0.28 × 1016𝑠−1 is the damping constant [17]. In this 

case, the coefficients of (3) are  

𝑎0 =   (𝜀∞ + Δ𝜀)𝜔0
2 , 𝑎1 = 2𝜀∞𝛿, 𝑎2 = 𝜀∞, 

CPU  Pentium IV 2.20 GHz  

Memory   512 Mbyte  

Processor number   4, 8, or 16  

Communication software   Message passing interface  

Network interface   100Mbps Ethernet  

Operating system   Windows XP  

Compiler   C++  

Receive 
Hy, Hz 

Send 
Ey, Ez 

Receive 
Ey, Ez 

Send 
Hy, Hz 

Receive 
Ex, Ez 

Send 
Hx, Hz 

Receive 
Hx, Hz 

Send 
Ex, Ez 

y 

x 
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 𝑏0 = 𝜔0
2, 𝑏1 = 2𝛿 , and   𝑏2 = 1                           (26) 

The computational domain was truncated by eight additional 

PML layers with a quadratic conductivity profile and with a 

theoretical reflection coefficient of 10−5, as defined in [3]. 

The simulation time was carried out for the first 2500 time 

steps and the time step was taken as Δ𝑡 = Δ/(√3𝑐/√𝜀∞), 

where 𝑐 is the speed of light in vacuum. The parallel system 

used in this study was composed of 16 PCs interconnected 

through 100Mbps ethernet. Table I shows the characteristics 

of the proposed parallel system. Fig. 3 shows the total 

simulation time and the communication time of the proposed 

parallel algorithm.  

 

 
 
Fig. 4: Speed-up of the proposed parallel algorithm. 

 

The performance of the proposed parallel algorithm was 

studied according to Speedup and efficiency factors. The 

speedup was calculated as  

𝑆(𝑃) = 𝑇(1)/𝑇(𝑃) (27) 

where 𝑇(1) is the time needed to solve the problem using one 

processor and 𝑇(𝑃) is the time needed to solve the same 

problem using 𝑃 processors. The efficiency was calculated as  

𝐸(𝑃) = 𝑆(𝑃)/𝑃 (28) 

Figs. 4 and 5 show, respectively, the speedup and the 

efficiency of the proposed parallel algorithm. For the purpose 

of comparison, the ideal speedup and efficiency were also 

shown in Figs. 4 and 5. As can be seen from Fig. 4, almost 

linear speedup was obtained when the parallel code was run 

on less than four processors. Beyond this, the efficiency of the 

parallel system decreases. This is due to the fact that as the 

number of processors increases, the size of each sub-domain 

will be too small and hence the communication time becomes 

comparable to the computational time in the sub-domain. It is 

important to note that the performance of the parallel system 

can be improved further by using 3-D topology, which 

involves dividing the computational domain in the 𝑥, 𝑦, and 𝑧-

directions [8]. 

 

 

 
 

Fig. 5: Efficiency of the proposed parallel algorithm. 

 

Finally, it should be noted that in the above example, the 

scalability of the proposed parallel algorithm was measured 

for a fixed problem size. Nevertheless, for some problems, 

parallel systems can also be used to solve larger problems. For 

such problems, the performance of the parallel algorithm is 

measured as the problem size scales proportionally to the 

number of processors. In this case, the computational problem 

size is kept constant per processor, while the number of 

processors increases. In the present study, the sub-domain size 

is kept fixed at 240 × 240 × 40 per processor. Table II shows 

the scalability of the proposed parallel algorithm. As can be 

seen from these results, although the problem size is increased, 

there is a slight change in the total simulation time, which is 

due to the communication time between the processors. 

Hence, the problem size can be increased as the number of 

processors is increased. 

TABLE  II: SCALABILITY OF THE PROPOSED PARALLEL ALGORITHM FOR 

SCALED PROBLEM SIZE. 

  

 𝑃   𝑃𝑥   𝑃𝑦   𝑁𝑥   𝑁𝑦   Computation time  

1  1   1   240   240   3814.8  

4  2   2   480   480   4083.0  

8  4   2   960   480   4131.6  

16  4   4   960   960   4275.6  

 

IV. CONCLUSIONS 

In this paper, full-wave parallel FDTD algorithm is presented 

for modeling electromagnetic wave propagation in dispersive 

open region problems. In the presented work, the problem 

geometry is divided into non-overlapping sub-domains using 

the 2-D topologies. It has been observed that the proposed 

parallel algorithm not only speed up computations but also 

increases the maximum solvable problem size. It is important 

to note that the presented formulations can be used for 

modeling electromagnetic waves interactions with human 

tissues like mobile phone radiations effect on human head. 

Finally, it should be noted that the simulations can be 

accelerated dramatically by using the graphical processing unit 

Page | 635



ICIT 2015 The 7th International Conference on Information Technology 
doi:10.15849/icit.2015.0110 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)  

(GPU) and employing the compute unified device architecture 

(CUDA) parallel programming model [18], and this issue is 

under investigations. 
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