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Abstract—In this paper segmentation of planes in point cloud data generated by Microsoft Kinect is detected by using RANSAC 

method. Two experimental data are acquired by OpenNI and OpenCV library. Kinect camera is first calibrated and the holes in the 

acquired data are filled. Then, the data is filtered, downsampled and segmented via Point Cloud Library (PCL). Distance threshold and 

normal weighted distance parameters of RANSAC algorithm are evaluated in the experiments. 
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I.  INTRODUCTION 

In the last few years three dimensional point cloud 
processing has become an exciting and very hot research topic 
in computer vision. Compared to 2D data, range images have 
several advantages such as 3D geometry processing, 3D shape 
matching and modeling, feature extraction and matching, 
segmentation, and object recognition [1]. All these advantages 
in point cloud data processing are capturing the attention of 
developers and researchers to develop 3D based applications 
[4] in many computer vision fields, such as: extracting the user 
silhouette [4] people detecting and tracking [2], 3D human 
body modeling and shape analyzing, especially for virtual 
shopping and clothing industry [3], 3D sensing of the 
environment representations [5] etc.  

Recent years many mobile robots have been developed to 
help people in their works. In order to help humans in their life, 
first of all, a robot has to percept environments as it is in 3D 
after that it can process the data according to the job that it has 
to do. In 3D model environments flat surfaces are really 
common, as well as to their attractive geometric properties, 
therefore plane segmentation in such environments is an 
essential task. In computer vision one of the common 
algorithms for detecting planes is Random Sample Consensus 
(RANSAC) [6] which consists to search for the best plane 
among the point cloud data. Providing depth data with low-cost 
is made able by last developed sensors such as Microsoft 
Kinect and Asus Xtion PRO. 

In [9] a plane detection method in point cloud data is 
proposed, which detect planes by integrating RANSAC method 
and minimum description length (MDL). This method can 
avoid detecting wrong planes in point clouds with complex 
geometry. It follows these steps to detect planes: It divides 
point cloud in small rectangles block, in each block applies 
RANSAC for detecting all planes, and then MDL is used to 
decide how many planes are in each divided block.  

Different versions of the Hough Transform [11] to detect 
planes in 3D point cloud data are evaluated [10]. An 
accumulator design to achieve the same size per each cell is 
presented. This method gives good results when Randomized 
Hough Transform is applied on 3D data.  Because, removing 
all points which lie on the detected plane, increase the 
performance for detecting next plan. Moreover, the outcomes 
show that detecting the underlying structures on the search 
space is preferred as it can be useful to detect large planes. 

In [12] a real-time plane detection method based on depth 
map from Microsoft Kinect sensor is proposed. A system to 
detect multiple planes fast and roughly in point cloud data 
acquired from Kinect is suggested. In order to achieve good 
results for fast detecting multiple planes in 3D point cloud data, 
they compute local normal vectors of whole point cloud data 
and classify points in different planes using these local normal 
vectors. This method has execution time of 2ms and error of 
1~2mm levels also shows that it is faster than 3D Hough 
Transform and RANSAC for plane detection and works in real 
time.  

A plane detection method for image sequences acquired 
from Kinect sensor is presented in [13]. Image sequences rather 
than a single image like other methods, which provide higher 
accuracy and robustness results, are used. This method 
considers the limitation of the depth sensor by using visual data 
to help detecting planes. Dealing with sequence of images 
helps accuracy and gives odometer information. 

II. DATA ACQUISITION  

Data acquisition includes both hardware and software 
systems. There are many types of hardware (depth sensors) 
such as: stereo vision camera, 3D time of light sensor structure 
light based camera [8], which can capture depth data in 
different environments. Software system is needed for 
processing the data to be functionally meaningful information. 
Transformation of the data to the required model for an 
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application needs to pass through some steps: data filtering, 
data registration and integration, surface reconstruction, data 
simplification and smoothing, feature detection, data 
segmentation and data compression [7].  Several techniques are 
used to acquire depth images. By using just RGB camera it is 
able to reconstruct 3D environment, however this method 
requires significant amount of post-processing [8]. Another 
way for acquiring 3D data is using laser scanning, but this 
device’s cost is high. Recently low-cost depth sensors such as 
Microsoft Kinect and Asus Xtion have become widely 
available and compared to stereo cameras the quality of depth 
data has been improved.  

Microsoft Kinect sensor can acquire depth data in lightless 
environments. Kinect camera was first release by Microsoft on 
November, 2010 as it can be seen in Fig.1. Microsoft Kinect 
sensor contains two cameras and one laser-based IR projector. 
It is able to produce 640x480 pixels 32 - bit color images and 
320x240 pixels 16-bit depth images both at 30 frames per 
second. Depth images are provided by projecting light patterns 
on the surrounding scene, IR camera receives the reflected light 
and compare their positions with the reference pattern [4]. 
Mostly Kinect has advantages but has some disadvantages too 
like limitation in detection, Kinect cannot acquire depth image 
in distance les then 50 cm and more than 10 m, but in order to 
get good precision we take into consideration data in the range 
of 0.5 meters up to 8 meters.  Also due to the occlusion of IR 
projection in depth images there are some missing regions, 
non-measured depth pixel [13]. Another disadvantage of 
Kinect is that it cannot acquire depth images under sunlight. In 
order to improve the quality of depth images, acquired data 
should pass through some filters.  

In this work as input source for data acquiring we adopt 
Microsoft Kinect Sensor with OpenNI (Open Natural 
Interaction) driver [15] which enables communication with 
RGB and depth cameras of Kinect, and OpenCV (Open Source 
Computer Vision) library [16] which is used for processing 
depth images. 

OpenNI is an open source multi-langue, cross-platform 
framework which provides an application programming 
interface for writing applications utilizing natural interaction. 
OpenCV is open source library that supports different 
applications in computer vision. Moreover it is free for both 
commercial and non-commercial use. This library has different 
interfaces such as: C, C++, Java and Python, it also supports 
Windows, Linux, Mac OS, iOS and Android.  

 

Fig. 1. Microsoft Kinect Sensor v1. 

III. POINT CLOUD DATA PROCESSING 

To achieve robust results from data provided by Microsoft 
Kinect sensor it is very necessary to apply some operations on 
these raw data. In Fig 2., the way how to process with point 
cloud data is shown. 

 

Fig. 2. Flow Chart of Point Cloud Processing For Plane Segmentation.  

Camera calibration is a necessary step in computer vision 
for tasks such as 3D reconstruction. The camera calibration 
procedure consists of estimating intrinsic parameters, extrinsic 
parameters and distortion coefficients. Intrinsic parameters 
consist of camera focal length, and principal point, whereas 
extrinsic parameters stands for rotation (R) matrix and 
translation vector (t) of the sensor with respect to the world 
coordinate system. Distortion coefficients are the coefficients 
from the radial and tangential distortion.  

Hole filling, is needed due to the occlusion of IR projection, 
acquired depth images have some non-measured depth pixels. 
Before working with such data it is necessary to fill these 
holes.   

Depth to point cloud is used for transforming a depth 
images to point cloud data. This can be done by using IR 
camera intrinsic parameters, focal length and principal point. 
The algorithm for converting depth images to point cloud data 
is as following: 

  Algorithm 1: Depth To Point Cloud 

 1: factor = 1000; //Meter to MM 

 2: for v=1 to height 

 3:    for u=1 to width 

 4:    z = depth(v,u) / factor; 

 5:    x = (u - cx_d) * z / fx_d; 

 6:    y = (v - cy_d) * z / fy_d; 

 7:            pcloud(v,u,1)=x; 

 8:            pcloud(v,u,2)=y; 

 9:            pcloud(v,u,3)=z; 

10:     end      

11: end 
where fx_d, fy_d are the focal length and cx_d, cy_d are the 
principal points. 
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Removing Non-measured Pixels is needed because even if 
some filters are applied for filling holes in point cloud we can 
see that not always the whole holes are filled. This depends on 
the size of nmp (non measured pixels) in point cloud. In order 
to prevent these non measured pixels effecting negatively the 
results, removing these nmp pixels is necessary. Furthermore 
removing nmp changes the structure of point cloud from 
organized to unorganized. In the same time, removing the nmp 
will change the size of the point, and in the unorganized point 
cloud data the height is set to 1 and width size is the rest of the 
points.  

Removing Noise, decreases unwanted points from raw data 
provided by Kinect. For robust processing of point cloud data it 
is important and necessary to apply some filters for removing 
noise and outliers out of the original point cloud data because 
they can effect and produce errors in processing. As a result the 
point cloud data is classified as inlier point and outlier points. 
After filtering, point cloud data contains just inlier points. 
Moreover removing outliers from point cloud decrease the 
processing time as well as downsampling.  

Downsampling, also reduces the amount of points. 
Microsoft Kinect sensor produces a point cloud containing 
307200 (640x480) points. Working with such high resolution 
point clouds for detection planes requires a lot of processing 
time. 

In order to decrease the process time of detection planes in 
point cloud data applying some optimization techniques such 
as Voxel Grid Downsampling filter is required. Setting 
parameters in efficient way to voxel grid filter will yield very 
good results also will reduce execution time and cost of the 
CPU power. 

Plane segmentation, is the final step. After point cloud data 
is processed RANSAC based plane fitting method is applied to 
detect planes in point cloud data robustly. RANSAC method 
finds the largest set of points that fit to plane. The plane 
equation in three dimensional point cloud data can be defined 
as: 

ax + by +cz + d=0 (1) 

Where a, b and c are plane parameters and d is distance of 
plane from the origin. RANSAC selects randomly three points 
from dataset and calculates the parameters of the corresponding 
plane, after that tries to enlarge the plane according to a given 
threshold, [17].  

  Algorithm 2: Ransac 

 1: bestSupport = 0; bestPlane(3,1) = [0, 0, 0] 

 2: bestStd = ∞; i = 0 

 3: ε = 1 - forseeable-support/length(point-list) 

 4: N = round(log(1 -α)/log(1 - (1-ε)3)) 

 5: while i ≤ N do 

 6:     j = pick 3 points randomly among (point-list) 

 7:    pl = pts2plane(j) 

 8:    dis = dist2plane(pl, point-list) 

 9:    s = find(abs(dis) ≤ t) 

10:   st = Standard-deviation(s) 

11:   if (length(s) > bestSupport) or  

             (length(s) = bestSupport   and st < bestStd) then 

12:       bestSupport = length(s) 

13:       bestPlane = pl; bestStd = st 

14:    end if 

15:    i = i + 1 

16: end while 

IV. EXPERIMENTAL RESULTS 

In this work as input source for data acquiring we adopt 
Microsoft Kinect Sensor with OpenNI (Open Natural 
Interaction) driver which enables communication with RGB 
and depth cameras of Kinect, and OpenCV (Open Source 
Computer Vision) library is used for processing depth images. 

Data acquisition is done by capturing data from two 
different scenes, Office Data and Corridor Data as shown in 
Fig. 3. 

 
(a) 

 
(b) 

Fig. 3. Original Data Captured by Kinect .(a) Corridor Data, (b) Office Data 

A. Camera Calibration 

IR camera intrinsic and extrinsic parameters are estimated 
using Zhang’s calibration method [14] and traditional known 
structure chessboard pattern is used as calibration object as 
shown in Fig.4, containing 10x7=70 corners, and each square is 
size of 25.5 mm  

 
(a) 

 
(b) 

Fig. 4. Camera calibration: (a) chessboard pattern, (b) detected corners.  

In Table I and Table II focal length, principal point and 
distortion coefficients are shown respectively after camera 
calibration process is done.  

TABLE I.  FOCAL LENGTH AND PRINCIPAL POINT 

fx fy cx cy 
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582.74107 582.74107 319.5 243.5 

TABLE II.  DISTORTION COEFFICIENTS 

k1 k2 p1 p2 k3 

0 0 0 0 0 

B. Hole filling  

Two methods are implemented for filling holes. In the first 
one, as shown in Fig.5, holes are filled by using 10 depth 
images captured of the same scene without changing the 
camera view orientation. For 10 depth images average of each 
pixel is calculated to get the new depth image. The non 
measured pixels are not taken into calculation. 

 
(a) 

 
(b) 

Fig. 5. First method of hole filling, (a) Original Depth images captured by 

Microsoft Kinect, (b) the resultant filtered depth image using first method 

In the second method as shown in Fig.6, 3x3 Median Filter 
is applied on the resultant image of the first method. By 
applying such filters on images edge information is lost. 
However such information is not important to detect plane, 
applying this filter on depth images does not affects negatively 
the plane segmentation results. 

 
(a) 

 
(b) 

Fig. 6. Second method of hole filling, (a) Left: The resultant filtred depth 
image with first method,(b) resultant median filtered depth image 

C. Depth to point cloud  

As it is seen from IR camera calibration results the 
distortion coefficients are zero. This is because acquiring data 
using OpenNI driver with Microsoft Kinect sensor returns a 
processed image. Due to zero distortion it is not necessary to 
undistort depth images before converting to point cloud data.  

The depth data acquired from Kinect using OpenNI driver 
is in the form of 16-bit 2-D intensity image. Transforming a 
depth image to point cloud data as shown in Fig.7 using IR 
camera intrinsic parameters, the focal length and the principal 
point are required   

 
(a) 

 
(b) 

Fig. 7. Converting depth image to point cloud data, (a) Depth Image, (b) 

Point Cloud Data 

D. Removing Non-measured Pixels 

The last remaining non-measured pixels are removed from 
depth image by applying removeNaNFromPointCloud filter 
which is implemented on PCL (Point Cloud Library) [18]  

E. Removing Noise 

Noise is removed using PCL by applying 
StatisticalOutlierRemoval filter as shown in Fig.8. The best 
result was achieved by passing these parameters to filter for 

neighborhood size k=50 and 2.5*distance from the mean 

distance .  

 
(a) 

 
(b) 

 
(c) 

Fig. 8. An example of applying StatisticalOutlierRemoval filter to point 

cloud data. (a) point cloud data, (b) point cloud data after 

StatisticalOutlierRemoval operator is applied, (c) nois of point cloud data 
(outlier). 

F. Downsampling 

After data is filtered, in order to decrease the process time 
of plane segmentation voxel grid filter is applied. The size of 
every voxel is set to 1x1x1cm. Microsoft Kinect sensor 
produces a depth image with the size of 640x480=307200 
points. This is the initial size of point cloud data if no filter is 
used. Working with such high resolution point clouds for 
detection planes requires a lot of processing time. 

The size of point cloud data after applying all filters is 
reduced to 73515 points, approximately 24% of the original 
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data. Reducing the size of point cloud data without losing 
necessary information will yield very good results also will 
reduce execution time and cost of CPU power.  

 
(a) 

 
(b) 

Fig. 9. The result of voxel grid filter. (a) Original data, (b) downsampled data 

G. Plane Detection 

Plane detection algorithm receives the processed point 
cloud data as input. Therefore, after all necessary operations 
are done on point cloud data both data Office Data and 
Corridor Data are tested by changing the values of input 
parameter of the algorithm. 

RANSAC algorithm implemented on PCL is used for 
detecting the largest plane. The size of neighborhood k for 
estimating point normals is chosen 50, Also maximum iteration 
size equal is chosen as 100. 

The algorithm is run several times for each data by 
changing the values of NormalDistanceWeight and 
DistanceThreshold parameters. Evaluation parameter values 
for the algorithm are as follow: Normal Distance Weight 
={0.001, 0.01, 0.1, 1} and DistanceThreshold ={0.01, 0.05, 
0.1,0.5}. 

In total, the algorithm is run 16 times for each data. The 
best result for Office Data was achieved when 
NormalDistanceWeight =0.01 and DistanceThreshold =0.1. 

Whereas the best result for Corridor Data was achieved 
when NormalDistanceWeight = 0.001 and DistanceThreshold 
=0.1 

As it can be observed from results, for different point cloud 
data different parameter values have to be used in order to get 
the best results. 

TABLE III.  RESULTS OF PLANE SEGMENTATION FOR CORRIDOR DATA 
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TABLE IV.  RESULTS OF PLANE SEGMENTATION FOR OFFICE DATA 
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V. CONCLUSION AND FUTURE WORKS 

In this paper an efficient way of data processing and 
evaluation of distance threshold and normal weighted 

distance parameters for plane detection using RANSAC 
algorithm is presented. Applying different operations on 
point cloud data such as hole filling, removing non-measured 
pixels, removing noise and downsampling the data before 

Page | 550



ICIT 2015 The 7th International Conference on Information Technology 
doi:10.15849/icit.2015.0098   © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)  

trying to detect the plane yields very good results also 
reduces execution time and the cost of the CPU power. 

From the experimental results it is shown that for 
different data, different parameter values are needed to get 
the best results. As a future work, an adaptive method for 
parameter estimation based on the input point cloud data to 
achieve robust result is planned. 
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