
ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Plane Segmentation of Kinect Point Clouds using

RANSAC

Rifat Kurban
Dept. of Computer Engineering

Erciyes University

Kayseri, Turkey

rkurban@erciyes.edu.tr

Florenc Skuka

Dept. of Computer Engineering

Erciyes University

Kayseri, Turkey

skuka.f@gmail.com

Hakki Bozpolat

Informatics and Inf. Security Research Center

TUBITAK

Gebze, Turkey

hakki.bozpolat@tubitak.gov.tr

Abstract—In this paper segmentation of planes in point cloud data generated by Microsoft Kinect is detected by using RANSAC

method. Two experimental data are acquired by OpenNI and OpenCV library. Kinect camera is first calibrated and the holes in the

acquired data are filled. Then, the data is filtered, downsampled and segmented via Point Cloud Library (PCL). Distance threshold and

normal weighted distance parameters of RANSAC algorithm are evaluated in the experiments.

Keywords—plane segmentation, Kinect, point cloud library

I. INTRODUCTION

In the last few years three dimensional point cloud
processing has become an exciting and very hot research topic
in computer vision. Compared to 2D data, range images have
several advantages such as 3D geometry processing, 3D shape
matching and modeling, feature extraction and matching,
segmentation, and object recognition [1]. All these advantages
in point cloud data processing are capturing the attention of
developers and researchers to develop 3D based applications
[4] in many computer vision fields, such as: extracting the user
silhouette [4] people detecting and tracking [2], 3D human
body modeling and shape analyzing, especially for virtual
shopping and clothing industry [3], 3D sensing of the
environment representations [5] etc.

Recent years many mobile robots have been developed to
help people in their works. In order to help humans in their life,
first of all, a robot has to percept environments as it is in 3D
after that it can process the data according to the job that it has
to do. In 3D model environments flat surfaces are really
common, as well as to their attractive geometric properties,
therefore plane segmentation in such environments is an
essential task. In computer vision one of the common
algorithms for detecting planes is Random Sample Consensus
(RANSAC) [6] which consists to search for the best plane
among the point cloud data. Providing depth data with low-cost
is made able by last developed sensors such as Microsoft
Kinect and Asus Xtion PRO.

In [9] a plane detection method in point cloud data is
proposed, which detect planes by integrating RANSAC method
and minimum description length (MDL). This method can
avoid detecting wrong planes in point clouds with complex
geometry. It follows these steps to detect planes: It divides
point cloud in small rectangles block, in each block applies
RANSAC for detecting all planes, and then MDL is used to
decide how many planes are in each divided block.

Different versions of the Hough Transform [11] to detect
planes in 3D point cloud data are evaluated [10]. An
accumulator design to achieve the same size per each cell is
presented. This method gives good results when Randomized
Hough Transform is applied on 3D data. Because, removing
all points which lie on the detected plane, increase the
performance for detecting next plan. Moreover, the outcomes
show that detecting the underlying structures on the search
space is preferred as it can be useful to detect large planes.

In [12] a real-time plane detection method based on depth
map from Microsoft Kinect sensor is proposed. A system to
detect multiple planes fast and roughly in point cloud data
acquired from Kinect is suggested. In order to achieve good
results for fast detecting multiple planes in 3D point cloud data,
they compute local normal vectors of whole point cloud data
and classify points in different planes using these local normal
vectors. This method has execution time of 2ms and error of
1~2mm levels also shows that it is faster than 3D Hough
Transform and RANSAC for plane detection and works in real
time.

A plane detection method for image sequences acquired
from Kinect sensor is presented in [13]. Image sequences rather
than a single image like other methods, which provide higher
accuracy and robustness results, are used. This method
considers the limitation of the depth sensor by using visual data
to help detecting planes. Dealing with sequence of images
helps accuracy and gives odometer information.

II. DATA ACQUISITION

Data acquisition includes both hardware and software
systems. There are many types of hardware (depth sensors)
such as: stereo vision camera, 3D time of light sensor structure
light based camera [8], which can capture depth data in
different environments. Software system is needed for
processing the data to be functionally meaningful information.
Transformation of the data to the required model for an

Page | 545

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

application needs to pass through some steps: data filtering,
data registration and integration, surface reconstruction, data
simplification and smoothing, feature detection, data
segmentation and data compression [7]. Several techniques are
used to acquire depth images. By using just RGB camera it is
able to reconstruct 3D environment, however this method
requires significant amount of post-processing [8]. Another
way for acquiring 3D data is using laser scanning, but this
device’s cost is high. Recently low-cost depth sensors such as
Microsoft Kinect and Asus Xtion have become widely
available and compared to stereo cameras the quality of depth
data has been improved.

Microsoft Kinect sensor can acquire depth data in lightless
environments. Kinect camera was first release by Microsoft on
November, 2010 as it can be seen in Fig.1. Microsoft Kinect
sensor contains two cameras and one laser-based IR projector.
It is able to produce 640x480 pixels 32 - bit color images and
320x240 pixels 16-bit depth images both at 30 frames per
second. Depth images are provided by projecting light patterns
on the surrounding scene, IR camera receives the reflected light
and compare their positions with the reference pattern [4].
Mostly Kinect has advantages but has some disadvantages too
like limitation in detection, Kinect cannot acquire depth image
in distance les then 50 cm and more than 10 m, but in order to
get good precision we take into consideration data in the range
of 0.5 meters up to 8 meters. Also due to the occlusion of IR
projection in depth images there are some missing regions,
non-measured depth pixel [13]. Another disadvantage of
Kinect is that it cannot acquire depth images under sunlight. In
order to improve the quality of depth images, acquired data
should pass through some filters.

In this work as input source for data acquiring we adopt
Microsoft Kinect Sensor with OpenNI (Open Natural
Interaction) driver [15] which enables communication with
RGB and depth cameras of Kinect, and OpenCV (Open Source
Computer Vision) library [16] which is used for processing
depth images.

OpenNI is an open source multi-langue, cross-platform
framework which provides an application programming
interface for writing applications utilizing natural interaction.
OpenCV is open source library that supports different
applications in computer vision. Moreover it is free for both
commercial and non-commercial use. This library has different
interfaces such as: C, C++, Java and Python, it also supports
Windows, Linux, Mac OS, iOS and Android.

Fig. 1. Microsoft Kinect Sensor v1.

III. POINT CLOUD DATA PROCESSING

To achieve robust results from data provided by Microsoft
Kinect sensor it is very necessary to apply some operations on
these raw data. In Fig 2., the way how to process with point
cloud data is shown.

Fig. 2. Flow Chart of Point Cloud Processing For Plane Segmentation.

Camera calibration is a necessary step in computer vision
for tasks such as 3D reconstruction. The camera calibration
procedure consists of estimating intrinsic parameters, extrinsic
parameters and distortion coefficients. Intrinsic parameters
consist of camera focal length, and principal point, whereas
extrinsic parameters stands for rotation (R) matrix and
translation vector (t) of the sensor with respect to the world
coordinate system. Distortion coefficients are the coefficients
from the radial and tangential distortion.

Hole filling, is needed due to the occlusion of IR projection,
acquired depth images have some non-measured depth pixels.
Before working with such data it is necessary to fill these
holes.

Depth to point cloud is used for transforming a depth
images to point cloud data. This can be done by using IR
camera intrinsic parameters, focal length and principal point.
The algorithm for converting depth images to point cloud data
is as following:

 Algorithm 1: Depth To Point Cloud

 1: factor = 1000; //Meter to MM

 2: for v=1 to height

 3: for u=1 to width

 4: z = depth(v,u) / factor;

 5: x = (u - cx_d) * z / fx_d;

 6: y = (v - cy_d) * z / fy_d;

 7: pcloud(v,u,1)=x;

 8: pcloud(v,u,2)=y;

 9: pcloud(v,u,3)=z;

10: end

11: end
where fx_d, fy_d are the focal length and cx_d, cy_d are the
principal points.

Page | 546

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

Removing Non-measured Pixels is needed because even if
some filters are applied for filling holes in point cloud we can
see that not always the whole holes are filled. This depends on
the size of nmp (non measured pixels) in point cloud. In order
to prevent these non measured pixels effecting negatively the
results, removing these nmp pixels is necessary. Furthermore
removing nmp changes the structure of point cloud from
organized to unorganized. In the same time, removing the nmp
will change the size of the point, and in the unorganized point
cloud data the height is set to 1 and width size is the rest of the
points.

Removing Noise, decreases unwanted points from raw data
provided by Kinect. For robust processing of point cloud data it
is important and necessary to apply some filters for removing
noise and outliers out of the original point cloud data because
they can effect and produce errors in processing. As a result the
point cloud data is classified as inlier point and outlier points.
After filtering, point cloud data contains just inlier points.
Moreover removing outliers from point cloud decrease the
processing time as well as downsampling.

Downsampling, also reduces the amount of points.
Microsoft Kinect sensor produces a point cloud containing
307200 (640x480) points. Working with such high resolution
point clouds for detection planes requires a lot of processing
time.

In order to decrease the process time of detection planes in
point cloud data applying some optimization techniques such
as Voxel Grid Downsampling filter is required. Setting
parameters in efficient way to voxel grid filter will yield very
good results also will reduce execution time and cost of the
CPU power.

Plane segmentation, is the final step. After point cloud data
is processed RANSAC based plane fitting method is applied to
detect planes in point cloud data robustly. RANSAC method
finds the largest set of points that fit to plane. The plane
equation in three dimensional point cloud data can be defined
as:

ax + by +cz + d=0 (1)

Where a, b and c are plane parameters and d is distance of
plane from the origin. RANSAC selects randomly three points
from dataset and calculates the parameters of the corresponding
plane, after that tries to enlarge the plane according to a given
threshold, [17].

 Algorithm 2: Ransac

 1: bestSupport = 0; bestPlane(3,1) = [0, 0, 0]

 2: bestStd = ∞; i = 0

 3: ε = 1 - forseeable-support/length(point-list)

 4: N = round(log(1 -α)/log(1 - (1-ε)3))

 5: while i ≤ N do

 6: j = pick 3 points randomly among (point-list)

 7: pl = pts2plane(j)

 8: dis = dist2plane(pl, point-list)

 9: s = find(abs(dis) ≤ t)

10: st = Standard-deviation(s)

11: if (length(s) > bestSupport) or

 (length(s) = bestSupport and st < bestStd) then

12: bestSupport = length(s)

13: bestPlane = pl; bestStd = st

14: end if

15: i = i + 1

16: end while

IV. EXPERIMENTAL RESULTS

In this work as input source for data acquiring we adopt
Microsoft Kinect Sensor with OpenNI (Open Natural
Interaction) driver which enables communication with RGB
and depth cameras of Kinect, and OpenCV (Open Source
Computer Vision) library is used for processing depth images.

Data acquisition is done by capturing data from two
different scenes, Office Data and Corridor Data as shown in
Fig. 3.

(a)

(b)

Fig. 3. Original Data Captured by Kinect .(a) Corridor Data, (b) Office Data

A. Camera Calibration

IR camera intrinsic and extrinsic parameters are estimated
using Zhang’s calibration method [14] and traditional known
structure chessboard pattern is used as calibration object as
shown in Fig.4, containing 10x7=70 corners, and each square is
size of 25.5 mm

(a)

(b)

Fig. 4. Camera calibration: (a) chessboard pattern, (b) detected corners.

In Table I and Table II focal length, principal point and
distortion coefficients are shown respectively after camera
calibration process is done.

TABLE I. FOCAL LENGTH AND PRINCIPAL POINT

fx fy cx cy

Page | 547

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

582.74107 582.74107 319.5 243.5

TABLE II. DISTORTION COEFFICIENTS

k1 k2 p1 p2 k3

0 0 0 0 0

B. Hole filling

Two methods are implemented for filling holes. In the first
one, as shown in Fig.5, holes are filled by using 10 depth
images captured of the same scene without changing the
camera view orientation. For 10 depth images average of each
pixel is calculated to get the new depth image. The non
measured pixels are not taken into calculation.

(a)

(b)

Fig. 5. First method of hole filling, (a) Original Depth images captured by

Microsoft Kinect, (b) the resultant filtered depth image using first method

In the second method as shown in Fig.6, 3x3 Median Filter
is applied on the resultant image of the first method. By
applying such filters on images edge information is lost.
However such information is not important to detect plane,
applying this filter on depth images does not affects negatively
the plane segmentation results.

(a)

(b)

Fig. 6. Second method of hole filling, (a) Left: The resultant filtred depth
image with first method,(b) resultant median filtered depth image

C. Depth to point cloud

As it is seen from IR camera calibration results the
distortion coefficients are zero. This is because acquiring data
using OpenNI driver with Microsoft Kinect sensor returns a
processed image. Due to zero distortion it is not necessary to
undistort depth images before converting to point cloud data.

The depth data acquired from Kinect using OpenNI driver
is in the form of 16-bit 2-D intensity image. Transforming a
depth image to point cloud data as shown in Fig.7 using IR
camera intrinsic parameters, the focal length and the principal
point are required

(a)

(b)

Fig. 7. Converting depth image to point cloud data, (a) Depth Image, (b)

Point Cloud Data

D. Removing Non-measured Pixels

The last remaining non-measured pixels are removed from
depth image by applying removeNaNFromPointCloud filter
which is implemented on PCL (Point Cloud Library) [18]

E. Removing Noise

Noise is removed using PCL by applying
StatisticalOutlierRemoval filter as shown in Fig.8. The best
result was achieved by passing these parameters to filter for

neighborhood size k=50 and 2.5*distance from the mean

distance .

(a)

(b)

(c)

Fig. 8. An example of applying StatisticalOutlierRemoval filter to point

cloud data. (a) point cloud data, (b) point cloud data after

StatisticalOutlierRemoval operator is applied, (c) nois of point cloud data
(outlier).

F. Downsampling

After data is filtered, in order to decrease the process time
of plane segmentation voxel grid filter is applied. The size of
every voxel is set to 1x1x1cm. Microsoft Kinect sensor
produces a depth image with the size of 640x480=307200
points. This is the initial size of point cloud data if no filter is
used. Working with such high resolution point clouds for
detection planes requires a lot of processing time.

The size of point cloud data after applying all filters is
reduced to 73515 points, approximately 24% of the original

Page | 548

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

data. Reducing the size of point cloud data without losing
necessary information will yield very good results also will
reduce execution time and cost of CPU power.

(a)

(b)

Fig. 9. The result of voxel grid filter. (a) Original data, (b) downsampled data

G. Plane Detection

Plane detection algorithm receives the processed point
cloud data as input. Therefore, after all necessary operations
are done on point cloud data both data Office Data and
Corridor Data are tested by changing the values of input
parameter of the algorithm.

RANSAC algorithm implemented on PCL is used for
detecting the largest plane. The size of neighborhood k for
estimating point normals is chosen 50, Also maximum iteration
size equal is chosen as 100.

The algorithm is run several times for each data by
changing the values of NormalDistanceWeight and
DistanceThreshold parameters. Evaluation parameter values
for the algorithm are as follow: Normal Distance Weight
={0.001, 0.01, 0.1, 1} and DistanceThreshold ={0.01, 0.05,
0.1,0.5}.

In total, the algorithm is run 16 times for each data. The
best result for Office Data was achieved when
NormalDistanceWeight =0.01 and DistanceThreshold =0.1.

Whereas the best result for Corridor Data was achieved
when NormalDistanceWeight = 0.001 and DistanceThreshold
=0.1

As it can be observed from results, for different point cloud
data different parameter values have to be used in order to get
the best results.

TABLE III. RESULTS OF PLANE SEGMENTATION FOR CORRIDOR DATA

 Distance Threshold

0.01 0.05 0.1 0.5

N
o

rm
a

l
W

e
ig

h
te

d
 D

is
ta

n
ce

0
.0

0
1

0
.0

1

0
.1

Page | 549

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

1

TABLE IV. RESULTS OF PLANE SEGMENTATION FOR OFFICE DATA

 Distance Threshold

0.01 0.05 0.1 0.5

N
o

rm
a

l
W

e
ig

h
te

d
 D

is
ta

n
ce

0
.0

0
1

0
.0

1

0
.1

1

V. CONCLUSION AND FUTURE WORKS

In this paper an efficient way of data processing and
evaluation of distance threshold and normal weighted

distance parameters for plane detection using RANSAC
algorithm is presented. Applying different operations on
point cloud data such as hole filling, removing non-measured
pixels, removing noise and downsampling the data before

Page | 550

ICIT 2015 The 7th International Conference on Information Technology
doi:10.15849/icit.2015.0098 © ICIT 2015 (http://icit.zuj.edu.jo/ICIT15)

trying to detect the plane yields very good results also
reduces execution time and the cost of the CPU power.

From the experimental results it is shown that for
different data, different parameter values are needed to get
the best results. As a future work, an adaptive method for
parameter estimation based on the input point cloud data to
achieve robust result is planned.

ACKNOWLEDGEMENTS

 The authors would like to thank Research Foundation of
the Erciyes University, Kayseri, Turkey for supporting this
work under the Grant No. FYL-2015-5601.

REFERENCES

[1] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, "3D Object
Recognition in Cluttered Scenes with Local Surface Features: A
Survey", IEEE Transactions On Pattern Analysis And Machine
Intelligence, 2013, pp:2270-2287.

[2] M. Munaro, F. Basso and E. Menegatti, "Tracking people within
groups with RGB-D data", 2012 IEEE/RSJ International Conference
on, Intelligent Robots and Systems, 2012, Portugal.

[3] I. Douros and B.F. Buxton, "Three-Dimensional Surface Curvature
Estimation using Quadric Surface Patches". Proc. intern. symp., 2002.

[4] M. Camplani, T. Mantecón, and L. Salgado, “Depth-Color Fusion
Strategy for 3-D Scene Modeling With Kinect” IEEE Transactions
On Cybernetics, 2013, 43, 6, pp:1560-1571.

[5] F. Endres, J. Hess, N. Engelhard,J. Sturm, D. Cremers, and W.
Burgard, "An Evaluation of the RGB-D SLAM System" 2012 IEEE
International Conference on Robotics and Automation,RiverCentre,
2012, Saint Paul, Minnesota, USA, pp:1691:1696.

[6] M.A. Fischler and R.C. Bolles. “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography”. Communications of the ACM, 1981, 24(6):
pp 381–395.

[7] Z.M. Bi and L. Wangb, "Advances in 3D data acquisition and
processing for industrial applications" Robotics and Computer-
Integrated Manufacturing 26(2010), pp:403–413.

[8] S. Paulus, J. Behmann, A. K. Mahlein, L. Plümer, and H. Kuhlmann,
"Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping",
Sensors 2014, 14, pp:3001-3018.

[9] M. Y. Yang, and W. Förstner, "Plane Detection in Point Cloud Data"
TR-IGG-P-2010-01,January 25, 2010

[10] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, "The 3D
Hough Transform for Plane Detection in Point Clouds: A Review and
a new Accumulator Design" 3D Research, pp:1-13.

[11] H. Paul V C, “Method and Means for Recognizing Complex
Patterns,” U.S. Patent No. 3069654, 1962.

[12] H. Woo Yoo, W. Hyun Kim, J. Woo Park, W. Hyong Lee, and M. Jin
Chung, "Real-Time Plane Detection Based on Depth Map from
Kinect", 2013, 44th International Symposium on Robotics (ISR).

[13] Y. Suttasupa, A. Sudsang and N. Niparnan "Plane Detection for
Kinect Image Sequences", Proceedings of the 2011 IEEE,
International Conference on Robotics and Biomimetics, December 7-
11, 2011, Phuket, Thailand

[14] Z. Zhang, “A flexible new technique for camera calibration”,IEEE
Transactions On Pattern Analysis And Machine Intelligence, VOL.
22, NO. 11, November 2000

[15] OpenNI,https://github.com/OpenNI/OpenNI, (Online; Accessed: 04
February 2015)

[16] OpenCV,http://opencv.org/, (Online; Accessed: 04 February 2015)

[17] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer, “Extended Ransac
Algorithm For Automatic Detection Of Building Roof Planes From

Lidar Data”, The photogrammetric journal of Finland, 2008, 21 (1),
pp.97-109.

[18] PCL,http://pointclouds.org/, (Online; Accessed: 04 February 2015)

Page | 551

	Modeling
	CR-ICIT15165
	CR-ICIT15192
	CR-ICIT15212
	CR-ICIT15217
	CR-ICIT15303
	CR-ICIT15329
	CR-ICIT15414
	CR-ICIT15442
	CR-ICIT15461
	CR-ICIT15482
	CR-ICIT15507
	CR-ICIT15508
	CR-ICIT15570

